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The Expectation-Maximization (EM) Algorithm

• Overview

- It is an iterative algorithm that starts with an initial estimate for θ and iteratively
modifies θ to increase the likelihood of the observed data.

- Works best in situations where the data is incomplete or can be thought of as
being incomplete.

- EM is typically used with mixture models (e.g., mixtures of Gaussians).

• The case of incomplete data

- Many times, it is impossible to apply ML estimation because we can not mea-
sure all the features or certain feature values are missing.

- The EM algorithm is ideal (i.e., it produces ML estimates) for problems with
unobserved (missing) data.

Actual data: x =





x1

x2

x3






, Observed data: y =




x1

x2





Complete pdf: p(x/θ ), Incomplete pdf: p(y/θ )

- Incomplete pdf can be derived from complete pdf:

p(y/θ ) = ∫ . . . ∫ p(x/θ )dxmissing
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• An example

- Assume the following two classes in a pattern-recognition problem:

(1) A class of dark object
(1.1) Round black objects
(1.2) Square black objects

(2) A class of light objects

Complete data and pdf:

x =





x1

x2

x3






number of round dark objects

number of square dark objects

number of light objects

p(x1, x2, x3/θ ) = (
n!

x1! x2!x3!
)(1/4)x1(1 /4 + θ /4)x2(1 /2 − θ /4)x3

Observed (incomplete) data and pdf:

y =




y1

y2





=




x1 + x2

x3





number of dark objects

number of light objects

(many-to-one mapping !!)
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• EM: main idea and steps

- If x was available, then we could use ML to estimate θ , i.e.,

arg maxθ ln p(Dx /θ )

Idea: maximize the expectation of p(x/θ ) giv en the data y and our current esti-
mate of θ .

1. Initialization step: initialize the algorithm with a guess θ 0

2. Expectation step: it is with respect to the unknown variables, using the current
estimate of parameters and conditioned upon the observations.

Q(θ;θ t) = E xunobserved
(ln p(Dx /θ ) / Dy,θ t)

* Expectation is over the values of the unobserved variables since the
observed data is fixed.

* When ln p(Dx /θ ) is a linear function of the unobserved variables, then the
above step is equivalent to finding E(xunobserved /Dy,θ t)

3. Maximization step: provides a new estimate of the parameters.

θ t+1 = arg maxθ Q(θ;θ t)

4. Convergence step: if ||θ t+1 − θ t|| < ε , stop; otherwise, go to step 2.
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• An example (cont’d))

- Assume the following two classes in a pattern-recognition problem:

(1) A class of dark object
(1.1) Round black objects
(1.2) Square black objects

(2) A class of light objects

Complete data and pdf:

x =





x1

x2

x3






number of round dark objects

number of square dark objects

number of light objects

p(x1, x2, x3/θ ) = (
n!

x1! x2!x3!
)(1/4)x1(1 /4 + θ /4)x2(1 /2 − θ /4)x3

Observed (incomplete) data and pdf:

y =




y1

y2





=




x1 + x2

x3





number of dark objects

number of light objects

(many-to-one mapping !!)

Expectation step: compute E(ln p(Dx /θ ) / Dy,θ t))
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p(Dx /θ ) =
n

i=1
Π p(xi /θ ) ==> ln p(Dx /θ ) =

n

i=1
Σ ln p(xi /θ ) =

n

i=1
Σ ln(

n!

xi1! xi2!xi3!
) + xi1 ln(1 /4) + xi2 ln(1 /4 + θ /4) + xi3 ln(1 /2 − θ /4)

E[ln p(Dx /θ )/Dy,θ t] =
n

i=1
Σ E[ln(

n!

xi1! xi2!xi3!
)/Dy,θ t] + E[xi1/Dy,θ t] ln(1 /4) +

E[xi2/Dy,θ t] ln(1 /4 + θ /4) + xi3ln(1 /2 − θ /4)

Maximization step: compute θ t+1 by maximizing E(ln p(Dx /θ ) / Dy,θ t)

d

dθ
E[ln p(Dx /θ )/Dy,θ t] = 0 ==> θ t+1 =

2 + E[xi2/Dy,θ t] − xi3

E[xi2/Dy,θ t] + xi3

Expectation step (cont’d): estimating E[xi2/Dy,θ t]

P(xi2/yi1, yi2) = P(xi2/yi1) = 


yi1

xi2



(1 /4)xi2(1 /4 + θ /4)yi1−xi2

1

(1 /2 + θ /4)yi1

E[xi2/Dy,θ t] = yi1
1/4

1/2 + θ t /4
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• Convergence properties of the EM algorithm

- At each iteration, a value of θ is computed so that the likelihood function does
not decrease.

