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Support Vector Machines (SVM)

• Classification approaches (review)

- Giv en a set of training patterns from each class, the objective is to establish
decision boundaries in the feature space which separate patterns belonging to
different classes.

- In the statistical approach, the decision boundaries are determined by the prob-
ability distributions of the patterns belonging to each class, which must either
be specified or learned.

- In the discriminant-based approach, the decision boundary is constructed
explicitly (i.e., knowledge of the form of the probability distribution is not
required):

(1) First a parametric form of the decision boundary (e.g., linear or
quadratic) is specified.

(2) The "best" decision boundary of the specified form is found based on
the classification of the training patterns.

• Linear discriminant functions

- The problem of finding a discriminant function can be formulated as a prob-
lem of minimizing a criterion function (i.e., the sample risk or the training
error).

- A linear discriminant function can be written as:

g(x) = wt x + w0

- Assuming two classes, classification is based on the following rule:

Decide ω1 if g(x)>0 and ω2 if g(x)<0
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- The decision boundary (i.e., a hyperplane) is defined by the equation g(x) = 0.

• Distance from a point x to the hyperplane

- Let us express x as follows:

x = x p + r
w

||w||

- Let’s substitute the above expression in g(x)

g(x) = wt x + w0 = wt(x p + r
w

||w||
) + w0 = wt x p + r

wt w

||w||
+ w0 = r ||w||

since wt x p + w0 = 0 and wt w = ||w||2.

- The above expression gives the distance of x from the hyperplane:

r = g(x)/||w||

- The distance of the origin from the hyperplanes is

w0/||w||
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• Various types of discriminant functions

Linear discriminant:

g(x) = w0 +
d

i=1
Σ xi wi

Quadratic discriminant: obtained by adding terms corresponding to products of
pairs of components of x

g(x) = w0 +
d

i=1
Σ wi xi +

d

i=1
Σ

d

j=1
Σ xi x j wij

Polynomial discriminant: obtained by adding terms such as xi x j xk wijk .

Generalized discriminant:

g(x) =
d̂

i=0
Σ ai yi(x) or g(x) = at y

where a is a d̂-dimensional weight vector and yi(x) can be arbitrary functions
of x (called φ () functions, i.e., yi = φ i(x)).

(note that w0 has been absorbed in a, that is, a0=w0 and y0=1)
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• Generalized discriminant functions

- Selecting the yi(x) appropriately and letting d̂ be sufficiently large, any dis-
criminant function can be approximated.

- The resulting discriminant function is not linear in x but it is linear in y.

- The d̂ functions yi(x) simply map points in d-dimensional x-space to points
in d̂-dimensional y-space.

Example: Consider the following quadratic discriminant function:

g(x) = a1 + a2 x + a3 x2 with y =




1

x

x2





* Maps a line in x-space to a parabola in y-space.

* The plane g(x) = 0 or at y = 0 defined by a = (−1, 1, 2) divides the y-space
into two regions.

* Note that the corresponding region R1 in the x-space is not simply connected.

- The main disadvantages of the generalized discriminant are:

(1) It is computationally intensive to compute.
(2) Lots of training examples are required to determine a if d̂ is very large
(curse of dimensionality).
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• Solution region

- In general, the solution vector a is not unique (any vector in the solution
region satisfies, e.g., g(x) = at y > 0 for x ∈ ω1 and g(x) = at y < 0 for x ∈ ω2)

- Additional constraints are necessary to define a uniquely.

find a (i) find the unit-length weight vector that maximizes the minimum
distance from the training examples to the separating plane).

(ii) find a minimum length weight vector satisfying g(x) = at y ≥ b where b
is a positive constant.

(the new solution region lies inside the previous solution region, being insu-
lated by the old boundaries by the distance b/||yi ||)
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• Learning and risk minimization

- The aim of any learning machine is to estimate g(x) from a finite set of obser-
vations by minimizing the empirical risk (i.e., some kind of an error function).

