Singular Value Decomposition (SVD)

• Reading Assignments

- M. Petrou and P. Bosdogianni, *Image Processing: The Fundamentals*, John Wiley, 2000 (pp. 37-44 examples of SVD, hard copy).
- E. Trucco and A. Verri, *Introductory Techniques for 3D Computer Vision*, Prentice Hall (appendix 6, hard copy)
- K. Kastleman, *Digital Image Processing*, Prentice Hall, (Appendix 3: Mathematical Background, hard copy).
- F. Ham and I. Kostanic. *Principles of Neurocomputing for Science and Engineering*, Prentice Hall, (Appendix A: Mathematical Foundation for Neurocomputing, hard copy).

Singular Value Decomposition (SVD)

Definition

- Any real mxn matrix A can be decomposed uniquely as

$$A = UDV^T$$

U is $m \times n$ and orthogonal (its columns are eigenvectors of AA^T) $(AA^T = UDV^TVDU^T = UD^2U^T)$

V is $n \times n$ and orthogonal (its columns are eigenvectors of $A^T A$) $(A^T A = VDU^T UDV^T = VD^2 V^T)$

D is nxn diagonal (non-negative real values called singular values)

 $D = diag(\sigma_1, \sigma_2, \dots, \sigma_n)$ ordered so that $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n$ (if σ is a singular value of A, it's square is an eigenvalue of $A^T A$)

- If
$$U = (u_1 \ u_2 \cdots u_n)$$
 and $V = (v_1 \ v_2 \cdots v_n)$, then

$$A = \sum_{i=1}^{n} \sigma_i u_i v_i^T$$

(actually, the sum goes from 1 to r where r is the rank of A)

An example

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}, \text{ then } AA^T = A^T A = \begin{bmatrix} 6 & 10 & 6 \\ 10 & 17 & 10 \\ 6 & 10 & 6 \end{bmatrix}$$

The eigenvalues of AA^T , A^TA are:

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{bmatrix} = \begin{bmatrix} 28.86 \\ 0.14 \\ 0 \end{bmatrix}$$

The eigenvectors of AA^T , A^TA are:

$$u_1 = v_1 = \begin{bmatrix} 0.454 \\ 0.766 \\ 0.454 \end{bmatrix}, u_2 = v_2 = \begin{bmatrix} 0.542 \\ -0.643 \\ 0.542 \end{bmatrix}, u_3 = v_3 = \begin{bmatrix} -0.707 \\ 0 \\ -0.707 \end{bmatrix}$$

The expansion of A is

$$A = \sum_{i=1}^{2} \sigma_i u_i v_i^T$$

Important: note that the second eigenvalue is much smaller than the first; if we neglect it from the above summation, we can represent A by introducing relatively small errors only:

$$A = \begin{bmatrix} 1.11 & 1.87 & 1.11 \\ 1.87 & 3.15 & 1.87 \\ 1.11 & 1.87 & 1.11 \end{bmatrix}$$

Computing the rank using SVD

- The rank of a matrix is equal to the number of non-zero singular values.

Computing the inverse of a matrix using SVD

- A square matrix A is nonsingular iff $\sigma_i \neq 0$ for all i
- If A is a $n \times n$ nonsingular matrix, then its inverse is given by

$$A^{-1} = VD^{-1}U^{T}$$
 where $D^{-1} = diag(\frac{1}{\sigma_1}, \frac{1}{\sigma_2}, \dots, \frac{1}{\sigma_n})$

- If A is singular or ill-conditioned, then we can use SVD to approximate its inverse by the following matrix:

$$A^{-1} = (UDV^{T})^{-1} \approx VD_0^{-1}U^{T}$$

$$D_0^{-1} = \begin{cases} 1/\sigma_i & \text{if } \sigma_i > t \\ 0 & \text{otherwise} \end{cases}$$

(where *t* is a small threshold)

• The condition of a matrix

- Consider the system of linear equations

$$Ax = b$$

if small changes in b can lead to relatively large changes in the solution x, then we call A ill-conditioned.

- The ratio given below is related to the *condition* of A and measures the degree of singularity of A (the larger this value is, the closer A is to being singular)

$$\sigma_1/\sigma_n$$

(largest over smallest singular values)

• Least Squares Solutions of mxn Systems

- Consider the *over-determined* system of linear equations

$$Ax = b$$
, (A is mxn with $m>n$)

- Let r be the residual vector for some x:

$$r = Ax - b$$

- The vector x^* which yields the smallest possible residual is called a *least-squares* solution (it is an approximate solution).

$$||r|| = ||Ax^* - b|| \le ||Ax - b||$$
 for all $x \in \mathbb{R}^n$

- Although a least-squares solution always exist, it might not be unique!
- The least-squares solution x with the smallest norm ||x|| is unique and it is given by:

$$A^{T}Ax = A^{T}b$$
 or $x = (A^{T}A)^{-1}A^{T}b = A^{+}b$

Example:

$$\begin{bmatrix} -11 & 2 \\ 2 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 7 \\ 5 \end{bmatrix}$$

$$x = A^{+}b = \begin{bmatrix} -.148 & .180 & .246 \\ .164 & .189 & -.107 \end{bmatrix} \begin{bmatrix} 0 \\ 7 \\ 5 \end{bmatrix} = \begin{bmatrix} 2.492 \\ 0.787 \end{bmatrix}$$

• Computing A⁺ using SVD

- If $A^T A$ is ill-conditioned or singular, we can use SVD to obtain a least squares solution as follows:

$$x = A^+ b \approx V D_0^{-1} U^T b$$

$$D_0^{-1} = \begin{cases} 1/\sigma_i & \text{if } \sigma_i > t \\ 0 & \text{otherwise} \end{cases}$$

(where *t* is a small threshold)

Least Squares Solutions of nxn Systems

- If A is ill-conditioned or singular, SVD can give us a workable solution in this case too:

$$x = A^{-1}b \approx VD_0^{-1}U^Tb$$

• Homogeneous Systems

- Suppose b=0, then the linear system is called homogeneous:

$$Ax = 0$$

(assume A is $m \times n$ and $A = UDV^T$)

- The minimum-norm solution in this case is x=0 (trivial solution).
- For homogeneous linear systems, the meaning of a least-squares solution is modified by imposing the constraint:

$$||x|| = 1$$

- This is a "constrained" optimization problem:

$$\min_{||x||=1} ||Ax||$$

- The minimum-norm solution for homogeneous systems is $\underline{\text{not}}$ always unique.

Special case:
$$rank(A) = n - 1 \ (m \ge n - 1, \ \sigma_n = 0)$$

solution is $x = av_n$ (a is a constant)

General case:
$$rank(A) = n - k$$
 $(m \ge n - k, \sigma_{n-k+1} = \dots = \sigma_n = 0)$
solution is $x = a_1 v_{n-k+1} + a_2 v_{n-k-1} + \dots + a_k v_n$ $(a_i$ s is a constant)
with $a_1^2 + a_2^2 + \dots + a_k^2 = 1$