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Abstract. Attention, one of the most important features of modern
CNNs, has been shown to improve the performance of mammogram clas-
sification, but our understanding of why attention offers improvements is
rather limited. In this paper, we present the first comprehensive compar-
ison of different combinations of baseline models and attention methods
at multiple resolutions for whole mammogram image classification of
masses and calcifications. Our findings indicate that attention generally
helps to improve the baseline model scores, but the benefits are vari-
able depending on the resolution and abnormality type. Furthermore,
we find that pooling and overall model architecture (i.e., combination
of baseline and attention) significantly impact mammogram classifica-
tion scores. Specifically, scores are generally improved by architectural
features that allow the model to retain as much information as possi-
ble while still focusing on relevant features. We also find that attention
improves the correlation between model performance and LayerCAM
activation in the region of interest. Our work provides insightful infor-
mation to help guide the future construction of attention-based models
for mammogram classification.
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1 Introduction

Attention has shown great promise in computer vision by guiding a model to
focus on task-relevant local regions and channels [1]. In particular, it has been
shown to increase performance in various classification [2], detection [3], and
segmentation tasks [4]. Attention has also been shown to generally improve
computer vision tasks in the field of medical imagery [2,5], where the region
of interest often only comprises a small portion of the image.

Mammogram classification is an active area of research that has potentially
life-saving con-sequences [6]. It has been extensively studied, and a wide vari-
ety of deep learning model architectures have been proposed for mammogram
classification [7,8]. However, relatively little research has been performed on
the impact of attention in mammogram classification. Although it is generally
accepted that attention may improve model performance by focusing on relevant
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features [2,9], there have not been any rigorous studies that confirm this in the
context of mammogram classification. Although many studies have shown that
attention improves classification scores over the respective non-attention “base-
line” models [10,11], none of them have compared combining different attention
methods with various baseline models. Thus, it is unclear what attention mod-
els work best, and if attention generally leads to improvements in classification
regardless of the baseline model. Furthermore, no research has been performed
on the impact of mammogram resolution or abnormality type on attention per-
formance. Therefore, we don’t currently have sufficient understanding of how
attention generally impacts whole image mammogram classification.

To better understand the impact of attention on whole image mammogram
classification, we have performed extensive experiments with three baseline mod-
els and three attention methods (i.e., 12 distinct models in total). The rest of
the paper is organized as follows: Section2 data and methods, Sect.2.1 data
selection and preprocessing, Sect.2.2 selection of models, Sect. 2.3 selection of
attention models, Sect. 2.4 training and testing process, Sect. 3 results and dis-
cussion, Sect. 3.1 impact of attention on CNN performance, Sect. 3.2 impact of
model architecture on performance differences, Sect. 3.3 impact of resolution on
attention, Sect. 3.4 impact of abnormality type on attention, Sect. 3.5 relation-
ship between model activation and AU-ROC, and Sect. 4 conclusions.

2 Data and Methods

2.1 Data Selection and Preprocessing

We used the CBIS-DDSM dataset [12] to analyze the impacts of attention on
mammogram classification (benign or malignant). In order to understand how
attention impacts model performance for different abnormality types, we trained
and tested masses and calcifications separately. This dataset contains 1592 (1231
train, 361 test) images of masses and their respective segmented regions of inter-
est and pathology, and 1513 (1227 train, 286 test) images of calcifications and
their respective segmented regions of interest and pathology. Although CBIS-
DDSM contains a relatively small amount of data, we chose this dataset because
it uses an official train-test split, which we felt was appropriate for our rigorous
analysis on the impacts of different attention methods.

Mammogram classification is highly dependent on image resolution where
malignant masses or calcifications may be only a couple pixels wide [13]. To
understand how the resolution of mammograms impacts attention methods, we
tested models at resolutions of 500 x 300 and 1000 x 600 (height x width) pixels.
Furthermore, we trained and tested separately on masses and calcifications.

Images were preprocessed according to standard methods in classification
of whole-image mammograms with deep learning [14]. The images were normal-
ized, segmented, cropped, flipped and enhanced with CLAHE. The preprocessed
images were then resized to the target size for the respective experiment (either
500 x 300 or 1000 x 600 pixels). For training, we used brightness, rotation, con-
trast, and flipping augmentations.
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2.2 Selection of Models

To understand how attention influences the classification of mammograms,
we first selected three baseline models (Resnet50 [15], Densenet169 [16], Reg-
netx64 [17]). For each baseline model family, we trained and tested three dif-
ferent model sizes (eg. Resnet38, Resnet50, and Resnet101), and selected the
particular model that performed the best. We chose Resnet50 and Densenet169
due to their high popularity for mammogram classification [18,19]. Regnetx64
is an architecture developed by Meta which represents a more state of the art
version of Resnet50. Regnetx64 uses a quantized linear function to determine
the width and depth of each stage in the network, which the authors claim
result in significant improvements [17]. All of our baseline models (as well as the
attention methods) come from the Huggingface PyTorch Image Models (TIMM)
repository. For each of these baselines, we considered three different attention
methods,yielding 12 different models in total.

