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Abstract. Breast cancer continues to be one of the most lethal can-
cer types, mainly affecting women. However, thanks to the utilization
of deep learning approaches for breast cancer detection, there has been
a considerable boost in the performance in the field. The loss function
is a core element of any deep learning architecture with a significant
influence on its performance. The loss function is particularly important
for tasks such as breast mass segmentation. For this task, challenging
properties of input images, such as pixel class imbalance, may result in
instability of training or poor detection results due to the bias of the
loss function toward correctly segmenting the majority class. Inspired
by the success of sample-level loss functions, we propose a hybrid loss
function incorporating both pixel-level and region-level losses, where the
breast tissue density is used as a sample-level weighting signal. We refer
to the proposed loss as Density-based Adaptive Sample-Level Prioritiz-
ing (Density-ASP) loss. Our motivation stems from the observation that
mass segmentation becomes more challenging as breast density increases.
This observation makes density a viable option for controlling the effect
of region-level losses. To demonstrate the effectiveness of the proposed
Density-ASP, we have conducted mass segmentation experiments using
two publicly available datasets: INbreast and CBIS-DDSM. Our exper-
imental results demonstrate that Density-ASP improves segmentation
performance over the commonly used hybrid losses across multiple met-
rics.

1 Introduction

Despite significant progress in breast cancer screening over the last decades,
breast cancer remains one of the most fatal cancer types among women [1].
Mammography is the most common screening tool for breast cancer detection,
which has been shown to reduce mortality rate [4]. Automated breast cancer
detection using mammography could help to reduce the cost of a second reader
[2,3] while at the same time increasing the chance of early detection.

Powered by the well-proven effectiveness of deep learning, recent research
work on abnormality detection has achieved promising results. However, these
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methods are still restricted by limitations, such as pixel class imbalance [5], which
can adversely affect results in various tasks such as mass segmentation. These
limitations have many times their root in the design of the loss function. In most
cases, using a hybrid loss function – the weighted sum of different loss functions
– has shown to be more beneficial compared to non-hybrid loss (using only one
type of loss function). Although using the de-facto hybrid loss [5–7]–a weighted
sum of Dice [8] and Binary Cross Entropy (BCE) [9] losses–has been shown to
provide stability and robustness, the success of recent work on adaptive loss
weighting strategies indicates that hybrid loss could be significantly improved
by a sample-level design. Following the design of the ASP loss [10], which uses
the mass ratio in the loss weighting strategy, we propose to employ the breast
tissue density associated with each sample in the loss weighting strategy.

The rationale behind selecting breast tissue density as the sample-level sig-
naling feature for hybrid loss stems from the observation that breast density
(which represents the composition of fat, fibrous, and glandular tissue) is cor-
related with mass segmentation’s difficulty. In the case of automatic detection
from a single view, higher tissue density might be mistaken for an abnormality
and increase the false positive rate. Therefore, the breast tissue density of each
sample could provide valuable information during training. How to best leverage
the information conveyed by each density category for training purposes is an
important research question which we attempt to explore in this paper by intro-
ducing a region-level loss term in the hybrid loss. The benefit of the region-level
loss term lies in the observation that comparison between the regions (rather
than pixels) could result in the reduction of false positive and false negative
rates by considering the dependencies between (via including surrounding pixels
in the calculation of the loss) the pixels.

