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Abstract. Many research studies have demonstrated that gait can serve as a useful biometric modality for
human identification at a distance. Traditional gait recognition systems, however, have mostly been evaluated
without explicitly considering the most relevant gait features, which might have compromised performance. We
investigate the problem of selecting a subset of the most relevant gait features for improving gait recognition
performance. This is achieved by discarding redundant and irrelevant gait features while preserving the most
informative ones. Motivated by our previous work on feature subset selection using genetic algorithms (GAs), we
propose using GAs to select an optimal subset of gait features. First, features are extracted using kernel principal
component analysis (KPCA) on spatiotemporal projections of gait silhouettes. Then, GA is applied to select
a subset of eigenvectors in KPCA space that best represents a subject’s identity. Each gait pattern is then rep-
resented by projecting it only on the eigenvectors selected by the GA. To evaluate the effectiveness of
the selected features, we have experimented with two different classifiers: k nearest-neighbor and Naïve
Bayes classifier. We report considerable gait recognition performance improvements on the Georgia Tech
and CASIA databases. © 2015 SPIE and IS&T [DOI: 10.1117/1.JEI.24.1.013036]
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1 Introduction
Robust and reliable means of automatic human identification
for surveillance and access control are in great demand today.
Biometric-based identification using physiological or behav-
ioral characteristics is of particular importance due to their
universality and uniqueness.1 Many biometric-based authen-
tication methods have been proposed using a wide variety of
cues, such as fingerprint, hand, iris, face, and gait. Among
them, gait identification (i.e., identifying individuals by the
way they walk), has attracted considerable attention due to
its ability to ascertain somebody’s identity at a distance while
being noninvasive and nonperceivable.2,3 Moreover, gait can
be detected and measured at low resolution, which could be
valuable when high-resolution face or iris information is not
available. There is much evidence from psychophysical,
medical, and biomechanical experiments indicating that gait
patterns are unique to each individual.4 Compared with other
biometric modalities, gait is also less likely to be obscured.5

However, human gait analysis involves challenging issues
due to the highly flexible structure and self-occlusion of the
human body. These issues mandate using complicated proc-
esses for the measurement and analysis of gait in markerless
sequences.2 For instance, footwear, physical conditions, such
as pregnancy, leg or foot injuries, or even drunkenness can
change the manner of walking. Like most biometrics, gait
will instinctively change with age.4

A variety of gait recognition systems have been proposed
in the literature (e.g., see Refs. 1 and 6 for a recent review).
Typically, a large number of features are extracted to
avoid loss of important gait information. Section 2 presents
a review of gait recognition methods with emphasis on
gait feature extraction. Features extracted from segmented

video sequences, for example, are usually very highly
dimensional to better account for gait variations due to differ-
ent factors (e.g., health, age, body size, weight, speed, etc.)
as well as limited understanding of what features might be
more appropriate to the underlying gait recognition mecha-
nism.7 Without employing some kind of feature selection
strategy, however, many of the gait features being extracted
could be redundant or irrelevant to the gait recognition task.
In general, feature selection could provide valuable clues in
terms of understanding the underlying distinctness among
human gait patterns.

Generally speaking, the choice of features to represent the
patterns affects several aspects of the recognition problem.
Although many methods have presented notable recognition
rates using their own feature vector, it has been observed that
beyond a certain point, the inclusion of additional features
leads to a worse rather than better performance. This appar-
ent paradox presents us with a feature subset selection prob-
lem in the automated design of pattern classifiers. Such a
problem refers to the task of identifying and selecting a use-
ful subset of features to be used to represent patterns from a
larger set of often mutually redundant or even irrelevant fea-
tures. Therefore, the main goal of feature subset selection is
to reduce the number of features used in classification while
maintaining acceptable classification accuracy.

Feature subset selection in the context of practical appli-
cations, such as gait recognition, presents a multicriterion
optimization function (e.g., number of features and accuracy
of classification). Automatic feature subset selection distin-
guishes the proposed classification method from all other
reported approaches. In particular, genetic algorithms (GAs)
offer a particularly attractive approach for this kind of prob-
lem since they are generally quite effective for rapid global
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search of large, nonlinear and poorly understood spaces.
Moreover, GAs are very effective in solving large-scale prob-
lems.8 Examples include face detection,9,10 gender classifica-
tion,11,12 vehicle detection,9,10 seed discrimination,13 target
detection,14 tracking,15 and video categorization.16

The use of feature selection, however, has not been given
enough consideration in gait recognition. Some ap-
proaches2,17,18 have mainly considered conventional dimen-
sionality reduction or statistical tools, such as principal
component analysis (PCA) and analysis of variance. In
Ref. 7, Guo and Nixon used mutual information to measure
the utility of selected features in recognition. Begg et al.19

employed a hill-climbing feature selection algorithm. In
another work,20 a forward feature selection algorithm was
utilized. Bashir et al.21 developed a cross-validation-based
approach and an effective measurement of the relevance
of gait energy image (GEI) features in their approach.

Motivated by our previous work on gender/face/vehicle
classification using feature subset selection,9,10,12 we propose
using GAs for feature selection to improve gait recognition
performance. We propose using GAs on an improved silhou-
ette based gait recognition approach to search the space of
gait pattern feature vectors and demonstrate the importance
of feature selection. Feature vectors are represented as eigen-
vectors in a low-dimensional space, computed by using
kernel PCA (KPCA) with the goal of selecting a subset of
eigenvectors encoding important information about the tar-
get concept of interest. KPCA is chosen to handle highly
complex and nonlinear data distributions, and produces non-
linear subspaces for better feature extraction. GAs, then, are
used to select those eigenvectors encoding the identity of the
subject. This is in contrast to the typical strategy of picking a
percentage of the top eigenvectors to represent the target con-
cept, independent of the classification task. Our experimental
results show an enhanced correct classification rate (CCR)
improvement compared to the results of KPCA feature vec-
tors. This implies that GAs can select eigenvectors encoding
mostly information related directly to identity.