- It can be shown that by increasing Q(θ;θ t) = E xunobserved
(ln p(Dx /θ ) / Dy,θ t) with

the EM algorithm, we are also increasing ln p(Dx /θ ).

- This does not guarantee that the algorithm will reach the ML estimate (global
maximum) and, in practice, it may get stuck in a local optimum.

- The solution depends on the initial estimate θ 0.

- The algorithm is guaranteed to be stable and to converge to a ML estimate (i.e.,
there is no chance of "overshooting" or diverging from the maximum).
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Maximum Likelihood of mixtures via EM

• Mixture model

- In a mixture model, there are many "sub-models", each of which has its own
probability distribution which describes how it generates data when it is active.

- There is also a "mixer" or "gate" which controls how often each sub-model is
active.

- Formally, a mixture is defined as a weighted sum of K components where each
component is a parametric density function p(x/θ k):

p(x/θ ) =
K

k=1
Σ p(x/θ k)π k

• Mixture parameters

- The parameters θ to estimate are:

* the values of π k
* the parameters θ k of p(x/θ k)

- The component densities p(x/θ k) may be of different parametric forms and are
specified using knowledge of the data generation process, if available.

- The weights π k are the mixing parameters and they sum to unity:

K

k=1
Σ π k = 1

- Fitting a mixture model to a set of observations Dx consists of estimating the
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set of mixture parameters that best describe this data.

- Two fundamental issues arise in mixture fitting:

(1) Estimation of the mixture parameters.

(2) Estimation of the mixture components.

• Mixtures of Gaussians

- In the mixtures of Gaussian model, p(x/θ k) is the multivariate Gaussian distri-
bution.

- In this case, the parameters θ k are (µ k, Σk).

• Mixture parameter estimation using ML

- As we hav e seen, given a set of data D=(x1, x2, ..., xn), ML seeks the value of θ
that maximizes the following probability:

p(D/θ ) =
n

i=1
Π p(xi /θ )

- Since p(xi /θ ) is modeled as a mixture (i.e., p(xi /θ ) =
K

k=1
Σ p(xi /θ k)π k) the above

expression can be written as:

p(D/θ ) =
n

i=1
Π

K

k=1
Σ p(xi /θ k)π k

- In general, it is not possible to solve
∂p(D/θ )

∂θ
= 0 explicitly for the parameters

and iterative schemes must be employed.
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Estimate the means of K Gaussians using EM (special case)

• Data generation process using mixtures

- Assume the data D is generated by a probability distribution that is a mixture of
k Gaussians.

k = 2

- Each instance is generated using a two-step process:

(1) One of the K Gaussians is selected at random, with probabilities
π1, π2, . . .  , π K .

(2) A single random instance xi is generated according to this selected distri-
bution.

- This process is repeated to generate a set of data points D.

• Assumptions (this example)

(1) π1 = π2 = . . . = π K (uniform distribution)

(2) Each Gaussian has the same variance σ 2 which is known.

- The problem is to estimate the means of the Gaussians θ = (µ1, µ2, . . .  , µ K)

Note: if we knew which Gaussian generated each datapoint, then it would be



-11-

easy to find the parameters for each Gaussian using ML.

• Involving hidden or unobserved variables

- We can think of the full description of each instance xi as

yi=(xi, zi)=(xi, zi1, zi2, . . .  , ziK)

where zi is a class indicator vector (hidden variable):

zij =




1

0

if xi was generated by j − th component

otherwise

- In this case, xi are observable and zi non-observable.

• Main steps using EM

- The EM algorithm searches for a ML hypothesis through the following iterative
scheme:

(1) Initialize the hypothesis θ 0=(µ0
1, µ0

2, . . .  , µ0
K )

(2) Estimate the expected values of the hidden variables zij using the current
hypothesis θ t=(µ t

1, µ t
2, . . .  , µ t

K )

(3) Update the hypothesis θ t+1=(µ t+1
1 , µ t+1

2 , . . .  , µ t+1
K ) using the expected values

of the hidden variables from step 2.