The Density-ASP loss function proposed in this paper consists of pixel-level
and region-level losses. In this paper, loss functions such as Dice and BCE that
consider pixels independently in the calculation of the loss are referred to as
pixel-level losses. On the other hand, the loss functions that take the dependen-
cies between the pixels into consideration are referred to as region-level losses.
For the pixel-level loss term, we have combined Dice [5] and BCE [9]. The com-
bination of these losses has been shown to help to address the issue of pixel
class imbalance and increase training stability [6]. For the region-level loss term,
we have combined Structural Similarity Index (SSIM) [11] and Region Mutual
Information (RMI) [12]. It should be noted that the term hybrid applies to
Density-ASP as well as each of the pixel-level and region-level terms (as they
consist of two losses in their own categories). Instead of employing fixed weights
[6,7] for each loss term, following the ASP loss methodology [10], we propose to
use the ACR breast density category as an indicative signal for prioritizing the
region-level loss term over the pixel-level loss term and vice versa. Therefore,
the region-level loss is an adaptive loss term that will be prioritized for samples
with higher density. Using AU-Net [6], which is a modern and effective varia-
tion of U-Net [14], as the baseline architecture, the Density-ASP loss has been
evaluated on two benchmark datasets for mass segmentation: INbreast [15], and
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CBIS-DDSM [16]. The results of our experiments illustrate that Density-ASP
loss provides considerable performance improvements compared to commonly
used hybrid losses.

The contributions of this paper are four-fold:

• Incorporating both pixel-level and region-level losses in the Density-ASP loss
function.

• Employing breast tissue density as a prioritizing signal for adaptive sample-
level prioritizing loss function for mass segmentation on whole mammograms.

• Evaluating Density-ASP on two benchmark datasets, INbreast and CBIS-
DDSM.

• Quantitatively analyzing and comparing the findings of our experimental
results for Density-ASP loss with the traditional hybrid loss for the base-
line approach and state-of-the-art mass segmentation methods.

In the following sections, we first review related work in the field. The pro-
posed method is then explained in detail. Our experimental results, analysis,
and comparison with state-of-the-art methods are presented next. Finally, we
provide our conclusions and discuss directions for future research.

2 Related Work

Recently, deep learning-based approaches have shown great promise in abnor-
mality detection in medical images, with many studies achieving more accurate
mass segmentation results compared to traditional approaches. In this section,
we aim to briefly review the related work in deep learning-based approaches for
breast mass segmentation, categorizing them into two groups: breast mass seg-
mentation in whole mammograms and loss functions for binary segmentation of
medical images.

2.1 Mass Segmentation on Whole Mammograms

The majority of breast mass segmentation approaches fall into one of the fol-
lowing categories based on the type of input they receive: region of interest
(RoI) and whole mammogram. RoI-based mass segmentation approaches [17]
have different properties, challenges, and strategies compared to methods using
whole mammograms [6,7]; thus, in this section, the primary focus is on reviewing
related work in the latter category.

Inspired by [18], one of the pioneer deep learning-based approaches for seg-
mentation, Ronneberger et al. proposed U-Net [14], which is a fully convolutional
symmetric encoder-decoder architecture that is instrumental for segmentation
tasks with limited training data. This property of U-Net makes it specifically
favorable for medical image segmentation where data scarcity is a relatively com-
mon limitation. U-Net combines low-level location information from the encoder
with high-level semantic information from the decoder.
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Thanks to the effectiveness of U-Net, a new wave of variations for different
medical tasks has emerged [19–25], continuing to push the performance bound-
aries of medical image segmentation. In this context, the method proposed in
[26] introduced a similar encoder-decoder architecture (leveraging dense blocks)
where multi-scale information is utilized in the network. To enhance the per-
formance of the network without additional parameters, atrous convolution [27]
with various sample rates was used in the last encoder block. [28] is another U-
Net-based approach based on the idea of utilizing a densely-connected network
in the encoder and a CNN with attention gates in the decoder. Another line
of research within the scope of multi-scale studies is [29], where the generator
was designed as an improved version of U-Net. Before sending the segmentation
results to the discriminator, multiscale results were created for three critics with
different scales in the discriminator. Ravitha et al. [30], developed an approach
employing the error of the outputs of intermediate layers relative to the ground
truth labels as a supervision signal to boost model performance.

In [6], the authors introduced an attention-guided dense-up-sampling asym-
metric encoder-decoder network (AU-Net) with an intermediate up-sampling
block which includes a channel-wise attention mechanism designed to leverage
the beneficial information presented in both low and high-level features. To mit-
igate the problem of relatively low performance of U-Net approach on small-size
masses, [7] proposed to use a selective receptive field module with two parts,
one for generating several receptive fields with different sizes and one for select-
ing the appropriate size of the receptive field. AU-Net has been chosen as the
baseline model in this study.