The rest of this paper is organized as follows. Section 2
presents a review of gait recognition approaches with empha-
sis on gait feature extraction. Section 3 briefly reviews the
problem of feature selection. Section 4 overviews the pro-
posed approach. Experimental results on different parame-
ters of GA along with a comparison with a complete set
of features are presented in Sec. 5. Finally, Sec. 6 concludes
the paper and gives some suggestions to improve the current
approach in the future.

2 Gait Recognition Review
Gait recognition methods can be broadly divided into two
categories: model-based and model-free. In this section,
we review representative methods from each category with
emphasis on feature extraction.

Model-based methods attempt to explicitly model the
human body or motion by employing static and dynamic
body parameters, which are typically view and scale invari-
ant. Usually, these methods perform model matching in each
frame of a walking sequence so that kinematic parameters,
such as trajectories, can be measured. Bobick and Johnson22

formed two groups of static body parameters by calculating
four distances between different human body parts. Yoo and
Nixon2 constructed a two-dimensional (2-D) stick figure by

extracting nine coordinates from human body contours based
on human anatomical knowledge. In a related work,11 a
model was developed by extracting leg angles based on
regression analysis of contour data. Tanawongsuwan and
Bobick23 focused on trajectories of joint angles from
marker-based motion capture data, the amplitude-frequency
and phase-frequency of which were chosen as gait features.
Wang and Liu24 presented a method based on positioning
body joints. Cunado et al.25 modeled the thigh as a rotatable
line for temporal evidence gathering by Hough transform and
analyzed the data via discrete Fourier transform. Urtasun and
Fua26 proposed three-dimensional (3-D) temporal models to
track and recover motion parameters. Dockstader et al.27 pro-
posed a hierarchical model, which used a set of thick lines
joined at a single point to represent the legs and a periodic
pendulum motion model to describe the gait pattern. InWang
et al.’s work,28 the human body was modeled as 14 rigid
parts connected to one another at the joints with a total of
48 degrees of freedom (DOFs). Joint-angle trajectory signals
were considered as gait dynamics.6 Boulgouris and Chi29

separated the human body into different components and
combined the results to form a common distance metric
to choose the most contributing parts. Li et al.30 did similar
research by dividing the average silhouettes over a gait cycle
into seven different parts. Jean et al.31 proposed an efficient
and promising feature based on the trajectories of the head
and feet using optical flow. Gu et al.32 proposed a method to
automatically extract multiple configurations and movement
features from the sequence of label-free 3-D volume data.
They employed a hidden Markov model (HMM) and an
exemplar-based HMM to model these features, respectively.
Zhang and Fan33 presented an approach that included two
generative models representing the kinematics and appearan-
ces of a gait by a few latent variables. Trivinoa et al.34 divided
a gait cycle into four approximately equal phases. Based on
the computational theory of perceptions, the relationships
among horizontal acceleration, vertical acceleration, and
other indicators were learned by rule-based approach.

Model-free approaches usually employ either shape of
binary silhouettes or the whole motion of the walking per-
son’s body rather than modeling the whole human body
or any part of it. These approaches are insensitive to the qual-
ity of silhouettes and have the advantage of low computa-
tional costs compared to model-based approaches. However,
they are usually not robust to viewpoint change and scale.6

Collins et al.35 established a method based on template
matching of body silhouettes in key frames. In Ref. 36,
Lee and Grimson described a moment-based representation
of gait appearance. A baseline algorithm for human identi-
fication using spatiotemporal correlation of silhouette
images was proposed in Ref. 37 by Sarkar et al. Han
and Bhanu17 employed the idea of a motion-energy image
and proposed the GEI for individual recognition. Liu and
Zheng38 developed the gait history image (GHI) to retain
temporal information as well as spatial information. Chen
et al.39 proposed the frame difference energy image based
on GEI and GHI to address the problem of silhouette incom-
pleteness. Xue et al.40 applied the wavelet decomposition of
GEI to infrared gait recognition due to its robustness to
the covariates of holding a ball and loading packages. In
Ref. 28, Wang et al. proposed a recognition algorithm using
the temporal pattern of gait and employing the distance
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between pixels along the contour and the shape centroid, on
which PCAwas performed. Dadashi et al.41 applied wavelet
transform to similar temporal patterns. Hu et al.42 adopted
Gabor filters to decompose the body shape into local
orientations and scales, and obtained low-dimensional dis-
criminative representation through the agency of PCA and
maximization of mutual information. Venkat and DeWilde43

divided the averaged silhouette into several overlapped parts.
They trained a Bayesian network to evaluate the impact of
these parts on identification. Bashir et al.21 divided the flow
field into four parts in accordance with the direction and
symbol, and used the weighted sum of these parts for gait
recognition.

Some other algorithms pay attention to analyzing the
whole shape of silhouettes. BenAbdelkader et al.44 employed
silhouette self-similarity. Boulgouris and Chi45 applied the
Radon transform on binary silhouettes to get a template
from gait sequences. Linear discriminate analysis and sub-
space projection were used to extract Radon template coef-
ficients to construct the feature vector. Kellokumpu et al.46

considered the accumulation of gait sequence as a XYT
3-D space. They employed 3-D local binary features for
histogram extraction. Ran et al.47 proposed a periodic pattern
called double helical signature (DHS), which decomposed a
video sequence into slices along the X-t dimension and gen-
erated DHS by an iterative local curve embedding algorithm.
It was used for segmentation and labeling of body parts in
cluttered scenes and load-carrying conditions. In Ref. 48,
Chen et al. employed the factorial HMM as a feature-level
fusion scheme to fuse different gait features, which was com-
pared with the parallel HMM decision-level fusion scheme.

