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The Expectation-M aximization (EM) Algorithm

« Qverview

- It is an iterative algorithm that starts with an initial estimate for 6 and iteratively
modifies @ to increase the likelihood of the observed data.

- Works best in situations where the data is incomplete or can be thought of as
being incomplete.

- EM is typically used with mixture models (e.g., mixtures of Gaussians).

* The case of incomplete data

- Many times, it is impossible to apply ML estimation because we can not mea-
sure all the features or certain feature values are missing.

- The EM algorithm is ideal (i.e., it produces ML estimates) for problems with
unobserved (missing) data.

Actual data: x = sz S Observed data: y = [ ! 0
> O e[

Complete pdf: p(x/6), Incomplete pdf: p(y/6)

- Incomplete pdf can be derived from complete pdf:

p(y/e) = I ) I p(X/G)deissing



* An example
- Assume the following two classes in a pattern-recognition problem:

(1) A class of dark object
(1.1) Round black objects
(1.2) Square black objects

(2) A class of light objects
Complete data and pdf:

0%, O number of round dark objects
X = E‘xz E number of square dark objects
X3 [] number of light objects

n!

X Xo ~ y
X xg A WA+ 6142112 - 614)

P(X1, Xo, X3/8) = (

Observed (incomplete) data and pdf:

Oy, 0 DOy + %, Onumber of dark objects
& %2 B_ B X3 Bnumber of light objects

(many-to-one mapping !!)



* EM: main idea and steps
- If x was available, then we could use ML to estimate 9, i.e.,
arg max, In p(D,/6)

|ldea: maximize the expectation of p(x/6) given the data y and our current esti-
mate of 6.

1. Initialization step: initialize the algorithm with a guess 6°

2. Expectation step: it is with respect to the unknown variables, using the current
estimate of parameters and conditioned upon the observations.

Q(6;6") = Ey,...(In p(Dy/6) I Dy, 6"

* Expectation is over the values of the unobserved variables since the
observed data is fixed.

* When In p(D,/6) is a linear function of the unobserved variables, then the
above step is equivalent to finding E(Xynopserved/ Dys 6Y)

3. Maximization step: provides a new estimate of the parameters.

6'*! = arg max, Q(6; 6")

4. Convergence step: if |6 — 6Y < ¢, stop; otherwise, go to step 2.
g p P
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* An example (cont’d))
- Assume the following two classes in a pattern-recognition problem:

(1) A class of dark object
(1.1) Round black objects
(1.2) Square black objects

(2) A class of light objects
Complete data and pdf:

0%, O number of round dark objects
X = E‘xz E number of square dark objects
X3 [] number of light objects

n!

P(Xq, X9, X3/6) = (—————)W/A) (/4 + 6/4)*2(LI12 - 6/4)™
Xq! Xl X4

Observed (incomplete) data and pdf:

Oy, 0 DOy + %, Onumber of dark objects
& %2 B_ B X3 Bnumber of light objects

(many-to-one mapping !!)

Expectation step: compute E(In p(D/6) / Dy, 6'))




p(Dx/6) = .|D|1D(Xi/9) ==> In p(D,/6) = 3 In p(x;/6) =
i= i=1

> IN(—— )+ %y IN(U4) + %, IN(U/A + 614) + x5 IN(L/2 — 6/4)
i X! Xid X3!

I X-'X |)/Dy’ et] + E[X1/Dy, Bt] In(1/4) +

Elln p(D.Je)/Dy, 6] = 3 ElIN( o

E[X2/Dy, 8'1 In(L/4 + 6/4) + xi3In(L/2 - 6/4)

Maximization step: compute 6" by maximizing E(In p(D,/6) / Dy, 6")

2+ E[Xiley, 0t] = Xj3

d
— E[In p(D,/6)/D,, 6] =0==> 6" =
[ n p( Xle)/ Y’e] 0 4 E[XiZ/Dw Bt] + Xi3

de

Expectation step (cont'd): estimating E[x;,/Dy, 6']

: _ . 1
P(Xalin, Yid) = P(alyn) = [ ) U+ 01 ™ =
|
1/4
E[X;2/Dy, 6'] = yi1 12+ 94
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« Convergence properties of the EM algorithm

- At each iteration, a value of 9 is computed so that the likelihood function does
not decrease.

- It can be shown that by increasing Q(6; 6') = E,_ .
the EM algorithm, we are also increasing In p(D,/8).

(In p(D,/6) I Dy, 6') with
- This does not guarantee that the algorithm will reach the ML estimate (global
maximum) and, in practice, it may get stuck in alocal optimum.

- The solution depends on the initial estimate 6°.

- The algorithm is guaranteed to be stable and to converge to a ML estimate (i.e.,
there is no chance of "overshooting” or diverging from the maximum).
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Maximum Likelihood of mixturesvia EM

e Mixture model

- In a mixture model, there are many "sub-models’, each of which has its own
probability distribution which describes how it generates data when it is active.