- Repeat steps (2)-(3) until convergence.
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• Derivation of the Expectation-step

- We must derive an expression for Q(θ;θ t) = Ezi
(ln p(Dy/θ ) / Dx,θ t)

(1) Derive the form of ln p(Dy/θ ):

p(Dy/θ ) =
n

i=1
Π p(yi /θ )

- We can write p(yi /θ ) as follows:

p(yi /θ ) = p(xi, zi /θ ) = p(xi /zi,θ )p(zi /θ ) = p(xi /θ j)π j

(assuming zij=1 and zik=0 for k ≠ j)

- We can rewrite p(xi /θ j)π j as follows:

p(yi /θ ) =
K

k=1
Π[p(xi /θ k)π k]zik

- Thus, p(Dy/θ ) can be written as follows (π k’s are all equal):

p(Dy/θ ) =
n

i=1
Π

K

k=1
Π[p(xi /θ k)]zik

- We hav e assumed the form of p(xi /θ k) to be Gaussian:

p(xi /θ k) =
1

σ √ 2π
exp[−

(xi − µ k)2

2σ 2
], thus

K

k=1
Π[p(xi /θ k)]zik =

1

σ √ 2π
exp[−

1

2σ 2

K

k=1
Σ zik(xi − µ k)2]

which leads to the following form for p(Dy/θ ):

p(Dy/θ ) =
n

i=1
Π

1

σ √ 2π
exp[−

1

2σ 2

K

k=1
Σ zik(xi − µ k)2]

- Let’s compute now ln p(Dy/θ ):

ln p(Dy/θ ) =
n

i=1
Σ(ln

1

σ √ 2π
−

1

2σ 2

K

k=1
Σ zik(xi − µ k)2)
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(2) Take the expected value of ln p(Dy/θ ):

Ezi
(ln p(Dy/θ )/Dx,θ t) = E(

n

i=1
Σ(ln

1

σ √ 2π
−

1

2σ 2

K

k=1
Σ zik(xi − µ t

k)2))) =

n

i=1
Σ(ln

1

σ √ 2π
−

1

2σ 2

K

k=1
Σ E(zik)(xi − µ t

k)2)

- E(zik) is just the probability that the instance xi was generated by the k-th com-
ponent (i.e., E(zik) =

j
Σ zij P(zij) = P(zik) = P(k/xi):

E(zik) =
exp[−

(xi − µ t
k)2

2σ 2
]

K

j=1
Σ exp[−

(xi − µ t
j)2

2σ 2
]

• Derivation of the Maximization-step

- Maximize Q(θ;θ t) = Ezi
(ln p(Dy/θ ) / Dx,θ t)

∂Q

∂µ k
= 0 or µ t+1

k =

n

i=1
Σ E(zik)xi

n

i=1
Σ E(zik)
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• Summary of the two steps

- Choose the number of components K

Initialization step

θ 0
k=µ0

k

Expectation step

E(zik) =
exp[−

(xi − µ t
k)2

2σ 2
]

K

j=1
Σ exp[−

(xi − µ t
j)2

2σ 2
]

Maximization step

µ t+1
k =

n

i=1
Σ E(zik)xi

n

i=1
Σ E(zik)



-15-

Estimate the mixture parameters (general case)

- If we knew which sub-model was responsible for generating each datapoint,
then it would be easy to find the ML parameters for each sub-model.

(1) Use EM to estimate which sub-model was responsible for generating each
datapoint.

(2) Find the ML parameters based on these estimates.

(3) Use the new ML parameters to re-estimate the responsibilities and iterate.

• Involving hidden variables

- We do not know which instance xi was generated by which component (i.e., the
missing data are the labels showing which sub-model generated each datapoint).