3 Feature Selection
The selection of an optimal subset of features is a necessary
and important step in pattern recognition; often a large num-
ber of features are extracted to better represent the target
concept. Given a set of d features, the problem is selecting
a subset of size m that leads to the smallest classification
error. This is essentially an optimization problem that
involves searching the space of possible feature subsets to
find one that is optimal or near-optimal with respect to a cer-
tain criterion.9 An exhaustive search is computationally pro-
hibitive, especially when there are a large number of features;
this has led to the development of a wide range of feature
selection methods.

There are many algorithms that use a greedy search
through the solution space. Decision tree algorithms, such
as Quinlan’s ID3,49 C4.5, and CART, are some of the
most successful supervised learning algorithms. Narendra
and Fukunaga presented a Branch and Bound algorithm.50

A well-known algorithm that relies on relevance evaluation
is RELIEF. Subset search algorithms51 search and capture the
goodness of each subset. There are again many algorithms
that employ exhaustive, heuristic, and random searches.
Clustering algorithms are also used for the feature selection
process, a couple examples of which are ROCK and
CACTUS.50

Generally, feature subset selection algorithms can be clas-
sified into two categories based on whether feature selection
is performed independent of the learning algorithm used to
construct the verifier. If so, the technique is said to follow a
filter approach. Otherwise, it is said to follow a wrapper

approach. The first one is computationally more efficient,
but its major drawback is that an optimal selection of features
may not be independent of the inductive and representational
biases of the learning algorithm that is used to build the clas-
sifier. On the other hand, the wrapper approach involves the
computational overhead of evaluating a candidate feature
subset by executing a selected learning algorithm on the
database using each feature subset under consideration.8

The main weakness of these methods is that they may reject
a variable at an early step of the search process, which is then
unavailable for a later possible improvement in performance.
This means that this kind of feature selection methods may
lock at a local minimum during the search process.13

An alternative is the use of GAs for function optimization.
They provide the possibility of exploring high-dimensional
spaces about which little is known a priori and encoding
important information about the target concept of interest
in an efficient way. GAs—a form of inductive learning strat-
egy—are adaptive search techniques that have demonstrated
substantial improvement over a variety of random and local
search methods. This is accomplished by their ability to
exploit accumulating information about an initially unknown
search space in order to bias a subsequent search into prom-
ising subspaces. The major reason for GA’s popularity in
various search and optimization problems is its global per-
spective, wide spread applicability, and inherent parallelism.
GA is based on the observation that the evolution of natural
species is very efficient at adapting to changing environ-
ments. By simulating the evolution process, GAs may pro-
vide a good way for optimizing artificial systems.52

Siedlecki and Sklansky53 presented one of the earliest
studies of GA-based feature selection in the context of k
nearest-neighbor (kNN) classifiers. Yang and Honavar54 pro-
posed a feature selection approach using GAwith rank-based
selection strategy and NN for classification. They tested their
methods using several benchmark real-world pattern classi-
fication problems and reported improved results. Chtioui
et al.55 investigated a GA approach for feature selection in
a seed discrimination problem. Vafaie and Imam56 conducted
a comparison between important score, a greedy-like feature
selection method, and GA. Using several real-world prob-
lems, they found that GAs are more robust at the expense
of more computational effort.

4 Method Overview
The technique presented in this paper chooses the best fea-
ture vector with the highest discrimination among a large
number of features for every person extracted from his sil-
houette contour projections. This is accomplished through
exploiting GA on eigenvectors of four contour projections
of the silhouette of a person accumulated over the whole
sequence. Figure 1 shows the overall framework of the
approach. First, some preprocessing is applied to the input
sequence, including noise reduction, background subtrac-
tion, and the formation of the silhouette’s global temporal
accumulation. These steps result in static parameters, such
as approximate height of subject, his/her velocity and period
of walking, based on which the pattern will be normalized in
the next steps. The spatiotemporal information is represented
in a single 2-D gait template by using multiprojection of sil-
houettes. Feature vectors are constructed using eigenvectors
derived by applying KPCA on these gait patterns to project
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the data in a lower-dimensional space. The next step per-
forms feature selection using GAs, with the goal of choosing
a subset of these eigenvectors, encoding mostly important
information about the target concept of interest. The evalu-
ation function used here contains two terms, the first based
on classification accuracy on a validation set and the second
on the number of eigenvectors selected. Finally, kNN and
Naïve Bayes classifiers are used to identify subjects in the
test set.

Based on physiological research results, most of the walk-
ing dynamics take place in the sagittal plane, or the plane
that vertically bisects the human body.1 Thus, our method
assumes a single subject moving at a constant speed,
fronto-parallel against a static background.

4.1 Gait Pattern Extraction and Representation
4.1.1 Preprocessing

In this phase, a kernel regression method57 is first applied on
frames of each sequence to remove noise and retain the most
representative information of each video corrupted by limi-
tations of the imaging system. The data samples are used to
create the initial (dense) estimate of the interpolated output
image. In the next iteration, the reconstructed (less noisy)
image is used to calculate a more reliable estimate of the gra-
dient, and this process continues for a few more iterations.