2.3 Selection of Attention Methods

The main criteria for our choice of attention methods were modularity and popu-
larity. Based on initial experiments, we identified three top performing attention
methods that could be easily integrated with our baseline models: Squeeze and
Excitation (SE), Efficient Channel Attention (ECA), and the Convolutional Bot-
tleneck Attention Module (CBAM) [20-22]. SE and ECA utilize channel atten-
tion to appropriately weight task-relevant channels (Fig. 2b). ECA was developed
to address the issue of dimensionality reduction for attention modules such as
SE and CBAM, and it has been shown to outperform both of these attention
methods [21]. CBAM uses both channel and spatial attention. For each baseline
and attention combination, we performed ablation studies at low resolution to
determine the best placement of the attention module within the baseline model.

2.4 Training and Testing Process

All models were trained with fine-tuning. Specifically, the last layer of each model
was removed and replaced with a dropout layer, a fully connected (FC) layer
with 1624, 1664, or 2048 input nodes (based on width of baseline network) and 64
output nodes, leaky ReLU activation with a slope of 0.1, another FC layer with
64 input nodes and 1 output node, and sigmoid activation in the final layer to
produce a binary prediction (malignant or benign). We used pre-trained weights
from Imagenet to initialize the models. Although some baseline+attention com-
binations had pre-trained weights in the TIMM repository, we used the respective
baseline model weights to initialize all attention models to keep the comparison
fair. For Resnet50, we trained and tested two different model weights, since we
found that the standard Timm weights significantly under-performed when com-
pared to the imagenet1k_V2 weights for Resnet50 found in the PyTorch library.
We experimented with freezing certain parts of the models for fine-tuning, but
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found that it either resulted in no significant difference, or a slight decrease, in
model scores. Therefore, no layers were frozen in our final experiments.

Hyperparameter tuning was done in a two step process. In the first step, we
used Optuna to tune a large search space through Bayesian methods. These
results narrowed the search space, then final tuning was done manually for
each model. After manually tuning, we trained and tested each model within
an approximate range of best hyperparameters over 40 times. We then used
the top 30 scores for each model to calculate the results. The low resolution
(500 x 300) models were primarily trained on a machine with an RTX 3070 (8
GB VRAM), and the high resolution (1000 x 600) models were all trained on
a machine with an RTX 3090 (24 GB VRAM). We used a batch size of 10-16
(depending on VRAM constraints), the Adam optimizer, and cosine annealing
with warm restarts for our scheduler.

3 Results and Discussion

3.1 Impact of Attention on CNN Performance

We have found that all attention methods generally improve baseline perfor-
mance, but ECA and SE provide more consistent improvements than CBAM
(Fig. 1a). By breaking the results down into model averages, we can observe
CBAM yielded the largest performance increase for Densenet169, but it was
the only attention method that decreased performance for Regnetx64 (Fig. 1b).
Furthermore, all Densenet169 and Regnetx64 models generally outperform all
Resnet50 models. We also found that all attention methods result in increased
performance for Densenet169 and Resnet50, whereas only ECA and SE result in
increased performance for Regnetx64, indicating that attention might be slightly
less beneficial for Regnetx64. The only models that showed significant (p < .05)
increases in AU-ROC over all model variations were Densenet169+CBAM and
Densenet169+SE (Fig. 1b). Furthermore, the average differences between model
AU-ROCs are relatively small. Thus, although choice of model architecture and
attention module does matter, it should not have a large impact on results.
The number of trainable parameters is larger for Resnetb0 and Regnetx64
than for Densenet169 (Table1). Furthermore, the addition of CBAM and SE
modules to Resnet50 and Regnetx64 leads to a larger increase in the number of
parameters than when they are added to Densenet169. Thus, the poor perfor-
mance of Resnet50, and Regnetx64+CBAM may be partially explained by the
large number of parameters. Models with a large number of parameters have high
complexity, and they are more likely to overfit than less complex models [23,24].
The poor performance of CBAM may be additionally explained by the fact
that it has shown inconsistent performance, resulting in decreased scores com-
pared to the baseline for some fine-grained tasks [25]. Since mammogram clas-
sification is a highly fine-grained task [26], it is possible that CBAM is helpful
for a smaller range of models, abnormality types, and input image resolutions
than the other attention methods are. We thus recommend that rigorous testing
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Fig. 1. Average results for all experiments, and architectures for baseline networks and
attention methods. (a) Average AU-ROC vs accuracy with F1 colorbar. (b) Average
AU-ROC for all model variations (network-specific breakdown of a). (¢) Architecture
comparison for Resnet50, Densenet169 and Regnetx64. (d) Architecture comparison
for SE, ECA and CBAM attention modules. a&b show general increases in all scores
due to attention. c&d are designed to highlight the differences between architectures
used in this study, and are not a complete representation of the architectures.
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be employed before using CBAM for mammogram classification (especially for
calcifications).