2.2 Loss for Medical Image Segmentation

The choice of a suitable loss function, conveying the desired objectives of the
task performed by a network, has a tremendous impact on the training process
and overall performance of the network. Among the previously introduced losses
for segmentation, while some consider the pixels independent entities, others
seek to take regional information into consideration to capture the dependencies
between the pixels. The first group is generally regarded as pixel-level losses, and
the latter as region-level losses in the literature. Considering that both categories
are relevant to this research, we provide a concise summary of related studies
in both groups, starting with pixel-level approaches and emphasizing the ones
proposed for the medical domain.

Binary segmentation could be considered as the classification of pixels into
positive (foreground) and negative (background) classes. A common loss function
for this task is the BCE loss [9] (Eq. 1) which penalizes the discrepancy between
predicted and ground truth classes for all pixels. Weighted Binary Cross Entropy
[31] and Balanced Cross Entropy [32] are two BCE variants that differentiate
between the effect of false positives and false negatives through weighting coef-
ficients. Focal loss [33] further improved BCE by changing the magnitude of the
loss according to the hardness of the examples based on the confidence of the
model. Dice loss [8] is suitable for addressing the pixel class imbalance problem
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[34], formulated as the ratio of correctly classified pixels to the total number of
positive pixels in the prediction and ground truth masks (Eq. 2). Tversky loss
[35] provides a way to control the contribution of the false positive and the false
negative terms in the Dice loss by weighting these terms.

All the aforementioned losses belong to the pixel-level category (i.e., they
consider the pixels independently). While providing effective training signals
for the network, they neglect to consider the relationship among pixels, which
could provide a considerable boost, notably for cases with irregularity in shapes.
Initially proposed for image quality assessment, SSIM [11] has been incorporated
in the segmentation loss for medical image segmentation [13] and has inspired
several region-level losses. SSL [36] and RMI [12] are two examples of region-level
losses developed for segmentation. It should be noted that both of these losses
consider a fixed-size window around each pixel as the region (a region is defined
for each pixel) rather than a fixed location (a region is a fixed location in a grid)
in the ground truth and the prediction as utilized in [37,38].

SSIM [11] uses luminance, contrast, and structure in measuring the differ-
ences between two regions. Inspired by the influence of the structural term in the
SSIM, which has the potential to be customized for segmentation purposes, the
authors of Structural Similarity Loss (SSL) [36] proposed to weight the cross-
entropy of every two pixels based on the structural error (error between two
image regions which indicates the degree of linear correlation) while ignoring
pixels with low error and emphasizing on pixels with high error by thresholding
the error rate. With the goal of maximizing the structural similarity between
images, RMI [12] first converts the region around a center (pixel) to a multi-
dimensional point (for a 3*3 region, it will be a 9D point) and then maximizes
the MI between multidimensional distributions.

Several compound losses [33,35,39] have been proposed to reap the benefits
of different losses by combining two or more of them. Combo loss [39] has been
proposed to control the contribution of false positive and false negative by a
weighting strategy in the BCE loss term where the total loss is a weighted
sum of BCE and Dice loss. In adaptive sample-level prioritizing loss, we have
proposed a novel approach to weight the loss terms (Dice and BCE) dynamically.
This is performed in an adaptive manner by controlling the influence of each loss
according to each sample using the ratio of the mass to image size as a weighting
signal. It should be noted that ASP has three versions: quantile-based, cluster-
based, and learning-based. In the quantile-based ASP, the images are groups
based on the quantile to which the ratio of the mass belongs. In the cluster-
based version, the category of an image is identified according to the K-means
clustering of the ratios. Finally, the learning-based ASP is a parametrized version
of the ASP loss.