This process is followed by background subtraction. The
silhouettes extracted in this process will be later used in the
stage of gait pattern representation. The method used here for
foreground segmentation is based on using the minimum
graph-cut method proposed in Ref. 58. In this approach, a
graph is built based upon the image in which a typical vertex
links to exactly six other nodes: the foreground and the back-
ground, plus the vertices of its four-connected neighbors.
The weights of the links derive directly from the differences
measured between the current frame and the background
model at the corresponding pixel. Once constructed, standard
methods based upon graph flow will find an optimal cut
separating the source from the sink. To build the background
model, the pixel color from every fourth frame is taken and
the data above and below a pair of thresholds are thrown
away. From the remaining numbers, it estimates the mean
and variance of each pixel’s color, assuming a normal dis-
tribution. Segmenting the graph using a standard graph-cut

algorithm provides better results compared to morphologi-
cal-based approaches. They are more successful in overcom-
ing the effects of noise by aggregating information from
a local neighborhood around each pixel while remaining
true to the underlying data. A typical result of applying
foreground extraction is shown in Fig. 2 for two input
frame instances.

In the next step, a velocity filtering algorithm is employed
to determine the bulk motion of the silhouette of the subject.
This algorithm will be applied on the moving edges of each
frame. These edges are extracted as the common output of
background subtraction and Sobel edge detection. Using
this motion information, a global temporal accumulation
describing the person’s average shape is formed over the gait
sequence. Using a velocity filtering algorithm,59 it is possible
to determine object motion independent of shape, based on

Avði; jÞ ¼
XN

n¼0

In½iþ v � n; j�; (1)

where Av is the accumulation for velocity v (in pixels per
frame), In is the image intensity function at frame n, i
and j are coordinate indices, and N is the number of frames
in the gait sequence. This algorithm sorts the objects in the
scene according to their velocity and starting position, pro-
ducing an accumulation for each possible object velocity
(Fig. 3). The highest peak in the plot of maximal intensity
versus velocity indicates the object’s velocity.

Having an approximate height and velocity for each sub-
ject, the last static parameter to be estimated is the period of
walking. The motion of a person’s limb during normal gait
creates a complex periodic pattern, composed of many differ-
ent components, which can be approximately modeled by a
single sinusoid. The gait frequency and phase are particularly
useful components since they describe this motion to a large
extent and can be easily extracted without resolving limb
dynamics. We have chosen simple features of the silhouette,
such as variation of its width, as a measure of period calcu-
lation to decrease computational overhead. Samples of the
output signals are shown in Fig. 4. Considering the periodic
nature of walking, we can only analyze a cycle of each
sequence having calculated the period.

Fig. 1 Proposed algorithm framework.

Fig. 2 Results of foreground segmentation and preprocessing on sample sequences from (a) Georgia
Tech (GT) and (b) CASIA datasets.
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4.1.2 Gait representation

In this paper, we have used an improved spatiotemporal gait
representation as the basic gait pattern proposed in Ref. 60.
This pattern is obtained by using multiprojections of silhou-
ette. Input silhouettes are first normalized based on the per-
son’s approximate height gained through global temporal
accumulation of previous phase and then they are horizon-
tally aligned.

Gait pattern is created from the projections of silhouettes
(Fig. 5), which are generated from a sequence of binary sil-
houette images, Btðx; yÞ, indexed spatially by pixel location
ðx; yÞ and temporally by time t. The distance vectors are the
differences between the bounding box and the outer contour
of the silhouette. This definition includes four different
images for top, bottom, left, and right distance vectors. The
values in the top and bottom contour projection vectors are
the number of rows between the bounding box and silhouette
at each column, which makes their width the same as the
width of the bounding box. The same holds for left and
right distance vectors, and gives them the same height as
the bounding box.

Each gait pattern, hence, is created as a new 2-D image.
For instance, a gait pattern image for top-projection is
formulated as PTðx; tÞ ¼ P

yBtðx; yÞ, where each column
(indexed by time t) is the top-projection (row sum) of silhou-
ette image Btðx; yÞ. Thus, PTðx; tÞ refers to the count of
the number of rows between the top side of the bounding
box and the outer contour in the column x of the silhouette
image Btðx; yÞ. The result is a 2-D pattern formed by
stacking row projections together to form a spatiotem-
poral pattern. Other projections, PBðx; tÞ ¼ P

−yBtðx; yÞ,
PLðy; tÞ ¼ P

xBtðx; yÞ, and PRðy; tÞ ¼ P
−xBtðx; yÞ, are

constructed in the same way for bottom, left, and right

projections. The variation of each component of the distance
vectors can be regarded as the gait signature of that object.60

Figure 6 shows an example of each pattern.
It is clear that the distance vector is roughly periodic and

gives the extent of movement of different parts of the subject.
The brighter a pixel in the 2-D pattern in the following figure,
the larger is the value of the distance vector in that position.

4.2 Feature Extraction Using Kernel PCA
In this step, we are going to perform a dimensionality reduc-
tion procedure on the gait patterns extracted in the previous
step. As a result, training gait features that form the feature
database are obtained. This is independently repeated for
each gait pattern produced from the projections.

Conventional linear subspace methods, such as PCA,
can only produce linear subspace feature extractors. These
are unsuitable for highly complex and nonlinear data
distributions. In contrast, kernel subspace methods, such as
KPCA, can capture higher-order statistics present in a data-
set, thus producing nonlinear subspaces for better feature
extraction. In principle, kernel methods map the data to a
higher-dimensional feature space where conventional linear
subspace methods can be used, with the resulting subspaces
being nonlinear with regard to the original input space.
Experiments and comparisons have shown that KPCA
almost always outperforms PCA.61

To apply KPCA on a data matrix a ¼ ½x1::xn� ∈ Rm×n,
we map it to a higher-dimensional space F using a kernel
function φ∶ Rm → F and apply PCA in F. Using φ, a
is transformed into A ¼ ½φðx1Þ: : :φðxnÞ�. The map φ is
induced by a kernel function kð:; :Þ that allows efficient
evaluation of inner products in F∶kðx; zÞ ¼ φðxÞ · φðzÞ.
Considering the matrix M ¼ ÂTÂ and its eigenvalue

Fig. 3 Bulk motion of silhouette for a sample sequence for different velocity values.

