
Probabilistic visual learning for object representation

(B. Moghaddam and A. Pentland, "Probabilistic visual learning for object representation", IEEE
Tr ansactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 696-710, 1997 (on-line)).

• The problem

- Learning and modeling the visual appearance of objects (i.e., faces and human
hands) from a set of training imagery.

- Giv en a set of training images x t , t = 1, 2, . . .  , N from an object class Ω, esti-
mate the likelihood function p(x/Ω).

• The approach

- Perform density estimation in high-dimensional spaces using an eigenspace
decomposition.

- This is more efficient than performing the density estimation in the original
high-dimensional space.

- Two types of density estimates are derived for modeling the training data:

(1) a multivariate Gaussian

(2) a mixture-of-Gaussians

- These densities are the used to compute likelihoods for object detection.
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• Density estimation in eigenspace

- The goal is to estimate the complete probability density of the object’s appear-
ance using an eigenvector decomposition of the image space.

- The probability density is decomposed into two components:

(1) the density in the principal subspace (i.e., defined by the principal com-
ponents).

(2) the density in its orthogonal complement (i.e., defined by the compo-
nents that are thrown away).

• Quick review of eigenspace theory

- Giv en a set of image vectors x t , t=1,2,..,NT , we identify the largest compo-
nents M of the covariance matrix Σ.

- Each image vector is then expressed in a new coordinate system (defined by
the principal eigenvectors):

y = ΦT
M x̃

where x̃ = x − x and the columns of Φ are the principal components.

Principal subspace F : the space defined by the principal components Φi ,
i = 1, 2, . .  , M

Orthogonal complement F : the space defined by the other components Φi ,
i = M +1, . . , N
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Distance in face space (DIFS): distance computed in the space of principal com-
ponents.

Distance from face space (DFFS): (1) project, (2) reconstruct, (3) subtract from
original (essentially the distance computed in the space of the non-principal
components.

ε 2(x) =
N

i=M+1
Σ y2

i = || x̃|| −
M

i=1
Σ y2

i (residual)
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• Modeling the density as a high-dimensional Gaussian

- Let’s assume that the density of faces in class Ω is modeled by a high-dimen-
sional Gaussian whose parameters (x, Σ) have been estimated:

p(x/Ω) =
1

(2π )N /2|Σ|1/2
exp[−

1

2
(x − x)tΣ−1(x − x)]

- The DIFS should be computed using the Mahalanobis distance:

d(x) = (x − x)tΣ−1(x − x)

(this is essentially P(Ω/x) assuming equal priors)

- In most applications, we simply discard the F-space and work with pF(x/Ω)

- To compute the likelihood of an observation x, howev er, it might be important
to use the complete density p(x/Ω) (i.e., we need pF(x/Ω)).

- There are an infinity of vectors which are not members of Ω and can have
similar F-space projections.

- We may get many false positives without using pF(x/Ω)
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• Computing d(x) assuming a Gaussian density

- We can rewrite d(x) using the decomposition of Σ (i.e., Σ = ΦΛΦT )

d(x) = (x − x)tΣ−1(x − x) = x̃ tΦΛ−1ΦT x̃ = yT Λ−1 y =
N

i=1
Σ

y2
i

λ i

- Evaluating the above expression explicitly is not feasible due to the high
dimensionality (i.e., we do not compute all the eigenvalues in practice).

- We need to estimate d(x) using only M eigenvalues (i.e., those corresponding
to the principal components).

d(x) =
N

i=1
Σ

y2
i

λ i
=

M

i=1
Σ

y2
i

λ i
+

N

i=M+1
Σ

y2
i

λ i

- We will approximate d(x) with the following expression:

d̂(x) =
M

i=1
Σ

y2
i

λ i
+

1

ρ

N

i=M+1
Σ y2

i =
M

i=1
Σ

y2
i

λ i
+

ε 2(x)

ρ

- It can be shown that the optimal value ρ* of ρ is given by:

ρ* =
1

N − M

N

i=M+1
Σ λ i

- The value of ρ* can be computed by extrapolating the eigenspace spectrum
(e.g., fit a function like 1/ f to the available eigenvalues and the fact that the last
eigenvalue is the estimated pixel noise variance).
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- Substituting d̂(x) in p(x/Ω) we get p̂(x/Ω):

p̂(x/Ω) =
1

(2π )N /2|Σ|1/2
exp[−

1

2
(

M

i=1
Σ

y2
i

λ i
+

ε 2(x)

ρ
)] =

1

(2π )M /2
M

i=1
Πλ i

1/2
exp[−

1

2
(

M

i=1
Σ

y2
i

λ i
)] .