We follow the same dynamic weighting strategy as ASP loss [10]. However,
instead of utilizing the size of the mass, we opt to utilize the breast tissue density,
which is mostly related to the difficulty of the segmentation. In addition, instead
of solely using and weighting pixel-level losses, we introduce a combination of
hybrid pixel-level and region-level losses.
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Fig. 1. An overview of the proposed method.

3 Methodology

In this study, both hybrid pixel-level and region-level loss functions are utilized.
Therefore, an overview of hybrid pixel-level LHP and region-level LHR losses are
provided in the following sections.

3.1 Hybrid Pixel-Level Loss

The standard hybrid pixel-level loss, commonly used for mass segmentation in
mammograms, is defined as a weighted sum of BCE and Dice loss, as shown
below:

LBCE = −
(
ylog(ŷ) + (1 − y)log(1 − ŷ)

)
(1)

LDice = 1 −
∑H×W

j=1 ŷjyj + ε
∑H×W

j=1 ŷj +
∑H×W

j=1 yj + ε
(2)

LHP = αLDice + βLBCE (3)

Here y and ŷ represent the ground truth and the predicted segmentation
masks, respectively. α and β (could be relative, for instance, formulated as β =
1 − α ) are the weighting parameters in the hybrid loss denoted as LHP in
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Eq. 3. While the cross entropy loss (Eq. 1) includes correctly classified positive
and negative pixels, the Dice loss (Eq. 2) incorporates only correctly classified
positive pixels, which makes it more suitable in the presence of considerable pixel
class imbalance. The combination (Eq. 3) of the two losses has been shown to
provide a better learning signal. In particular, it has been reported that adding
BCE to the Dice loss helps to mitigate the unstable training associated with
using only the Dice loss [33,34]. On the other hand, adding the Dice loss to
BCE helps to improve the performance of the model on datasets with pixel class
imbalance compared to using BCE alone.

3.2 Hybrid Region-Level Loss

Region-level losses aim to incorporate the context to which a pixel belongs in the
loss calculation by representing each pixel with its own value and the neighboring
pixels’ values. In this paper, two of the region-level losses, SSIM and RMI, have
been selected and are represented in the following:

LRMI(Ym; Ŷm) =
∫

S

∫

Ŝ

f(y, ŷ) log
(

f(y, ŷ)
f(y)f(ŷ)

)
dy dŷ (4)

Here, Ym and Ŷm are the multi-dimensional points constructed using a cen-
tering pixel and the neighboring pixels in a surrounding square. S and Ŝ are the
support sets corresponding to the ground truth and prediction masks, respec-
tively. f(y) and f(ŷ) represent the probability density functions for the ground
truth and prediction masks, respectively. The f(y, ŷ) captures the joint PDF.
The implementation details of the RMI loss are available in [12]. The second
region-level loss used in this paper is SSIM-based loss in Eq. 5.

LSSIM (Yp; Ŷp) = 1 − (2μyp
μŷp

+ C1)(2σyŷ + C2)
(μ2

yp
μ2
ŷp

+ C1)(σ2
y + σ2

ŷ + C2)
(5)

Here, Yp and Ŷp represent patches in the ground truth and the prediction
masks. μ and σ are the mean and variance for the corresponding patches, respec-
tively. σyŷ is the covariance of the two patches. More details (including the selec-
tion of C1 and C2) are available in [11] .Finally, the hybrid region-level loss is
presented in Eq. 6.

LHR = ηLRMI + γLSSIM (6)

In the hybrid region-level loss LHR (Eq. 6), LRMI and LSSIM are the RMI
and SSIM losses, respectively. The hyperparameters η and γ represent the
weighting coefficients.