In general, we found that CBAM was significantly harder to train than the
baseline, SE, or ECA. CBAM took a significantly longer time to train than the
other models, and the range of hyperparameters that produced good results was
generally smaller (Table 1). However, the baseline models had the highest stan-
dard deviation between AU-ROC scores in different learning rate bins. Thus,
attention results in less variation due to learning rate, which generally implies
that models with attention will be less sensitive to hyperparameter choices. Sim-
ilarly, Resnet50 was more difficult to train than Regnetx64 or Densenet169.
Although Resnet50 trained faster than Densenet169, it was more prone to over-
fitting, and there was a smaller range of hyperparameters that would produce
good results.

Table 1. This table contains various miscellaneous information that has been grouped
together to save space. The first row gives the number of model parameters times 107.
The second row gives the average run time for each model. The third row gives the
standard deviation of AU - ROC for each model between groups of learning rates.

DN |RG |RN |CBAM CBAM CBAM|ECA ECA |ECA [SE SE SE
169 |64 50 DN RG 64 |RN 50 DN 169 |RG 64 RN 50 DN RG 64 |RN 50
169 169

1.26 2.47 [2.36 |1.28 4.36 6.39 1.26 2.47 2.36 1.28 4.36 6.39
20.12|14.53|10.05|19.64 |28.26 |21.40 |18.55 15.19 |12.84 |20.00 |16.04 |13.83
.0042|.0066|.0069|.0043 |.0060 |.0038 |.0045 .0045 |.0048 |.0036 |.0041 |.0050

Figure 2 shows the AU-ROC for each model variation trained separately on
two different resolutions and for two different abnormality types. Based on this
figure, the most significant increases in AU - ROC score due to attention were for
Regnetx64 and Resnet50 for the 300 x 500 resolution masses, and Desnenet169
for the 600 x 1000 resolution masses and the 300 x 500 resolution calcifications.
The best specific model performances were for Densnet169 with any attention
method for the high resolution masses, and Regnetx64 with ECA for the high
resolution masses. Figure 2 also reinforces the finding that ECA is the best atten-
tion method (greatest number of significant score increases compared to base-
line), followed by SE then CBAM.

3.2 Impact of Model Architecture on Performance Differences

To further investigate these differences in performance, we analyzed the differ-
ences in model architecture between each baseline method (Fig. 1c). Densenet169
has a slower/more gradual increase in the number of feature maps (channels)
than the other baseline networks do. Furthermore, all Densenet169 feature maps
for each layer within a block are connected, meaning that no relevant informa-
tion is lost within a block [16]. Densenet169 also ends up with less channels than
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Resnet50 (1664 vs 2048). Regnetx64 has less changes in the number of chan-
nels than Resnet50, and also ends up with less channels (1624 vs 2048). Given
the smaller growth rates of channel size and the similar final channel size for
Densenet169 and Regnetx64, the relatively poor performance of Resnet50 might
be due to its relatively wide architecture and/or bigger changes in number of
channels between each layer. Although wide models may have a larger chance to
overfit due to overparameterization, most research has shown increased perfor-
mance for wider networks [27]. However, mammogram classification is an espe-
cially fine-grained task, so it’s possible that a slightly larger tendency to overfit
makes wider models perform worse in mammogram-related tasks. Furthermore,
wide networks take significantly longer to train than thin networks. Thus, the
poor performance of Resnet50 may be due to its relatively wide layers that
potentially lead to overfitting, or the requirement of a longer training time than
what was used in our experiments.