1

(2π )(N−M)/2
N

i=M+1
Π λ i

1/2
exp[−

1

2
(

ε 2(x)

ρ
)] =

1

(2π )M /2
M

i=1
Πλ i

1/2
exp[−

1

2
(

M

i=1
Σ

y2
i

λ i
)] .

1

(2π ρ)(N−M)/2
exp[−

1

2
(

ε 2(x)

ρ
)] =

pF(x/Ω) .  p̂F(x/Ω)
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• Modeling the density as a mixture of Gaussians

- When the training set represents multiple views or multiple objects under
varying illumination conditions, the density of the training views in the F-space
is no longer unimodal.

- The training data tends to lie on complex and non separable low-dimensional
manifolds in image space.

- To deal with this issue, we need to assume that pF(x/Ω) is an arbitrary den-
sity p(y/θ ) ( p̂F(x/Ω) is still assumed to be Gaussian).

p̂(x/Ω) = p(y/θ ) p̂F(x/Ω)

- We can model p(y/θ ) as a mixture of Gaussians:

p(y/θ ) =
K

k=1
Σ p(y/θ k)π k

where θ are the parameters of the mixture (each p(y/θ k) is a Gaussian).

- The parameters of the mixture can be estimated using the EM algorithm.
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• Face detection using p̂(x/Ω)

- Compute the posterior probabilities P(Ω/x) at each location of the image
using p̂(x/Ω) (saliency map).

- Use different window sizes for handling scale (multiscale saliency maps).

- Local maxima in the saliency map correspond to faces.

• Experiment1: detection of facial features

- Detect facial features like the eyes, the nose, and the mouth (e.g., needed to
normalize faces for face recognition).

- A database including 7,562 "mugshot" images were used in this experiment.
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- Three methods have been compared using 7,000 images from that database:

(1) template matching using SSD (sum-of-squared differences) - the tem-
plate was based on the average facial feature (e.g., left eye).

(2) DFFS template (Euclidean distance, 5 principal components)

(3) ML detector (a single Gaussian, 5 principal components)

• Experiment2: detection of faces

- The mutiscale detector was also tested on 2,000 images from the FERET
database.

- A single Gaussian was used - 10 principal components.

- Correct detection rate was 97%.
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• Experiment3: recognition of frontal faces

- A database with 7,562 images of 3,000 people (men, women, children, differ-
ent races) was used.

- A representative set of 128 faces were used for computing the eigenfaces.

- A single Gaussian was used - 20 principal components.

- The average recognition rate was assessed by performing several experiments
(200 faces selected at random for testing) - the system achieved 95% recogni-
tion rate.
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• Experiment4: recognition under general viewing conditions

- Giv en N individuals under M different views we could:

(1) Use Nayar’s approach (parametric eigenspace)

(2) Build M distinct eigenspaces (one per view) - (view-based eigenspace)

- They argue that the "view-based" eigenspace approach models a complex dis-
tribution by the union of several simpler distributions.

- To determine the location and orientation of a face in an input image, we com-
pute its likelihood in each eigenspace and select the maximum.

- The view-based approach was evaluated using 9 views of 21 people (189
images, -90 to 90 degrees).

Interpolation performance

* Trained with ±90 degrees, ±45 degrees, ±0 degrees
* Tested with ±68 degrees and ±23 degrees
* Achieved 90% average recognition performance.

Extrapolation performance

* Trained with images e.g., in the interval (-90 degrees to +45 degrees)
* Tested with view e.g., +68 degrees, and +90 degrees
* For testing views separated by ±23 degrees from the training images, the
av erage recognition rate was 83%
* For testing views separated by ±45 degrees from the training images, the
av erage recognition rate was 50%
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• Experiment5: modular recognition

- Build a separate eigenspace for each facial feature (i.e., eigeneyes, eigennoses,
eigenmouths).

- Used a database with 2 views of 45 people.

- Used half for training and half for testing.

- The eigenfeature approach is really superior when there are variations in the
input image (e.g., hats, beards etc.)

• Experiment6: hand detection and recognition

- The human hand is a highly articulated, non-rigid object.

- A shape representation (edge-based) is used to characterize its identity (i.e.,
texture not important).
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- A mixture of Gaussians is used in this case for hand detection (the distribution
of hand gestures is multimodal).
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- Used 5 mixture components and 10 principal components.

- Present some results where the hand is detected successfully assuming com-
plex background.