3.3 Density-Adaptive Sample-Level Prioritizing Loss

While the aforementioned hybrid pixel-level loss is quite effective, we propose
extending it by using an adaptive weighting strategy based on the idea of ASP
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[10]. The resulting hybrid loss is a combination of region-level and pixel-level
losses instead of using only pixel-level losses. We propose using breast tissue den-
sity as the sample-level signal for the extended hybrid loss’s prioritizing strategy.
In the following, the proposed framework for the Density-ASP loss is explained.
Given a training set of N images and the corresponding segmentation masks,
the baseline method learns a mapping between an input image to its segmented
counterpart using the training data. In this study, AU-Net was selected as the
baseline method; the architecture for AU-Net is presented in Fig. 1a. For the
encoder and decoder, ResUnit and the basic decoder proposed in AU-Net have
been used. The details of the AU block, basic decoder, and ResUnit encoder
are presented in [6]. The Density-ASP loss requires the breast tissue density for
each sample. The standard ACR density, which is available in both datasets,
was used in this study. ACR breast density reflects the composition of the fat,
fibrous, and glandular tissue in four categories.

There are noticeable differences in the appearance of the breast within differ-
ent density categories in mammography images. Generally, the complexity of the
texture increases as density increases. This provides meaningful distinguishing
information for the loss function to prioritize the pixel-level or region-level terms
in the loss function based on the density of each sample. The more complex the
texture is (i.e., higher density category), the more important the contribution
of the region-level term will be. Therefore, density is considered a determining
factor in the weighting strategy.

In Fig. 1a, the prediction heatmap (ŷ in the formulas) and ground truth
segmentation masks are inputted to the Density-ASP module. The process of
prioritizing loss is presented in Fig. 1b. Since there is no proven or intuitive
connection between density and pixel-level term, the weight for this category
remains fixed. However, the contribution of the region-level term will change in
an adaptive manner, as shown in Eq. 7 and Fig. 1b. It should be noted that the
weighting coefficients inside the pixel-level and region-level loss terms are not
adaptive.

Li
Density−ASP = piθTLi

HR + Li
HP (7)

Li
Density−ASP is the final Density-ASP loss for the ith sample. θ is the prioritizing

vector consisting of the weights assigned to each density category, and pi denotes
a one-hot encoding of the density category to which the ith sample belongs. piθT

will be the weight for the region-level loss term, which determines the importance
of the region-level term according to the density category of ith sample.

4 Experimental Results

This section begins with a description of the datasets, and evaluation metrics.
Subsequently, the experimental setting is presented, followed by a comprehensive
analysis of the results on both datasets, including comparisons with the state-
of-the-art approaches.
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4.1 Datasets

We have conducted mass segmentation experiments using two publicly available
datasets: INbreast and CBIS-DDSM. We have normalized the intensity of the
images in both datasets and all images have been resized to 256× 256. No data
augmentation or image enhancement were considered in our experiments. To
prevent overfitting, a randomly selected validation set was utilized for hyperpa-
rameter tuning. For the baseline approach, the batch size was set to four, the
learning rate was initially set to 10−e4, and a step decay policy with a decay
factor of 0.5 was employed in all experiments. Irrespective of the abnormality
type, all the images containing masses have been utilized in our experiments.

INbreast Dataset. The INbreast dataset contains 410 images associated with
150 cases, including various abnormality types. In the context of mass segmen-
tation, only 107 of the images containing masses (the total number of masses
across all of the images is 116) have been used in this study. A 5-fold cross-
validation was employed, a commonly used setting for the measurement of the
performance of methods on the INbreast dataset. The dataset was randomly
divided into training (80%), validation (10%), and test (10%) sets.

CBIS-DDSM Dataset. From a total of 1944 cases in the CBIS-DDSM dataset,
1591 images containing masses were utilized in our experiments. The official split
of the dataset (1231 and 360 images for train and test sets, respectively) was
employed for the experimental results presented in this paper. 10% of the training
data was randomly selected for the validation set. In a preprocessing stage for
the CSIB-DDSM dataset, artifacts were removed, and images were cropped and
resized.