Example: The least-squares method minimizes the empirical risk shown below:

Remp(w, w0) =
1

n

n

k=1
Σ [zk − g(xk , w, w0)]2

where zk is the desired classification for pattern k (e.g., zk = ±1 according to
whether pattern k is in ω1 or ω2)

- The conventional empirical risk minimization over training data does not
imply good generalization to novel test data.

(1) There could be a number of different functions which all give a good
approximation to the training data set.

(2) It is difficult to determine a function which best captures the the true
underlying structure of the data distribution.
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• Structural risk minimization

- To guarantee an "upper bound on generalization error", statistical learning the-
ory says that the capacity of the learned functions must be controlled (i.e., func-
tions with large capacity are able to represent many dichotomies for a given
data set).

- Structural risk minimization aims to address this problem and provides a well
defined quantitative measure of the capacity of a learned function to generalize
over unknown test data.

- The Vapnik-Chervonenkis (VC) dimension has been adopted as one of the
most popular measures for such a capacity.

- According to the structural risk minimization principle, a function that
describes the training data well (i.e., minimizes the empirical risk) and belongs
to a set of functions with lowest VC dimension will generalize well regardless
of the dimensionality of the input space.

errtrue ≤ errtraining √ VC(log(2m/VC) + 1) − log(δ /4)

n

with probability (1 − δ ) (Vapnik, 1995)

(Structural Minimization Principle)
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• Optimal hyperplane and support vectors

- It has been shown (Vapnik, 1995) that maximizing the margin distance
between the classes is equivalent to minimizing the VC dimension.

- This optimal hyperplane is the one giving the largest margin of separation
between the classes (i.e., bisects the shortest line between the convex hulls of
the two classes).

- A relatively small subset of the patterns (support vectors) lie exactly on the
margin (the closest patterns to the hyperplane and the most difficult to classify).

- The optimal hyperplane is completely determined by these support vectors.
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• Overview of SVM

- SVM are primarily two-class classifiers with the distinct characteristic that
they aim to find the optimal hyperplane such that the expected generalization
error (i.e., error for the unseen test patterns) is minimized.

- Instead of directly minimizing the empirical risk calculated from the training
data, SVMs perform structural risk minimization to achieve good generalization
(i.e., minimize an upper bound on expected generalization error).

- The optimization criterion is the width of the margin between the classes (i.e.,
the empty area around the decision boundary defined by the distance to the
nearest training patterns).

• Positives/Negatives

- (Pos) Appears to avoid overfitting in high dimensional spaces and generalize
well using a small training set (the complexity of SVM is characterized by the
number of support vectors rather than the dimensionality of the transformed
space -- no formal theory to justify this).

- (Pos) Global optimization method, no local optima (SVM are based on exact
optimization, not approximate methods).

- (Neg) Applying trained classifiers can be expensive.

• SVM training

- The goal is to find the separating plane with the largest margin (i.e., find the
support vectors).

- Training a SVM is equivalent to solving a quadratic programming problem
with linear constraints (the number of variables is equal to the number of train-
ing data).
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• Linear SVM: The separable case

- As we hav e seen, a linear discriminant satisfies the following equation:

g(xk) = wt xk + w0 =




> 0

< 0

if xk ∈ ω1

if xk ∈ ω2
, k = 1, 2, . . , n

- For each pattern xk , k = 1, 2, . . , n let’s define zk = ±1, according to whether
pattern k is in ω1 or ω2, then we can combine the above inequalities into one set
of inequalities:

zk g(xk) > 0 or zk(wt xk + w0) > 0, k = 1, 2, . . , n

- Since the data is separable, there exist a hyperplane that separates the positive
from the negative examples; the distance from a point xk to the hyperplane (i.e.,
g(xk)/||w||) should satisfy the constrain:

zk g(xk)

||w||
≥ b, b > 0 (margin).