- Once the hand has been detected, recognition is very very accurate even using
a simple Euclidean distance (100% success rate assuming 375 frames from an
image sequence containing 7 gestures).
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Tracking color objects using adaptive mixture models

(S. McKenna, Y. Raja, and S. Gong, "Tracking color objects using adaptive mixture models",
Image and Vision Computing, vol. 17, pp. 225-231, 1999 (on-line))

• The problem

- Tracking color objects in real-time under varying illumination, viewing geom-
etry, and camera parameters.

• Current approaches

- Use non-parametric models based on histograms (requires lots of data).

- Use only one Gaussian whose parameters are adapted over time.

• The approach

- A statistical model is proposed for modeling color distributions over time.

- The model is based on adaptive Gaussian mixtures for real-time tracking color
objects.

(1) A set of predetermined generic object color models can be used to ini-
tialize (or re-initialize) the tracker.

(2) During tracking, the model adapts and improves its performance by
becoming specific to the observed conditions.

- The model performs satisfactory under varying illumination, viewing geome-
try, and camera parameters.
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• Assumptions

- The number of components is kept fixed (determined using a fixed data set).

- This implies that the number of components needed to accurately model an
object’s color does not change significantly with changing viewing conditions.

• Color mixture models

- The conditional density of a pixel xi , belonging to an object, O
(i = 1, 2, . . .  , n), is modeled as a Gaussian mixture with K components (xi is
two-dimensional):

p(xi /O) ≡ p(xi /θ ) =
K

k=1
Σ p(xi /θ k)π k

- Each component p(xi /θ k) is modeled as a Gaussian:

p(xi /θ k) =
1

(2π )|Σk|1/2
exp[−

1

2
(xi − µ k)tΣ−1

k (xi − µ k)]

- The Bayes rule is used to decide whether pixel xi , (i = 1, 2, . . .  , n) belongs to
O:

P(O/xi) =
p(xi /O)P(O)

p(xi)
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• Using the EM algorithm to estimate the parameters of the mixture

Expectation step (using paper’s notation):

E(zik) =
p(xi /θ

t
k)π t

k
K

j=1
Σ p(xi /θ t

j)π
t
j

or P(k/xi) =
p(xi /θ

t
k)π t

k

p(xi /O)

Maximization step (using paper’s notation):

π t+1
k =

1

n xi ∈ O
Σ E(zik) or π t+1

k =
ψ t

k

n
(i.e.,

ψ t
k =

xi ∈ O
Σ E(zik) =

xi ∈ O
Σ P(k/xi))

µ t+1
k =

1

nπ t+1
k xi ∈ O

Σ E(zik)xi or µ t+1
k = xi ∈ O

Σ P(k/xi)xi

ψ t
k

Σt+1
k =

1

nπ t+1
k xi ∈ O

Σ E(zik)(xi − µ t+1
k )(xi − µ t+1

k )T or

Σt+1
k = xi ∈ O

Σ P(k/xi)(xi − µ t+1
k )(xi − µ t+1

k )T

ψ t
k
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• Initialization of mixture’s parameters

- The mixture depends on the number of components and the choice initial
parameters.

* A suitable value for K was chosen based upon visual inspection of the
object’s color distribution.

* The component means were initialized to a random subset of the training
data points.

* The covariance matrices were initialized to σ I where σ was the
Euclidean distance from the component’s mean to its nearest neighboring
component’s mean.

* The priors were initialized to π =1/K

- An alternative scheme based on cross-validation is also described (see paper
pp. 226, 2nd column - start with one component, add more components incre-
mentally).

• Color representation system

- RGB values are converted to the HSI (Hue-Saturation-Intensity) system.

- Only the H and S components are used (I is discarded to obtain invariance to
the intensity of ambient illumination).

- Pixels corresponding to low S values were discarded (i.e., not reliable to mea-
sure H ).

- Pixels with very high I value were also discarded.
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• Adaptive color mixtures

- A non-adaptive model has given good results in the past under large rotations
in depth, changes of scale, and partial occlusions.

- To deal with large changes in illumination conditions, an adaptive model is
required.