Fig. 4 Periodic pattern of silhouette width variation for two sample sequences.
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decomposition M ¼ QΔQT , by using kð:; :Þ, ATA can be
evaluated without having to perform the mapping φ since
ATA contains only dot products between the φðxiÞs. Matrix
M is the kernel matrix for KPCA. Via SVD, the rank-r
singular value factorization of Â is

Âr ¼ ½ÂQrðΔrÞ−1
2�½ðΔrÞ12�½ðQrÞT � ≡ UrΣrðVrÞT; (2)

Ur is defined implicitly by linear expansion of the mapped
input data

Ur ¼ Av
0
QrðΔrÞ−1∕2 ¼ Aα; (3)

where α ¼ v
0
QrðΔrÞ−1∕2 contains the expansion coefficients.

The reconstruction of A using the first-r kernel principal
components would be Ar ¼ Âr þ μA.

61

Usually we need to keep a smaller number of eigenvectors
corresponding to the largest eigenvalues. It, however, has
been found in several studies that different eigenvectors
encode different kinds of information.9 In essence, different
tasks make different demands in terms of the information
that needs to be processed, and that this information is
not contained in the same ranges of eigenvectors.

The number of features that can be safely introduced in a
predictive model is dependent on the number of learning pat-
terns. Only a few features are necessary to correctly describe
a data set including a small number of learning patterns. With
a limited number of learning patterns, adding new features to
a pattern recognition system may degrade rather than
increase the performances. Hence, we apply GA to search
the space of eigenvectors with the goal of selecting a subset
of them which encodes important information about the
manner of walking for each individual.

4.3 Genetic Feature Subset Selection
Evolutionary algorithms offer a particularly attractive
approach to multicriteria optimization because they are
effective in high-dimensional search spaces.

A GA is a model of machine learning that derives its
behavior from a metaphor of some of the mechanisms of
evolution in nature. This is done by the creation within a
machine of a population of individuals represented by chro-
mosomes. The individuals represent candidate solutions to
the optimization problem being solved. In GAs, the individ-
uals are typically represented by n-bit binary vectors. The
resulting search space corresponds to an n-dimensional
Boolean space. It is assumed that the quality of each candi-
date solution can be evaluated using a fitness function. The
main issues in applying GAs to any problem are selecting
an appropriate representation and an adequate evaluation
function.

GAs use some form of fitness-dependent probabilistic
selection of individuals from the current population to pro-
duce individuals for the next generation. The selected indi-
viduals are submitted to the action of genetic operators to
obtain new individuals that constitute the next generation.
Mutation and crossover are two of the most commonly
used operators that are used with GAs that represent individ-
uals as binary strings. Mutation operates on a single string
and generally changes a bit at random, while crossover oper-
ates on two parent strings to produce two offspring. Other
genetic representations require the use of appropriate genetic
operators. The process of fitness-dependent selection and
the application of genetic operators to generate successive
generations of individuals are repeated many times until a
termination criterion is satisfied. This termination criterion
can be defined as reaching a predefined time limit or number

Fig. 5 A sample silhouette and the distance vectors corresponding to its four projections.

Fig. 6 Spatiotemporal gait patterns estimated for (a) top, (b) bottom, (c) left, and (d) right projections for
a sample sequence from GT.
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of generations or population convergence or satisfactory
solution. In practice, the performance of GA depends on
a number of factors, including the choice of genetic repre-
sentation and operators, the fitness function, the details of
the fitness-dependent selection procedure, and the various
user-determined parameters, such as population size, proba-
bility of application of different genetic operators, etc.

4.3.1 Feature selection encoding

Each individual in the population represents a candidate sol-
ution to the feature subset selection problem. In the feature
selection problem, the main interest is in representing the
space of all possible subsets of the given feature set. Then
the simplest form of representation is a binary representation.
An individual of length l corresponds to an l-dimensional
binary feature vector X, where each bit represents the elimi-
nation or inclusion of the associated feature. Then Xi ¼ 0
represents elimination and Xi ¼ 1 indicates inclusion of the
i’th feature.13

4.3.2 Fitness evaluation

The fitness evaluation is a mechanism used to determine the
confidence level of the optimized solutions to the problem.
Usually, there is a fitness value associated with each chromo-
some, e.g., in a minimization problem, a lower fitness value
means that the chromosome or solution is more optimized to
the problem, while a higher value of fitness indicates a less
optimized chromosome.

Choosing an appropriate evaluation function is an essen-
tial step for successful application of GAs to any problem
domain. In order to use GAs as the search procedure, it is
necessary to define a fitness function that properly assesses
the decision rules generated. Each subject is classified using
the current feature subset. If this is the appropriate classifi-
cation, then the subject’s identity has been recognized cor-
rectly. The overall fitness function will be evaluated by
adding the weighted sum of the match score of that bit string
indicating present features along with the number of features
exploited. However, the former part is the major concern.
The final fitness function is defined as

F ¼ 100 × CRR −
FeatNum

ChLen
; (4)

where CRR represents the correct recognition rate and
FeatNum is the number of selected features divided by
ChLen, the total number of features.

The match score is evaluated based on feedback of some
classifiers, which try to classify the input database consider-
ing the current available features.