- To ensure uniqueness, we impose the constraint b ||w|| = 1 (i.e., the solution
vector w can be scaled arbitrarily and still preserve the above constrain). -
Using the above constraint, g(x) should satisfy the following inequality:

zk g(xk) ≥ 1, with b =
1

||w||
(1) (margin)

- The goal of the SVM is to maximize 1/||w|| subject to the constraint imposed
by Eq. (1), or, equivalently:

Problem 1: Minimize
1

2
||w||2

subject to zk(wt xk + w0) ≥ 1, k = 1, 2, . . , n
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• Solving "Problem 1"

- First, we form the Lagrange function:

L(w, w0, λ) =
1

2
||w||2 −

n

k=1
Σ λ k[zk(wt xk + w0) − 1], λ k ≥ 0

- We want to minimize L() with respect to (w, w0) and maximize it with respect
to λ k (i.e., determine the saddle point of L()).

- We can reformulate "Problem 1" as maximizing the following problem (dual
problem):

Problem 2: Maximize
n

k=1
Σ λ k −

1

2

n

k, j
Σ λ k λ j zk z j x t

j xk

subject to
n

k=1
Σ zk λ k = 0, λ k ≥ 0, k = 1, 2, . . , n

- During optimization, the values of all λ k become 0, except for the support vec-
tors.

- The solution for w is given as a linear combination of the support vectors:

w =
n

k=1
Σ zk λ k xk (λ k ≠ 0 only if xk is a support vector)

- The solution for w0 can be determined using any support vector xk :

wt xk + w0 = zk or w0 = zk − wt xk

- The decision function for the optimal hyperplane is given by

g(x) =
n

k=1
Σ zk λ k(x t xk) + w0 or g(x) =

n

k=1
Σ zk λ k(x. xk) + w0

- The decision rule is

decide ω1 if g(x)>0 and ω2 if g(x)<0
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• Linear SVM: The non-separable case

- When the data is not linearly separable, we can either use the non-linear SVM
(see next section) or modify the problem to allow misclassified data by intro-
ducing error variables ψ k :

Problem 3: Minimize
1

2
||w||2 + c

n

k=1
Σ ψ k

subject to zk(wt xk + w0) ≥ 1 − ψ k , k = 1, 2, . . , n

- The result is a hyperplane that minimizes the sum of errors ψ k while maximiz-
ing the margin for the correctly classified data.

- The constant c controls the tradeoff between margin and misclassification
errors (aims to prevent outliers from affecting the optimal hyperplane).

- We can reformulate "Problem 3" as maximizing the following problem (dual
problem):

Problem 4: Maximize
n

k=1
Σ λ k −

1

2

n

k, j
Σ λ k λ j zk z j x t

j xk

subject to
n

k=1
Σ zk λ k = 0 and 0 ≤ λ k ≤ c, k = 1, 2, . . , n

where the use of error variables ψ k constraint the range of the Lagrange coeffi-
cients from 0 to c.
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• Nonlinear SVM

- Extending the above concepts to the non-linear vase relies on preprocessing
the data to represent them in a much higher dimensionality space.

xk → Φ(xk)

- Using an appropriate nonlinear mapping Φ() to a sufficiently high dimensional
space, data from two classes can always be separated by a hyperplane.

- The decision function for the optimal hyperplane is given by

g(x) =
n

k=1
Σ zk λ k(Φ(x). Φ(xk)) + w0

- The decision rule is the same as before:

decide ω1 if g(x)>0 and ω2 if g(x)<0

- The disadvantage of this approach is that the mapping xk → Φ(xk) might be
very computationally intensive to compute.
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• The kernel trick

- If there were a "kernel function" K (x, xk) = Φ(x). Φ(xk we would only need
to use K () and would never need to explicitly even know what Φ() is.