For the attention methods (Fig 1d.), we can see that the architectures of
ECA and SE are relatively similar. The only difference is that SE has two 2D
convolutional layers, and ECA only has one 1D convolutional layer. The first
part of CBAM (channel attention) is nearly identical to the SE module. How-
ever, CBAM employs max and average pooling before sigmoid activation, which
may restrict the predictive power of small features. After channel attention, the
new feature map is passed to a spatial 7 x 7 2D convolutional filter followed by
another sigmoid activation. This spatial convolution with a high kernel size fur-
ther reinforces prediction of only the most salient features, reducing the input
of small or less relevant features that may still be important for mammogram
classification. Furthermore, spatial convolution has been shown to result in over-
fitting [28]. Thus, the relatively poor performance of CBAM may be partially
due to its large spatial convolution since spatial convolution. However, we have
also noted that CBAM was more difficult to train (due to larger training time
and more sensitivity to hyperparameter choice), so we can’t confidently conclude
that the spatial convolution component of CBAM will always provide poor per-
formance relative to other attention methods. Furthermore, we did some minor
testing of CBAM with only the channel attention module, but this didn’t result
in a score increase over vanilla CBAM. More experimentation is needed to under-
stand the exact shortcomings of CBAM (relative to SE and ECA), but we the-
orize that the explanation primarily lies with the max and average pooling, the
large spatial convolution, or the difficulty in finding optimal hyperperameters
for training.

Generally, our results seem to suggest that wider networks that use more
pooling are likely to result in overfitting for mammogram classification. Although
Densenet169 uses more pooling than any other architecture, the results are bet-
ter than for Resnet50 because of the inter-connectedness of all feature maps,
which ensures that small-but-important features are not lost. Thus, we posit
that pooling is problematic insofar as it limits the amount of relevant informa-
tion the model can use. If the underlying network architecture promotes strong
connectivity between layers, then pooling does not seem to cause decreases in
model performance for mammogram classification.
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Fig. 2. Average AU-ROC for each model variation under each training/testing scenario
for mammogram classification. One star indicates a significant (p < .05) difference from
the baseline. Two stars indicate a very significant (p < .01) difference from the baseline.
(a) Low resolution calcifications. (b) Low resolution masses. (c) High resolution calcifi-
cations. (d) High resolution masses. This figure generally shows improved performance
due to attention, especially for ECA and SE.

3.3 Impact of Attention on Resolution

In addition to our general investigation of the impact of attention on mammo-
gram classification, we also specifically investigated the impacts of attention on
classification for different image resolutions. Our results indicate that attention
has a greater impact at low resolution (Fig. 3a), although this is largely due to
the much more significant increase in AU-ROC due to attention for Resnet50 at
low resolution (Fig.3b). Regnetx64, however, shows a slightly greater increase
in AU - ROC when combined with ECA and SE at high resolution than it does
at lower resolution (Fig. 3c).
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(d) Average AU-ROC vs. accuracy with F1 colorbar. (e) Average AU-ROC of each
model variation for calcifications. (f) Average AU-ROC of each model for masses. d—f
generally show higher scores for mass classification, and a higher impact of attention
for calcifications.

One potential explanation for the relatively poor performance of Resnet50 is
that the model is too wide, which resulted in overfitting. Although the results
are not shown here due to lack of space, we did find that Resnet50 was more
likely to result in overfitting than the other two baseline models. The addition of
attention mechanisms helps to prevent this overfitting at low resolution. At high
resolution, overfitting was generally less of an issue, so it’s possible that attention
is not able to provide much further improvement. However, like CBAM, it is also
plausible that the “best” set of hyperparameters were not well determined for
Resnet50 at high resolution, especially since the Resnet50 baseline showed the
highest standard deviation of score based on choice of learning rate (Table1).
Although significant effort was made to ensure the best hyperparameters for
each model were used, given the large number of models tested, it is conceivable
that some were not trained in a way to produce the best possible scores.

Besides looking at how attention improves scores at different resolutions, we
can also observe some general trends in the impact of resolution on mammogram
classification. Clearly, classification scores are generally better at a higher reso-
lution. Furthermore, there is much less variability for all model scores at high
resolution. This has important implications for mammogram classification, since
images are often heavily downsized to fit in various models [11,13].
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3.4 Impact of Attention on Abnormality Type

We have also investigated the impact of attention on classification for differ-
ent abnormality types. In general, we have found that SE and CBAM result in
greater improvements in scores for calcifications than for masses (Fig. 3d). How-
ever CBAM also results in a large decrease in AU-ROC for calcifications when
combined with Regnetx64. Thus, the performance of CBAM for calcifications
is more reliant on baseline model architecture than for masses. ECA doesn’t
show any significant difference between scores for calcifications and masses. For
Densenet169 and Resnetb0, we found that attention results in greater score
increases for the classification of calcifications than of masses (Figs. 3e and 3f).
However, for Regnetx64, the opposite is true. One possible explanation for this
trend is that Regnetx64 uses much less pooling than Densenet169 and Resnet50,
meaning its architecture may be more favorable for small features such as calci-
fications. Thus, due to the constraints of resolution, attention is unable to offer
as much of an impact in directing an already-good model to relevant features.