4.3.3 Initial population

Generating an initial population of chromosomes is often
achieved at random, but the population may be initialized
by chromosomes that are already known to perform well.
Here, to generate the initial population, we have created a
random number for each chromosome to define the number
of present features. These values are scattered randomly
through the whole chromosome. So we would have a pop-
ulation with different permutations and numbers of features.
When random initialization of binary chromosomes is used,

each bit of the chromosome is randomly set to 0 or 1 accord-
ing to a probability, which is called the initialization
probability.

4.3.4 Selection

We have employed two selection techniques to compare the
results, elitism and linear ranking. Elitism reserves one (or a
few) slots in the next generation for the highest-scoring
chromosome of the current generation, without allowing
that chromosome to be crossed over in the next generation.
In one of those slots, the elite chromosome will also not be
subject to mutation in the next generation. This method
can very rapidly increase the performance of GA, because
it prevents the loss of the best found solution.

In ranking selection, each individual in the population is
assigned a numerical rank based on fitness (probabilities of
ranked individuals are linearly weighted in linear ranking
case), and selection is based on these rankings rather than
absolute differences in fitness. The advantage of this method
is that it can prevent very fit individuals from gaining domi-
nance early at the expense of less fit ones, which would
reduce the population’s genetic diversity and might hinder
attempts to find an acceptable solution.

4.3.5 Operators

To explore the whole space of features, crossover and muta-
tion operators must be employed. Therefore, two individuals
from the whole population of individuals are selected. The
selection is dependent on the value of the fitness function
of each individual. The well-adapted individuals have a
greater chance of being selected. In the proposed method,
a uniform crossover is exploited to avoid destroying the
schema in case of the presence of dependency among neigh-
bor eigenvectors. Mutation also is applied using the bitwise
method. The probability of each of these operators has been
chosen to be 0.6 and 0.1 for crossover and mutation, respec-
tively, in initial experiments. These values were modified
later to 0.9 and 0.05, which resulted in a better outcome
on an exhaustive search basis.

4.4 Gait Recognition
Two different classifiers have been utilized to evaluate chro-
mosomes during fitness estimation in this approach, kNN
and Naïve Bayes classifiers.

Among the various methods of supervised statistical
pattern recognition, the NN rule achieves a consistently
high performance without a priori assumptions about the
distributions from which the training examples are drawn.
It involves a training set of both positive and negative cases.
A new sample is classified by calculating the Euclidean
distance to the nearest training case; the sign of that point
then determines the classification of the sample. The kNN
classifier extends this idea by taking the k nearest points
and assigning the sign of the majority.

The Naïve Bayes classifier technique is based on the so-
called Bayesian theorem and is particularly suited when the
dimensionality of the inputs is high. Despite its simplicity,
Naïve Bayes can often outperform more sophisticated clas-
sification methods. In simple terms, a Naïve Bayes classifier
assumes that the presence (or absence) of a particular feature
of a class is unrelated to the presence (or absence) of any
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other feature. Even if features depend on each other or upon
the existence of the other features, a Naïve Bayes classifier
considers all of these properties to independently contribute
to the probability.

5 Experimental Results
The proposed approach has been tested on Georgia Tech
(GT) and CASIA datasets. The GT database22 consists of
268 sequences from 20 subjects (6 female/14 male). Its
sequences were collected under two viewing conditions:
side view and angle view (45 deg). For each subject and
angle condition, there are six trials. Data collection is
done indoors and outdoors. Considering these conditions,
we used the indoors data, where lighting is at a constant
level and subjects move with approximately constant veloc-
ity in front of a plain static background, since the current
framework focuses on the feature selection rather than detec-
tion and segmentation. The sequences were taken at different
time intervals and the subject’s distance to the camera is
changing. This data subset consists of 108 sequences (six
sequences for 18 subjects). Each video sequence is stored
in digital video format, encoded in color PAL format at a
resolution of 320 × 240 pixels, and recorded at a rate of
29.97 frames per second (fps). Each sequence typically con-
sists of 80 to 120 frames, or around three full gait cycles.

To better gauge the performance of our method, a second
database has been chosen for evaluation. The CASIA dataset
B consists of the data from 124 subjects, including 93 males,
31 females, 123 Asians, and 1 European among all subjects.
For each subject, six sequences were recorded from his
normal walking under different viewing angles in an indoor
environment with a simple background.62,63 The same
experiments were repeated for the cases where subjects
were wearing a coat or carrying a bag, which were not
used in case of our problem. The database consists of
many viewing angles ranging from 0 to 180 deg with incre-
ments of 18 deg, from which the fronto-parallel sequences
where the viewing angle is 90 deg have been utilized. All
the video sequences were stored as video files encoded
with mjpeg codec. The frame size of the video files was

320 × 240, with a frame rate of 25 fps. There were two to
three gait cycles in each sequence.63

To extract the features and apply KPCA on temporal con-
tour projection images, a fixed number of frames should be
selected from each sequence to eventually have chromo-
somes with the same length. This value was determined
based on the velocity and period of walking for each indi-
vidual so that the selected frames would include at least
one cycle of walking; the frames also were chosen based
on the starting phase of each person. Since every sequence
includes more than one cycle, the first cycle was chosen for
each subject to maintain consistency. KPCA was then
applied on the temporal contour projections of these frames
using Gaussian function as the kernel. Normalized bounding
boxes of size 86 × 56 and 141 × 56 were considered for GT
and CASIA datasets, respectively. For each case, a fixed
number of frames were chosen based on the starting point
of the cycle for all the sequences. For GT 30 and for
CASIA 25 frames were the average values including a com-
plete cycle. In the case of GT sequences, the aforementioned
process led in to 56 × 30 eigenvectors for top and bottom gait
patterns, and 86 × 30 ones for left and right projections,
resulting in 8520 eigenvectors total; the same process led
to building 9850 eigenvectors for the CASIA video streams.