- Augment each instance xi by the missing information:

yi = (xi, zi)

where zi is a class indicator vector zi = (z1i, z2i, . . .  , zKi):

zij =




1

0

if xi generated by j − th component

otherwise

(xi are observable and zi non-observable)
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• Derivation of the Expectation step

- We must derive an expression for Q(θ;θ t) = Ezi
(ln p(Dy/θ ) / Dx,θ t)

(1) Derive the form of ln p(Dy/θ ):

p(Dy/θ ) =
n

i=1
Π p(yi /θ )

- We can write p(yi /θ ) as follows:

p(yi /θ ) = p(xi, zi /θ ) = p(xi /zi,θ )p(zi /θ ) = p(xi /θ j)π j

(assuming zij=1 and zik=0 for k ≠ j)

- We can rewrite the above expression as follows:

p(yi /θ ) =
K

k=1
Π[p(xi /θ k)π k]zik

- Thus, p(Dy/θ ) can be written as follows:

p(Dy/θ ) =
n

i=1
Π

K

k=1
Π[p(xi /θ k)π k]zik

- We can now compute ln p(Dy/θ )

ln p(Dy/θ ) =
n

i=1
Σ

K

k=1
Σ zik ln ( p(xi /θ k)π k) =

n

i=1
Σ

K

k=1
Σ zik ln ( p(xi /θ k)) +

n

i=1
Σ

K

k=1
Σ zik ln (π k)
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(2) Take the expected value of ln p(Dy/θ ):

E(ln p(Dy/θ )/Dx,θ t) =
n

i=1
Σ

K

k=1
Σ E(zik)ln (p(xi /θ

t
k)) +

n

i=1
Σ

K

k=1
Σ E(zik)ln (π t

k)

- E(zik) is just the probability that instance xi was generated by the k-th
component (i.e., E(zik) =

j
Σ zij P(zij) = P(zik) = P(k/xi):

E(zik) =
p(xi /θ

t
k)π t

k
K

j=1
Σ p(xi /θ t

j)π
t
j

• Derivation of the Maximization step

- Maximize Q(θ;θ t) subject to the constraint
K

k=1
Σ π k = 1:

Q′(θ;θ t) =
n

i=1
Σ

K

k=1
Σ E(zik)ln (p(xi /θ k)) +

n

i=1
Σ

K

k=1
Σ E(zik)ln (π k) + λ(1 −

K

k=1
Σ π k)

where λ is the Langrange multiplier.

∂Q′
∂π k

= 0 or
n

i=1
Σ E(zik)

1

π k
− λ = 0 or π t+1

k =
1

n

n

i=1
Σ E(zik)

(the constraint
K

k=1
Σ π k = 1 giv es

K

k=1
Σ

n

i=1
Σ E(zik) = λ)

∂Q′
∂µ k

= 0 or µ t+1
k =

1

nπ t+1
k

n

i=1
Σ E(zik)xi

∂Q′
∂Σk

= 0 or Σt+1
k =

1

nπ t+1
k

n

i=1
Σ E(zik)(xi − µ t+1

k )(xi − µ t+1
k )T
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• Summary of steps

- Choose the number of components K

Initialization step

θ 0
k=(π 0

k , µ0
k , Σ0

k)

Expectation step

E(zik) =
p(xi /θ

t
k)π t

k
K

j=1
Σ p(xi /θ t

j)π
t
j

Maximization step

π t+1
k =

1

n

n

i=1
Σ E(zik)

µ t+1
k =

1

nπ t+1
k

n

i=1
Σ E(zik)xi

Σt+1
k =

1

nπ t+1
k

n

i=1
Σ E(zik)(xi − µ t+1

k )(xi − µ t+1
k )T

(4) If ||θ t+1 − θ t|| < ε , stop; otherwise, go to step 2.
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• Estimating the number of components K

- Use EM to obtain a sequence of parameter estimates for a range of values K

{Θ(K ), K=Kmin,...,Kmax}

- The estimate of K is then defined as a minimizer of some cost function:

K̂ = arg minK(C(Θ(K ), K ), K=Kmin,...,Kmax

- Most often, the cost function includes ln p(Dy/θ ) and an additional term whose
role is to penalize large values of K .

- Sev eral criteria have been used, e.g., Minimum description length (MDL)
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Lagrange Optimization

- Suppose we want to maximize f (x) subject to some constraint expressed in the
form:

g(x) = 0

- To find the maximum, first we form the Lagrangian function:

L(x, λ) = f (x) + λ g(x)

(λ is called the Lagrange undetermined multiplier)

- Take the derivative and set it equal to zero:

∂L(x, λ)

∂x
=

∂ f (x)

∂x
+ λ

∂g(x)

∂x
= 0

- Solve the resulting equation for λ and the value x that maximizes f (x)