For calcification classification, the model scores may be significantly lim-
ited by the resolution of the image. Even at a resolution of 1000 x 600, some
calcifications may only comprise a couple pixels. Consequently, Resnet50 and
Densenet169, which both use a large amount of pooling, do not see much of a
performance gain between low and high resolution (Fig 3). Regnetx64, which uses
less pooling, sees much more significant increases in scores at high resolution.
These results suggest that even at high resolution, too much pooling can result
in a loss of relevant information. Densenet169, which uses the largest amount of
pooling, shows a relatively small increase in scores for calcifications going from
low to high resolution, but the largest increase in scores for masses going from
low to high resolution (Fig. 2). The large amount of pooling may allow the model
to focus on more relevant features for masses, but with calcifications, the pool-
ing causes too much of a loss of information, even with the interconnectedness
of the dense layers. This loss of information likely doesn’t significantly impact
Densenet169 at low resolution because the small features that would be lost to
pooling have already been lost during downsizing.

3.5 Relationship Between Model Activation and AU-ROC

To investigate the impact of attention on mammogram classification at a deeper
level, we considered the relation between class activation maps and AU-ROC.
Specifically, we used LayerCAM [29] to calculate class activation maps for each
test image and for each model variation. We then binarized the resulting heatmap
and calculated the Jaccard index, or IOU, between the binarized heatmap and
the respective mask for each image. We used a simple ascending search to deter-
mine the threshold for heatmap binarization that results in the highest IOU
score. We found that ECA generally has the most consistent improvement in IOU
score over the baseline (9/12 increases), then SE (7/12 increases), then CBAM
(2/12 increases) (results not shown due to lack of space). We also observed that
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Fig. 4. Relationship between IOU and AU-ROC. Correlation coefficient (R2) is given
at the top of each graph. (a) All baseline models. (b) All models with ECA. (c¢) All
models with SE. (d) All models with CBAM. This figure generally shows that attention
methods provide a stronger correlation between IOU and AU-ROC, which indicates
that attention helps the models focus on task-relevent features.

IOU scores increase at higher resolution, and are higher for masses than for
calcifications.

We further used scatter plots and linear regression to more precisely identify
this relationship (Fig.4). Our results indicate that all attention methods show
more correlation between IOU and AU-ROC than the baseline models (Fig. 4a),
but that this relationship is much more significant for ECA (Fig. 4b). This implies
that attention generally causes a given model to focus on more relevant features
in mammograms. Moreover, mass classification in high resolution mammograms
provides the greatest IOU scores. Although not shown here due to a lack of space,
the correlation between AU-ROC and IOU score increases at high resolution for
all attention models. Thus, at higher resolutions, attention should theoretically
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provide a greater increase in scores. However, this is not what we have observed
from resolution-averaged model performances (Fig.3). Further investigation is
required to determine the source of this contradiction.

4 Conclusions

Our work attempted to better understand how attention impacts mammogram
classification. Our findings indicate that attention generally improves model
performance. Furthermore, we found that ECA and SE significantly outper-
form CBAM. Between the baseline models, we found that Regnetx64 had the
best performance, but may offer the lowest score increase due to attention. We
also found that Densenet169 offers the highest increase due to attention, while
Resnet50 gives the lowest scores. We theorize that differences in model architec-
ture provide reasonable explanations for the differences we observed in model
performance. Specifically, we found that wide architectures, and architectures
with significant amounts of pooling, are more likely to overfit than thin models
with less pooling. This impact was more noticeable for calcifications than for
masses, which implies that the small features found in mammograms are often
lost during pooling.

We have also presented evidence showing a correlation between IOU and
AU-ROC scores. This correlation improves due to attention, with ECA showing
the most significant correlation among the three attention methods examined.
While others have used activation maps to show improvements due to attention,
an IOU analysis providing an average score for all test images has not been pre-
sented. Our analysis shows that at a statistically relevant sample size, attention
improves focus on task-relevant regions for mammogram classification. Future
studies could leverage results from this study to develop a loss function that uses
segmentation to make predictions for classification.

Our results could also be used to improve the design of future networks for
mammogram classification and segmentation. Our findings indicate that model
architecture and complexity are important considerations when designing net-
works for mammogram classification, as wide architectures and excessive pooling
may result in overfitting. Furthermore, we have found that attention, especially
ECA, results in significant performance increases for mammogram classification
by helping the models to focus on task-relevant regions of the mammogram.
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