4.2 Evaluation Metrics

Since mass segmentation in mammograms is characterized by a pixel class imbal-
ance, we have selected several metrics to better illustrate the strengths and
weaknesses of the proposed methods. Specifically, the Dice Similarity Coeffi-
cient (DSC), Relative Area Difference (ΔA), Sensitivity, and Accuracy have
been selected due to the complementary information they provide. This combi-
nation of evaluation metrics highlights the performance of each method both on
majority (background) and minority (masses) classes. It also reflects how accu-
rately a method performs in terms of predicting the boundary of masses, which
is crucial for mass classification.

4.3 Comparison with State-of-the-Art Methods

To assess the performance of Density-ASP loss, we have conducted a compre-
hensive comparison with three state-of-the-art mass segmentation approaches on
whole mammograms: AU-Net (baseline), ARF-Net, and ASP. The official imple-
mentation of AU-Net, and the setting described in the AU-Net paper [6] (only
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the architecture was publicly available) were used in our experiments. ARF-Net
is a state-of-the-art method for mass segmentation on whole mammograms. The
method was implemented to the best of our understanding based on the original
paper (i.e., the implementation of the approach or the trained models were not
publicly available). For the ASP loss, we have used the same experimental setting
and data split, so we have directly used the reported results in the original paper.
The publicly available implementations of the RMI and SSIM were utilized. To
ensure a fair comparison of the methods, no pre-training or data augmentation
were used. The coefficients for density-based loss were θ = [0.5, 0.5, 0.85, 0.95]
and θ = [0.25, 0.25, 0.85, 0.95] for the INbreast and CSIB-DDSM , respectively .
η, γ, β were set to one; α was set to 2 and 2.5 for INbreast and CBIS-DDSM.
These hyperparameters were selected through experimental evaluation.

Experimental Results Using INbreast. Table 1 summarizes our experimen-
tal results for all models trained on INbreast. The best results are highlighted
using bold font. The Density-ASP loss achieved better performance across all
of the metrics compared to the pixel-level hybrid losses. The improvement for
the Density-ASP (over using hybrid pixel-level loss in the baseline method) is as
follows: (DSC: +9.27%, ΔA: −12.77%, Sensitivity: +20.21%, Accuracy: +0.19 %
), which is consistent across all metrics. The Density-ASP outperformed ARF-
Net in DSC, ΔA, and sensitivity while the accuracy is 0.06% less. It should be
noted that ARF-Net is designed to incorporate different sizes and, surpasses the
baseline method in DSC, sensitivity, and accuracy. Better performance of the
Density-ASP (in most metrics) compared to ARF-Net, indicates that improve-
ment in the training that Density-ASP provides for the baseline method, not only
closes the gap between AU-Net and ARF-Net in most of the metrics but also
makes AU-Net outperform ARF-Net. In comparison with the ASP loss variations
(as the best-performing version, cluster-based ASP was selected for comparison),
Density-ASP performed better in terms of DSC, ΔA, and sensitivity. The accu-
racy of the cluster-based ASP variation is 0.13% higher than the Density-ASP.
The results of the Density-ASP further validate the effectiveness of sample-level
losses. Moreover, the fact that Density-ASP outperforms the ASP in most of the
metrics indicates that introducing the region-level losses to the loss function with
the density as a weighting signal is a promising approach for mass segmentation.
We attribute this improvement to the utilization of density as the prioritizing
signal, which helps to distinguish the contribution of the losses for each sample,
leading to better segmentation.

The first four columns in Fig. 2 show some representative results for Density-
ASP, AU-Net, ARF-Net, and all ASP variations for INbreast. These examples
have been selected to include instances for each density category (mentioned
at the top of the columns), demonstrating the segmentation capabilities of the
methods across different density categories. The green and blue lines represent
the contours of the ground truth and the prediction masks, respectively. It can
be observed that the segmentation results for Density-ASP are more accurate
compared to state-of-the-art methods across all the density categories.
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Fig. 2. Examples of the segmentation results for Density-ASP, AU-Net, ARF-Net, and
ASP variations.

Table 1. Results for Density-ASP and state-of-the-art approaches for INbreast.