These features were presented to a GAwith a population
size of 800, 1000, and 1500, during 50, 100, and 20 gener-
ations, averaged over 2, 3, and 10 iterations, respectively, to
observe the effect of various parameters of GA on algorithm
performance. The number of generations was later increased
for the CASIA dataset to achieve a convergence; these values
are included in Table 2.

As mentioned earlier, each subject has six sequences,
three of which were selected randomly as a test set.
Among the rest of the streams, two were employed for train-
ing and the remaining one for validation. This process was
repeated seven times. The final CRR is the average value of
these iterations. The results are shown in Figs. 7–12 for
different parameter sets on both datasets. Each graph
includes three plots; best fitness represents the best fitness
value achieved in each generation, where mean and worst
are the average of all fitness values and the worst one in the

Fig. 7 Results of GA subset selection on GT dataset, population size: 800, generation size: 50. Pc: 0.6,
Pm: 0.1, sevenfold cross-validation, comparing the results of different classifiers. a) Naïve Bayes, Elitism
selection; b) KNN, Elitism selection.
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current generation, respectively. These values are averages
over different numbers of iterations for each experiment.

Another important parameter is the size of the population;
since the length of each chromosome is too long, the number
of the population should be large enough to be able to con-
tain various types of feature permutations in each generation.
This approach helps the GA to explore among enough
instances and find the individuals with higher discrimination
for next generations. This idea has initially caused the graphs
to start from a better starting point in the case of having a
larger population. The number of generations, on the other
hand, should be large enough to let better chromosomes
gradually overcome the population. That is why the graphs
in Fig. 8 have not reached an optimal recognition rate. They
obviously need more evolution. Thus, we increased the num-
ber of generations while adding more exploration pressure in
the experiments of Fig. 9.

The other parameter is the type of classifier, which
directly affects the overall fitness. Two classifiers have
been employed. The first one is Naïve Bayes classifier,
which estimates for every class and every feature separately.

Total class densities are constructed by assuming independ-
ency and, consequently, multiplying the separate feature den-
sities. The used default version divides each axis into 10
bins, counts the number of training examples for each of
the classes in each of the bins, and classifies the object to
the class that gives maximum posterior probability. Missing
values were put into a separate bin. Naïve Bayes classifica-
tion is based on estimating the probability or probability den-
sity of features X given class Y. Here, a Gaussian distribution
is estimated for each class. The other classifier is kNN, which
has an estimator with a high resolution in regions where the
training set is dense. Therefore, the balance between resolu-
tion and variance can be adjusted locally. Here, a value of 3
has been used for k. Since the evaluation value of each
chromosome is determined mainly from the accuracy of
the classifier, different techniques result in different outputs
of features. Here, Naïve Bayes has led to a better CCR than
the populations evaluated using kNN for GT samples. This
issue, however, needs more analysis for a variety of GA
parameters. Then, we tried adding Support vector machine
(SVM) to check whether we are able to improve the results.

Fig. 8 Results of GA subset selection on GT dataset, population size: 1500, generation size: 20. Pc: 0.6,
Pm: 0.1, sevenfold cross-validation, comparing the results of different selection algorithms. (a) KNN,
Elitism selection; (b) KNN, Ranking selection.

Fig. 9 Results of GA subset selection on GT dataset, population size: 1000, generation size: 100, Naïve
Bayes, elitism selection, sevenfold cross-validation, comparing the results of different mutation and
recombination probability values. (a) Pc: 0.9, Pm: 0.05; (b) Pc: 0.6, Pm: 0.1.
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Fig. 10 Results of GA subset selection on CASIA dataset, population size: 800, generation size: 80.
Pc: 0.6, Pm: 0.1, sevenfold cross-validation, comparing the results of different classifiers. (a) Naïve
Bayes, Elitism selection; (b) KNN, Elitism selection.

Fig. 11 Results of GA subset selection on CASIA dataset, population size: 1500, generation size: 100.
Pc: 0.6, Pm: 0.1, sevenfold cross-validation, comparing the results of different selection algorithms.
(a) KNN, Elitism selection; (b) KNN, Linear Ranking selection.

Fig. 12 Results of GA subset selection on CASIA dataset, population size: 1000, generation size: 200,
Naïve Bayes, elitism selection, sevenfold cross-validation, comparing the results of different mutation
and recombination probability values. (a) Pc: 0.9, Pm: 0.05; (b) Pc: 0.6, Pm: 0.1
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As we have shown in Table 2, SVM did not improve the
accuracy for the GT dataset. However, we were able to
choose a better subset of features with this new classifier
for the CASIA dataset.

The last variable is the type of selection method. Here,
two selection techniques have been employed, elitism and
linear ranking, both of which have obtained almost the same
results in the case of parameter variation. The same experi-
ments have been performed for the data from the CASIA
database. Interestingly, parameter sets have performed
almost the same. However, due to the considerable increase
in the variation of data and size, these experiments needed
a larger number of generations to converge.

Table 1 shows our results before applying GA, and
Table 2 summarizes recognition rates after feature subset
selection with GA using different parameters. According
to these figures and tables, it is observable that GA in all
cases has decreased the number of eigenvectors used in clas-
sification (out of 8520 and 9850 for GTand CASIA datasets,
respectively) while improving CCR considerably.

