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Singular Value Decomposition (SVD)

* Definition
- Any realmxn matrix A can be decomposed uniquely as
A=UDV'

U is mxn and orthogonal (its columns are elgenors of AAT)
(AAT =UDVTVDUT =UD?UT)

V is nxn and orthogonal (its columns are elge::tors of AT A)
(ATA=VDUTUDVT = VD%V

D is nxn diagonal (non-ngetive real \alues calledingular values)

D =diag(oy, 02, . ..,0n) ordered so that; 2 o, 2 1n
(if o is a singular alue of A, it's gJuare is an elg@/alue ofA A)

-1fU =(up uy ---u,) andV = (vq v, - - - vp), then
n
A= ZO‘iUiV;r
i=1

(actually the sum goes from 1 towherer is the rank ofA)

* An example

M 2 10 06 10 6 [
= [ T: T = (]
A E‘z 3 25 thenAAT = ATA glo 17 10-
m! 2 1 |:|6 10 6|]

The eigemalues of AAT, AT A are:

oy 0 [28.860]
05,00 0
20 D014|Z|
e:0 0O 0 O

The eigemectors of AAT, AT A are:

[D. 4540 [10.542 [+0. 7070)
u1:v1=Eb.766%u2=v2=B—O.643%u3=v3=B o U

l
0. 454 10.542 0. 707



The &pansion ofAis
2 T
A= Z oiU;V;
i=1
Important: note that the second eig@ue is much smaller than the first; if
we nglect it from the abee simmation, we can represefty introducing
relatvely small errors only:

M.11 1.87 1.110
_ m
A Bl 87 3.15 1.877
.11 1.87 1.110

« Computing the rank using SVD

- The rank of a matrix is equal to the number of non-zero singalaey.

« Computing the inverse of a matrix using SVD
- A square matrixA is nonsingularff o; # O for all i

- If Aiis anxn nonsingular matrix, then itsvarse is gven by

Al=vDUT
. 1 1 1
whereD™! = diag(—, —,...,—)
01 O3 On

- If A'is singular or ill-conditioned, then we can use SVD to approximate
its inverse by the follving matrix:

Al=uDVvHt=vDUT

-1 D1/0'| |f Oj >t
Do =0 .
0 0 otherwise

(wheret is a small threshold)
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» The condition of a matrix
- Consider the system of linear equations
Ax=Db

if small changes i can lead to relately large changes in the solutio
then we callA ill-conditioned.

- The ratio gven below is related to thecondition of A and measures the
degree of singularity ofA (the lager this alue is, the closeA is to being
singular)

o1loy,

(largest @er smallest singular alues)

 Least Squares Solutions oinxn Systems
- Consider theover-determined system of linear equations
Ax =D, (Ais mxnwith m>n)
- Letr be the residualactor for somex:
r=Ax-b

- The \ectorx™ which yields the smallest possible residual is callézhsi-
squares solution (it is an approximate solution).

IIFl| = [JAX" = b|| < [|Ax = b]| for all xOR"
- Although a least-squares solutioway}s &ist, it might not be unique !

- The least-squares solutiorwith the smallest normy|| is unique and it is
given by:

AT Ax=ATborx=(ATAATb = A'b

Example:
[F11 2 ([ (00
Ok, O
[ O0="1 - [0
02 3. H g

2
02 10220 &g
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. 0148 .180 .246 03 [P 4920
X=AD=0 0 189 - 10780 0 Bo 7872
D- . . DE5D . D

« Computing A" using SVD

- If AT A is ill-conditioned or singularwe can use SVD to obtain a least
squares solution as folls:

x=A'b=VDyUTb

D]./O'i if o >t

Dot =
0 BO otherwise

(wheret is a small threshold)

 Least Squaes Solutions ohxn Systems

- If Alis ill-conditioned or singulaiSVD can gve ws a workable solution in
this case too:

x=A1b=VD;UTb
« Homogeneous Systems

- Supposeb=0, then the linear system is called homogeneous:
Ax=0
(assumeA is mxn and A= UDV')
- The minimum-norm solution in this casextsO (trivial solution).

- For homogeneous linear systems, the meaning of a least-squares solution
is modified by imposing the constraint:

IIx|]|=1
- This is a "constrained" optimization problem:

Miny e |[AX]|
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- The minimum-norm solution for homogeneous systems is nedyal
unique.

Special casgank(A)=n-1(m=n-1, 0,=0)

solution isx = av,, (ais a constant)

General casgank(A) =n—-k(m=n-K, o1 = =0, =0)

solution iISX = a;Vp—k+1 + @Vp—k-1 t - - - + &V, (&S IS a ©nstant)

witha?+a3+---+a2=1