- The decision function for the optimal hyperplane is then given by

g(x) =
n

k=1
Σ zk λ k K (x, xk) + w0

Example: consider x ∈ R2, Φ(x) =





x2
1

√2x1 x2

x2
2






∈ R3, and K (x, y) = (x. y)2

(x. y)2 = (x1 y1 + x2 y2)2

Φ(x). Φ(y) = x2
1 y2

1 + 2x1 y1 x2 y2 + x2
2 y2

2 = (x1 y1 + x2 y2)2

- Note that neither the mapping Φ() nor the high dimensional space are unique.

Φ(x) =
1

√2






(x2
1 − x2

2)

2x1 x2

(x2
1 + x2

2)






∈ R3 or Φ(x) =







x2
1

x1 x2

x1 x2

x2
2







∈ R4

• Suitable kernel functions

- Kernel functions which can be expressed as a dot product in some space sat-
isfy the Mercer’s condition (see Burges’ paper).

- The Mercer’s condition does not tell us how to construct Φ() or even what the
high dimensional space is.

- By using different kernel functions, SVM implement a variety of learning
machines, some of which coincide with classical architectures (see below).

polynomial: K (x, xk) = (x. xk)d

sigmoidal: K (x, xk) = tanh(vk(x. xk) + ck)
(corresponds to a two-layer sigmoidal neural network)
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Gaussian: K (x, xk) = exp(
−||x − xk ||2

2σ 2
k

)

(corresponds to a radial basis function (RBF) neural network)

- The kernel trick implies that the computation remains feasible even if the fea-
ture space has very high dimensionality.

* It can be shown for the case of polynomial kernels that the data is

mapped to a space of dimension h = 


p + d − 1

d



where p is the original

dimensionality.

* Suppose p=256 and d = 4, then h=183,181,376 !!

* A dot product in the high dimensional space would require O(h) compu-
tations while the kernel requires only O(p) computations.

• An example

- Consider the XOR problem which is non-linearly separable:

(1,1) and (-1, -1) belong to ω1

(1,-1) and (-1, 1) belong to ω2

- Consider the following mapping (many other mappings could be used too):

y = Φ(x) =










x2
1

√2x1

√2x1 x2

√2x2

x2
2

1









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- The above transformation maps xk to a 6-dimensional space:

y1 = Φ(x1) =









1

√2

√2

√2

1

1









y3 = Φ(x3) =









1

−√2

√2

−√2

1

1









y2 = Φ(x2) =









1

√2

−√2

−√2

1

1









y4 = Φ(x4) =









1

−√2

−√2

√2

1

1









- We seek to maximize:

4

k=1
Σ λ k −

1

2

4

k, j
Σ λ k λ j zk z jΦ(x t

j)Φ(xk)

subject to
4

k=1
Σ zk λ k = 0, λ k ≥ 0, k = 1, 2, . . , 4
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- The solution turns out to be:

λ1 = λ2 = λ3 = λ4 =
1

8

- Since all λ k ≠ 0, all xk are support vectors !

- We can now compute w:

w =
4

k=1
Σ zk λ kΦ(xk) =

1

8









1

√2

√2

√2

1

1









−
1

8









1

√2

−√2

−√2

1

1









+
1

8









1

−√2

√2

−√2

1

1









−
1

8









1

−√2

−√2

√2

1

1









=
1

2









0

0

√2

0

0

0









- The solution for w0 can be determined using any support vector, e.g., x1:

wtΦ(x1) + w0 = z1 or w0 = z1 − wt x1 = 0

- The margin b is computed as follows:

b =
1

||w||
= √2

- The decision function is the following:

g(x) = wtΦ(x) + w0 = x1 x2

where we decide ω1 if g(x) > 0 and ω2 if g(x) < 0

• Limitations of SVM

- The biggest limitation of SVM lies in the choice of the kernel (the best choice
of kernel for a given problem is still a research problem).

- A second limitation is speed and size (mostly in training - for large training
sets, it typically selects a small number of support vectors, therby minimizing
the computational requirements during testing).

- The optimal design for multiclass SVM classifiers is also a research area.