We have compared the results with two other experiments
to have a better overview of the effect of GA on best feature
vector subset selection. In experiment 1, the results of which
are displayed in the first column of Table 1, all features have
been exploited in the classification. In experiment 2, on the
other hand, just 10% of the eigenvectors with higher eigen-
values have been selected as the final features, which are sup-
posed to have good discriminatory ability based on the main

concept of KPCA (third column). There is, however, consid-
erable improvement in CCR values in comparison with val-
ues of the seventh column of Table 2 exhibiting the effect of
GA. Feature subsets selected by GA for the GT dataset
yielded an average error rate of 24.55%, better than the
37.7% obtained using the whole feature set or 31.52%
using a percentage of the top eigenvectors. The same process
was repeated for the CASIA dataset. The improvement, how-
ever, has not been that great since, as it was mentioned
before, more generations are required to let GA converge.
But the average error rate has still decreased by 20.0%.

These experiments also demonstrate that eigenvectors
encoding irrelevant or redundant information have not
been favored by the GA approach.

The results of classification show an improved perfor-
mance compared to the existing approaches. Actually, fair
comparisons are made where the implementation conditions
and the databases employed for experiments are identical.
The approach presented in Ref. 22 uses the GT database
and the static body and stride parameters of subjects. In
that work, two sets of parameters are presented and the
within and between discrimination powers of each set are
analyzed. They report an average CCR of 92.5% for the
indoor side view images where the people are far and
close to the camera. The approach introduced in Ref. 23
uses only the trajectories of the lower body joint angles in
the GT database. This method has reached a CCR of 73%
on 106 time-normalized signals. The approach has gained
accurate results through the use of markers, but the classifi-
cation rate is a demonstration of the deficiency of the
features. Another method proposed in Ref. 64 classifies
instances in the same database being able to reach a recog-
nition rate of 91.4% using a model-based approach. We have
shown that the proposed approach has been able to reach a
CCR of 96.3%. This recognition rate is really promising in
comparison with the methods mentioned above. The above
comparisons with the proposed algorithm are summarized in
Table 3.

As mentioned earlier, we are using the indoor sequences
in our database as do the approaches referred to above.

Table 1 Averaged performance in all six experiments before genetic
algorithm (GA) for Georgia Tech (GT) and CASIA datasets.

Dataset
CCR using all
features (%)

CCR using top 10%
eigenvectors (%)

GT 62.3 68.8

CASIA 77.7 77.8

CCR, correct classification rate.

Table 2 Overall performance after GA for GT and CASIA datasets.

# pop Classifier Selection
Crossover

prob.
Mutation
prob. # gen

CCR after
GA for GT (%)

% selected
features # gen

CCR after GA
for CASIA (%)

% selected
features

800 Naïve Bayes Elitism 0.6 0.1 50 90.6 3.1 80 65.7 14.7

800 KNN Elitism 0.6 0.1 50 88.7 40.3 80 63.2 28.5

800 SVM Elitism 0.6 0.1 50 81.3 41.8 80 73.6 32.5

1000 Naïve Bayes Elitism 0.9 0.05 100 78.1 29.8 200 79.3 14.4

1000 Naïve Bayes Elitism 0.6 0.1 100 96.3 10.4 200 84.9 19.8

1500 KNN Elitism 0.6 0.1 20 87.2 46.0 100 86.3 31.8

1500 KNN Ranking 0.6 0.1 20 88.0 22.3 100 81.8 26.4

1500 SVM Elitism 0.6 0.1 20 84.6 35.7 100 88.6 44.1

KNN, K nearest neighbor.
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Although it might seem a limitation to the proposed algo-
rithm, an approach with the capability of utilization in
real-world applications requires a more sophisticated back-
ground subtraction algorithm. Here, we focused on the effect
of feature subset selection on a gait recognition technique.
However, this issue does not restrict the method and it
can be simply generalized to more common situations.

We have performed another comparison based on the
selected features. In this experiment, we chose GEI features,
which have proven to achieve good results in the case of gait
recognition. Conventional silhouette based gait representa-
tions treat gait as a sequence of templates. In contrast,
GEI represents gait using a single image, which contains
information about both body shape and human walking
dynamics. GEI is, thus, a compact representation, which
makes it an ideal starting point for feature selection since
it is computationally expensive if the number of features
to select is high.62 Table 4 demonstrates the results of recog-
nition using features extracted by KPCA from GEI represen-
tations. We can see that GEI features have been completely
successful in discriminating between subjects of the GT data-
set. On the contrary, their performance on the CASIA data
has not been as good as the results of Table 1. The purpose of
this experiment was to see whether these features perform
better than multiple projection-based features. We should
mention that in this experiment only the normal sequences
with a view point of 90 deg have been employed to maintain
consistency with our previous experiments. One of the rea-
sons that GEI did not perform well in the second dataset is
that although it is comparatively robust to noise, it loses the
dynamical variation between successive frames, which was
emphasized in the case of contour projections. To check the

effect of feature selection on a different type of feature, we
applied GA with the parameters achieving better results in
our previous experiments on this data. The results of this
set of experiment have been included in Table 4. As we
can see, in the case of the CASIA dataset, the accuracy
has increased considerably using appropriate features from
selected eigenvectors of GEI images.

6 Conclusions
We have described a method for extracting the gait signatures
and kinematic features for analyzing and identifying the gait
motion. Temporal contour projections have been employed
as gait patterns from which we were able to extract required
the feature vectors for classification. First, some static param-
eters were estimated; these values were later used for data
normalization from which gait patterns were extracted.
Eigenvectors calculated by applying KPCA on four gait
patterns of each subject yielded a large number of features
that can be reduced with GA. The classification results dem-
onstrated the power of GA in selecting the best subset of
feature, which led to a promising recognition rate compared
to the whole feature vector we obtained with KPCA.

In our future work, we will generalize the method to other
imaging viewpoints and outdoor data, and further analyze
the above features for constructing a method capable of
operating in real-world applications.
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