- There is aso a "mixer" or "gate" which controls how often each sub-model is
active.
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- Formally, a mixture is defi ned as a weighted sum of K components where each
component is a parametric density function p(x/6y):

p(x/6) = é p(X/6) 7

e Mixture parameters
- The parameters 9 to estimate are:

* the values of 7
* the parameters 9, of p(x/6y)

- The component densities p(x/6,) may be of different parametric forms and are
specifi ed using knowledge of the data generation process, if available.

- The weights 7, are the mixing parameters and they sum to unity:
K
2 m =1
k=1

- Fitting a mixture model to a set of observations D, consists of estimating the



set of mixture parameters that best describe this data.
- Two fundamental issues arise in mixture fi tting:
(1) Estimation of the mixture parameters.

(2) Estimation of the mixture components.

e Mixtures of Gaussians

- In the mixtures of Gaussian model, p(x/6,) is the multivariate Gaussian distri-
bution.

- In this case, the parameters 6, are (uy, Zy)-

* Mixture parameter estimation using ML

- Aswe have seen, given a set of data D=(x;, X5, ..., Xp), ML seeks the value of
that maximizes the following probability:

p(D/6) = [1 p(x:/6)
=1

K
- Since p(x;/6) is modeled as a mixture (i.e., p(xi/8) = > p(x;/6,)xy) the above
k=1
expression can be written as:
n K
p(D/6) =1 2 p(Xi/6) 7w«
i=1 k=1

- In generdl, it is not possible to solve Ip(DI6)

and iterative schemes must be employed.

= 0 explicitly for the parameters
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Estimate the means of K Gaussiansusing EM (special case)

» Data generation process using mixtures

- Assume the data D is generated by a probability distribution that is a mixture of
k Gaussians.

k=2
- Each instance is generated using a two-step process:

(1) One of the K Gaussians is selected at random, with probabilities
Ty 7Ty e vy TTK -

(2) A single random instance x; is generated according to this selected distri-
bution.

- This process is repeated to generate a set of data points D.

« Assumptions (this example)
(1) 7y = mp =-++ = = (uniform distribution)
(2) Each Gaussian has the same variance o which is known.
- The problem is to estimate the means of the Gaussians 6 = (w4, s, .. -, ik)

Note: if we knew which Gaussian generated each datapoint, then it would be
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easy to fi nd the parameters for each Gaussian using ML.

* [nvolving hidden or unobserved variables
- We can think of the full description of each instance x; as
Yi=(Xi, z)=(Xi, Zi1, Zi2s -+ Zik)

where z isaclassindicator vector (hidden variable):

01 if x; was generated by j —th component

Z. = .
! BO otherwise

- Inthis case, x; are observable and z non-observable.

*Main stepsusing EM

- The EM algorithm searches for a ML hypothesis through the following iterative
scheme:

(1) Initialize the hypothesis 6°=(u, 113, ..., u%)

(2) Estimate the expected values of the hidden variables z; using the current
hypothesis 6'=(u, 45, ..., 1k

(3) Update the hypothesis 6" =(ui™, 152, ..., uidt) using the expected values
of the hidden variables from step 2.

- Repeat steps (2)-(3) until convergence.
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 Derivation of the Expectation-step
- We must derive an expression for Q(6; 8') = E, (In p(D,/6) / D, 8")

(1) Derivetheform of In p(D,/6):

n
p(Dy/e) = I p(yi/6)
- We can write p(y;/6) asfollows:
P(Yi/6) = p(x;, z/6) = p(Xi/z,6)p(z/6) = p(x/0;)x;
(assuming z;=1and z,=0for k # j)
- We can rewrite p(x;/6;)z; asfollows:
K ,

p(yi/6) = I p(xi/o)md ™

- Thus, p(D,/6) can be written as follows (s are al equal):
D,/6) = IEIIEI 16,)]
p(Dy/6) = 1 TT[ p(x/61)]

- We have assumed the form of p(x;/6y) to be Gaussian:

(X — i)’
Xi/6,) = —— exp[- ———=2], thus
POG/61) = —— epl= B
A . Zg — 1 _i < . - 2
ALPOGI001 = —— el > 24 = )’

which leads to the following form for p(D,/6):

n 1 1 K
D,/6) =T - 3 Zzy (X — )
p(D,/6) Epo exp| 252 kgl Zik(Xi = 1)l

- Let’'s compute now In p(D,/6):

—sin 2~ s - )
In p(Dy/0) = 30— =55 5 24 — )
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(2) Take the expected value of In p(D,/6):

1
E,(In p(D,/6)/Dy, 6" = E(Izl(In Ton 202

Z Zlk(XI #L)Z))) =

n 1
gl('n o 2 ] Z E(zi)(X = 1))

- E(zy) i1sjust the probability that the instance x; was generated by the k-th com-
ponent (i.e., E(Zik) = Z Zj; P(Z”) = P(Zik) = P(k/X,)
j

(X — 1)
552

2
ZeXp[ (x = ﬂ)]

exp[-

]

E(zy) =

 Derivation of the M aximization-step

- Maximize Q(; 8") = E, (In p(D,/6) / Dy, 8")

n
3 2 E(z)X%i
—= =0 or ut= 2

Ot 2 E(zy)
=



« Summary of the two steps

- Choose the number of components K

Initialization step
OR=Hi
Expectation step
_ 12
E(Zik)_ K O-_ T2
Zex [_( I :uj) ]
j=1 p 20'2
M aximization step
n
2 E(zi)Xi
t+4l _ i=1
Hy —
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Estimate the mixture parameters (general case)

- If we knew which sub-model was responsible for generating each datapoint,
then it would be easy to fi nd the ML parameters for each sub-model.