- Let’s denote the adaptive estimates of the parameters of the mixture compo-
nents corresponding to frame r −1 as

[π k(r −1), µ k(r −1), Σk(r −1)]

- In the next frame r , the parameters [π k(r), µ k(r), Σk(r)] will be adapted
using a weighted sum of the following terms:

(1) adaptive estimates from frame r −1:

[π k(r −1), µ k(r −1), Σk(r −1)]

(2) estimates using the data from frame r only:

[π r
k, µr

k, Σr
k]

(3) estimates using the data from frame r − L −1 only:

[π r−L−1
k , µr−L−1

k , Σr−L−1
k ] (L controls the adaptivity of the model)

Warning: superscripts r correspond to estimates using data from frame r only;
indices r in parentheses correspond to adaptive estimates.
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Compute the estimates using the data from frame r only

π r
k =

ψ r
k

nr
where ψ r

k =
xi ∈ Or

Σ P(k/xi)

µr
k = xi ∈ Or

Σ P(k/xi)xi

ψ r
k

Σr
k = xi ∈ Or

Σ P(k/xi)(xi − µ k(r −1))(xi − µ k(r −1))T

ψ r
k

Compute the adaptive parameters

* Will be estimated using the L +1 most recent frames (L controls the
adaptivity of the model).

µ k(r) =

r

τ =r−L
Σ

xi ∈ Or
Σ P(k/xi)xi

r

τ =r−L
Σ ψ τ

k

Σk(r) =

r

τ =r−L
Σ

xi ∈ Or
Σ P(k/xi)(xi − µ k(r −1))(xi − µ k(r −1))T

r

τ =r−L
Σ ψ τ

k
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* The above expressions can be written in the following form (see
Appendix A):

µ k(r) = µ k(r −1) +
ψ r

k

Dk(r)
(µr

k − µ k(r −1)) −
ψ r−L−1

k

Dk(r)
(µr−L−1

k − µ k(r −1))

Σk(r) = Σk(r −1) +
ψ r

k

Dk(r)
(Σr

k − Σk(r −1)) −
ψ r−L−1

k

Dk(r)
(Σr−L−1

k − Σk(r −1))

where Dk(r) =
r

τ =r−L
Σ ψ τ

k = Dk(r −1) + (ψ r
k − ψ r−L−1

k )

- Similarly, π k(r) is estimated as follows:

π k(r) = π k(r −1) +
nr

r

τ =r−L
Σ nτ

(π r
k − π k(r −1)) −

nr−L−1

r

τ =r−L
Σ nτ

(π r−L−1
k − π k(r − 1))

• Selecting Or

- Giv en a color mixture model for an object, the object is effectively located and
tracked in the scene by computing a probability map for the pixels in the image
within a search window.

- The size and position of the object are then estimated from the resulted distri-
bution.

- The tracker estimates the centroid, height and width of the object.

- Or is chosen to be a region of appropriate aspect ratio centered on the esti-
mated object centroid.
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• Selective adaptation

- Any tracker can loose the object being tracked due, e.g., occlusion.

- If such errors go undetected, the color model will adapt to image regions
which do not correspond to the object being tracked.

- Keep track of the normalized log-likelihood Lr of the data Or at each frame
(the mixture model seeks to maximize Lr ):

Lr =
1

nr
x ∈ Or
Σ log p(xi /O)

- If the tracker loses the object, there is often a sudden, large drop in the value
of Lr .

- Adaptation is suspended until the object is again tracked with sufficiently high
likelihood (see paper for guidelines of how to choose a good likelihood thresh-
old).
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• Experiments

(non-adaptive model)

(adaptive model)
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• Interesting ideas for future research

- Use several cues, especially when color becomes unreliable.

- Adaptive modeling of background scene colors:

P(O/xi) =
p(xi /O)P(O)

p(xi /O)P(O) + p(xi /B)P(B)

- Adaptive number of mixture components.
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Adaptive background mixture models for real-time tracking

(C. Stauffer and E. Grimson, "Adaptive background mixture models for real-time
tracking", IEEE Computer Vision and Pattern Recognition Conference, Vol. 2, pp. 246-252, 1998
(on-line))

• The problem

- Real-time segmentation of moving objects in image sequences.

- A robust moving object detection system should be able to handle:

(1) variations in lighting
(2) moving scene clutter
(3) multiple moving objects
(4) other arbitrary changes in the scene

• Traditional methods for background modeling

- The oldest technique for moving object detection is based on background sub-
traction:

(1) Subtract a model of the background from the current frame.

(2) Threshold the difference image

- We can assume a static or a time-varying background and a fixed or moving
camera (fixed camera, varying background is assumed here).

- Non-adaptive background models have serious limitations and are rarely used
(e.g., no significant changes are allowed in the scene except the moving
objects).
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- A standard method of adaptive backgrounding is based on averaging the
images over time (i.e., approximates the current static scene except where
motion occurs).