Method DSC ↑ ΔA ↓ Sensitivity ↑ Accuracy ↑
ARF-Net 70.05 30.37 59.59 98.71

AU-Net (baseline) 65.32 23.68 57.95 98.46

ASP-Quantile-based 68.03 25.04 63.12 98.54

ASP-Learning-based 71.92 22.31 64.56 98.71

ASP-Cluster-based 74.18 19.28 67.21 98.78

Density-ASP 74.59 10.91 78.16 98.65
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Table 2. Results for Density-ASP and state-of-the-art approaches for CBIS-DDSM.

Method DSC ↑ ΔA ↓ Sensitivity ↑ Accuracy ↑
ARF-Net 48.82 11.47 47.27 99.43

AU-Net (baseline) 49.05 09.94 51.49 99.38

ASP-Quantile-based 51.48 02.05 52.00 99.43

ASP-Learning-based 51.33 23.17 45.38 99.50

ASP-Cluster-based 51.04 04.47 49.90 99.45

Density-ASP 50.64 05.96 52.15 99.41

Experimental Results Using CBIS-DDSM. The performance of Density-
ASP loss on the CBIS-DDSM dataset compared to state-of-the-art approaches
is presented in Table 2. The improvement for the Density-ASP on the CBIS-
DDSM dataset (over using hybrid pixel-level loss in the baseline method) is
as follows: (DSC: +1.59%, ΔA: −3.98%, Sensitivity: +0.66%, Accuracy: +0.03
% ). The Density-ASP outperformed ARF-Net (which has a different architec-
ture but used common hybrid loss) in all metrics except for accuracy, which
is 0.02% lower. When compared to quantile-based ASP loss – a version of the
ASP with the best performance on CBIS-DDSM– while Density-ASP outper-
formed quantile-based ASP in sensitivity (+0.15%), it under-performed in other
metrics (DSC: −0.4%, ΔA: +3.91%, Accuracy: −0.03% ). We speculate that
the reason might be related to the fact that the mass ratio in ASP loss is a
data-driven factor that completely correlates with the statistics of the pixels in
the image. On the other hand, density is predefined and, in some cases, might
not be aligned with the visual features, which might be a more common issue
in the CBIS-DDSM dataset. The fact that Density-ASP improves in all of the
metrics over the baseline method shows the effectiveness of using density and
region-level losses for the CBIS-DDSM dataset. The last four columns in Fig. 2
show some representative examples where Density-ASP has better performance
when compared to the previous methods in different density categories.

In general, the performance of the Density-ASP is better for the INbreast
dataset. One observation is that in both datasets, there are examples that the
density category of the image might not be perfectly aligned with visual features
(for example, the 2nd column in Fig. 2), which could cause a higher weight for
the term that does not match the initial idea of the Density-ASP. We speculate
that the assigned density for the INbreast is more visually aligned with the
images, resulting in better weighting for loss terms. Different distributions of
each category in the datasets might also be a factor in the performance of the
Density-ASP on two datasets.

5 Conclusion

We have proposed a new sample-level adaptive prioritizing loss that utilizes
breast tissue density as a weighting signal. Moreover, we have proposed a hybrid
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loss function that includes region-level losses in the training. Finally, given the
observed connection between the difficulty of mass identification and the breast
tissue density category, this approach focuses on using the density for weighting
of the region-level loss term to highlight the importance of the region-level term
according to the density category for each sample adaptively. Our experimental
results demonstrate improvements in all evaluation metrics on two benchmark
datasets: INbreast and CBIS-DDSM. Customizing this category of losses for
other domains or tasks is an appealing direction for future work. One other
promising direction could be the extraction of texture descriptors [40], from the
images themselves, as the assigned category in some cases may not correlate
with the complexity of the texture in the image. This becomes more vital in
medical imaging datasets where density information might not be available. In
those cases, using data-driven, higher-level information could provide a way to
use pixel-level and region-level losses in an adaptive manner.
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