(1) Use EM to estimate which sub-model was responsible for generating each
datapoint.

(2) Find the ML parameters based on these estimates.

(3) Usethe new ML parameters to re-estimate the responsibilities and iterate.

* Involving hidden variables

- We do not know which instance x; was generated by which component (i.e., the
missing data are the label's showing which sub-model generated each datapoint).

- Augment each instance x; by the missing information:
Yi = (X, Z)
where z; isaclassindicator vector z = (z;, Zi,. .., Z):

- (1 if x; generated by j — th component
e EO otherwise

(x; are observable and z non-observable)
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 Derivation of the Expectation step
- We must derive an expression for Q(6; 8') = E, (In p(D,/6) / D, 8")

(1) Derivetheform of In p(D,/6):

n
p(Dy/e) = I p(yi/6)
- We can write p(y;/6) asfollows:

P(Yi/6) = p(x;, z/6) = p(Xi/z,6)p(z/6) = p(x/0;)x;
(assuming z;=1and z,=0for k # j)

- We can rewrite the above expression as follows:
K 5
pyi/6) = I p(xi/o)md ™
- Thus, p(D,/6) can be written as follows:
D,/6) = M 11 p(xi/6) ]
p(Dy/6) = i:1k:1[ P(Xi/6x) 7]

- We can now compute In p(D,/6)

In p(D,/6) = 3 %1 2, In (P(x/6)7,) =

n K

> ziIn (PO4/00) + 3 3 7 In ()

n
i=1 k=1 i=1 k=1
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(2) Take the expected value of In p(D,/6):

E(In p(Dy/6)/Dy, 6") = > g E(zIn (p(x/61) + 3 % E(zy)In (7i)

i=1 k=1 i=1 k=1

- E(zy) is just the probability that instance x; was generated by the k-th
component (i.e., E(Zik) = Z Zij P(Z”) = P(Zik) = P(k/X|)
i

pP(Xi/6}) 7

E(zik) =
> p(xi/6))x|
=

* Derivation of the Maximization step

K
- Maximize Q(6; ') subject to the constraint 3 7, =1:
k=

QE:60)=3 5 E@JIn (p(x/6) + 3 5 E@@In (1) + AL- 3 =
i=1 k=1 i=1 k=1 k=1

where A isthe Langrange multiplier.

oQ

aﬂ'k

n 1 1 n
=0 or SE(z)—-4=0 or ztt=Z=3 E(z)
i=1 Tk ni=z

K K n
(the constraint > 7, =1gives > > E(zy) = 1)
k=1 K

=1i=l
6Q’ 1 n
=0 or t+1 — E(z.)x
a,uk Hik nnﬁﬂ igl ( Ik) i
6Q’ 1 n
=0 or ZH]' = — E(z)(Xx — t+1 X — t+I\T
0%, k rm_lt<+1 El (Zi)(Xi My )(Xi Mg )
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e Summary of steps

- Choose the number of components K

Initialization step
OR=(kr Hits Zi)
Expectation step
p(xi/6%)
E(zy) =
Zl p(xi/6})7]
J_

Maximization step

1 _ 12
e =— 2 E(zw)
ni=z

1 n
t+ _
= —— 5 E(z)X
Hy nzr}jl i§1 (Zi) %

L S @) — a0 — )T

St =
nzt =

(4) If |6 - 6'| < &, stop; otherwise, go to step 2.



 Estimating the number of components K
- Use EM to obtain a sequence of parameter estimates for a range of values K
{9y, K=Kminse-os Kimax}
- The estimate of K is then defined as a minimizer of some cost function:
K = arg ming(C(Oy, K), K=Kins--,Kinax

- Most often, the cost function includes In p(D,/6) and an additional term whose
role is to penalize large values of K.

- Several criteria have been used, e.g., Minimum description length (MDL)

300 points



L agrange Optimization

- Suppose we want to maximize f (x) subject to some constraint expressed in the
form:

9(x)=0
- To fi nd the maximum, fi rst we form the Lagrangian function:
L(x,4) = £(x) +19(x)
(4 is called the Lagrange undetermined multiplier)

- Take the derivative and set it equal to zero:

oL(x, A) _ 0f(x) . 09(x) _

0X [1)'4 0X 0

- Solve the resulting equation for 4 and the value x that maximizes f (x)