(1) Objects must move continuously.
(2) The background must be visible most of the time.
(3) Not robust when the scene contains multiple, slowly moving objects.

- Cannot distinguish shadows from moving objects.

• The approach

- Model the values of a particular pixel as a mixture of Gaussians.

- Evaluate the Gaussian distributions to determine which are most likely to
result from a background process.

- Classify each pixel based on whether the Gaussian distribution which repre-
sents it most effectively is part of the background model.

- Adapt the model parameters over time to deal with:

(1) lighting changes
(2) repetitive motions of scene elements (e.g., swaying trees)
(3) slow-moving objects
(4) introducing or removing objects from the scene
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• Why modeling each pixel using a mixture?

- If each pixel resulted from a particular surface under particular lighting, a sin-
gle Gaussian would be sufficient.

- If only lighting changed over time, a single, adaptive Gaussian per pixel would
be sufficient.

- To model multiple surfaces and varying lighting conditions, a mixture of adap-
tive Gaussians are necessary.

• Modeling pixel values using mixtures

- Consider the values of a particular pixel over time as a "pixel process" (i.e.,
time series).

- At any time t , we know the history or each pixel at location (x, y):

{X1, X2, ..., Xt}={I (x, y, i), i = 1, 2, . .  , t}

- The recent history of each pixel, {X1, X2, ..., Xt}, is modeled by a mixture of
K Gaussians.
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- The probability of observing the current pixel value is

P(Xt) =
K

i=1
Σ p(Xt /µ i,tΣi,t)π i,t

where K = 2 − 5 and p() is given by

p(Xt /µ i,tΣi,t) =
1

(2π )n/2|Σi,t|1/2
exp[−

1

2
(Xt − µ i,t)

T Σ−1
i,t(Xt − µ i,t)]

- To simplify the calculations, Σi,t is assumed to be diagonal:

Σi,t = σ 2
i I

• Methodology

- Each Gaussian is evaluated (i.e., using its persistence and variance) to hypoth-
esize which are most likely to be part of the "background process".

- Pixel values that do not fit the background Gaussians are considered fore-
ground and grouped using connected components.

- The connected components are tracked from frame to frame using a multiple
hypothesis tracker.
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• Estimating/Updating the parameters of the model

- Each new observation is integrated into the model using standard learning
rules (using the EM algorithm for every pixel would be costly).

- Every pixel value, Xt , is checked against the existing K Gaussian distribu-
tions to find the one that represents it most.

- A match is defined as a pixel value within 2.5σ of a distribution (.e., each
pixel has essentially its own threshold).

- If a match is found, the parameters of the mixture model as updated as fol-
lows:

π i,t = (1 − α )π i,t−1 + α Mi,t

where α is a learning constant and Mi,t is 1 for the model which matched and 0

for the other models (re-normalize π i,t such that
K

i=1
Σ π i,t = 1)

(only the parameters of the matched Gaussian i are updated below)

µ i,t = (1 − ρ)µ i,t−1 + ρ Xt

σ 2
i,t = (1 − ρ)σ 2

i,t−1 + ρ(Xt − µ i,t)
T(Xt − µ i,t)

where ρ = α p(Xt /µ i, σ i)

- If a match is not found, the least probable distribution is replaced with a distri-
bution with the current pixel value as its mean value, an initial high variance,
and a low prior weight.
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• Determining the background Gaussians

- Determine which of the Gaussians of the mixture are most likely produce by
background processes.

- The following observations are made:

(1) Moving objects are expected to produce more variance than a "static"
(background) object.

(2) There should be more data supporting the background distributions
because they are repeated, whereas pixel values from different objects are
often not the same color.

- The following heuristic is used to determine the "background" Gaussians:

"choose the Gaussians which have most supporting evidence and the least
variance"

- To implement this idea, the Gaussians are ordered by the value of π /σ

- The first B distributions are chosen as the background model, where

B = argminb(
b

i=1
Σ π i > T )

where T is a measure of the minimum portion of the data that should be
accounted for by the background.
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• Connected components

- The mixture model allows the identification of foreground pixels in each new
frame.

- These pixels are grouped into different regions using connected components.

• Multiple hypothesis tracking

- Connected components are tracked from frame to frame.

- A pool of Kalman filters are used to track the connected components (see
paper for more details).
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• Experiments and results

- The system has been run almost continuously for 16 months (24 hrs/day
through rain and snow).

- The system can process 11-13 frames per second (160 x 120 pixels).

(see http://www.ai.mit.edu/projects/vsam)


