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a b s t r a c t

Hand-based verification/identification represent a key biometric technology with a wide range of poten-
tial applications both in industry and government. Traditionally, hand-based verification and identifica-
tion systems exploit information from the whole hand for authentication or recognition purposes. To
account for hand and finger motion, guidance pegs are used to fix the position and orientation of the
hand. In this paper, we propose a component-based approach to hand-based verification and identifica-
tion which improves both accuracy and robustness as well as ease of use due to avoiding pegs. Our
approach accounts for hand and finger motion by decomposing the hand silhouette in different regions
corresponding to the back of the palm and the fingers. To improve accuracy and robustness, verification/
recognition is performed by fusing information from different parts of the hand. The proposed approach
operates on 2D images acquired by placing the hand on a flat lighting table and does not require using
guidance pegs or extracting any landmark points on the hand. To decompose the silhouette of the hand
in different regions, we have devised a robust methodology based on an iterative morphological filtering
scheme. To capture the geometry of the back of the palm and the fingers, we employ region descriptors
based on high-order Zernike moments which are computed using an efficient methodology. The proposed
approach has been evaluated both for verification and recognition purposes on a database of 101 subjects
with 10 images per subject, illustrating high accuracy and robustness. Comparisons with related
approaches involving the use of the whole hand or different parts of the hand illustrate the superiority
of the proposed approach. Qualitative and quantitative comparisons with state-of-the-art approaches
indicate that the proposed approach has comparable or better accuracy.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Recently, there has been increased interest in developing bio-
metrics-based verification and identification systems which has
led to intensive research in fingerprint, face, hand, ear, and iris
authentication and recognition. Each biometric has its own
strength and weakness depending on the specific application and
its requirements. Hand-based biometrics is among the oldest live
biometrics-based authentication modalities. The existence of sev-
eral hand-based authentication commercial systems and patents
indicate the effectiveness of this type of biometric. Although
hand-based live authentication has a long history and a consider-
able market share [1], most studies addressing enhancements of
this technology are rather recent [2]. Increases in computing power
and advances in computer vision and pattern recognition are ex-
pected to enable the implementation of more accurate, robust,
and easier to use systems. Removal of pegs, to improve conve-

nience, and use of more powerful features to represent the shape
of the hand represent promising research directions in this area.

The geometry of the hand contains relatively invariant features
of an individual, however, geometric features of the hand (e.g., fin-
ger length/width, area/size of the palm) are not as distinctive as
fingerprint or iris features. Therefore, hand-based biometric sys-
tems have been employed mostly in small-scale person authenti-
cation applications. In this study, we demonstrate the application
of hand-based biometrics for identification purposes as well. The
main difference between verification and identification is that in
the case of verification, an unknown subject is compared against
a specific subject in the database to verify his/her identity (i.e.,
‘‘Am I who I claim”). In the case of identification, an unknown sub-
ject is compared against all the subjects in the database to estab-
lish his/her identity (i.e., ‘‘Who am I?”). Therefore, identification
can be thought as verifying an unknown subject against all sub-
jects in the database. As a result, identification is more time con-
suming and prone to errors.

There are several reasons for developing hand-based verifica-
tion/identification systems. First, the shape of the hand can be
easily captured in a relatively user friendly manner by using
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conventional CCD cameras. Second, this technology is more accept-
able by the public in daily life mainly because it lacks a close con-
nection to forensic applications. Finally, there has been some
interest lately in fusing different biometrics to increase system
performance [3,4]. The ease of use and acceptability of hand-based
biometrics make hand shape a good candidate in these heteroge-
neous systems.

In this paper, we propose a novel, peg-free approach to hand-
based verification and identification which does not require
extracting any landmark points on the hand and it is not sensitive
to hand and finger motion. The proposed approach operates on 2D
hand images acquired by placing the hand on a planar lighting ta-
ble without any guidance pegs. There are several important ideas
behind the proposed approach. First, to deal with the issue of hand
and finger motion, we decompose the silhouette of the hand in dif-
ferent regions corresponding to the back of the palm and fingers.
This is performed using a robust methodology based on an iterative
morphological filtering scheme. To avoid touching fingers and sim-
plify segmentation, subjects are required to stretch their hand
prior to placing it on the lighting table. No other restrictions are
imposed on the subjects. Second, in contrast to traditional ap-
proaches that represent the shape of the explicitly using hand-
crafted geometrical measurements, we represent the geometry of
each part of the hand implicitly using high-order Zernike moments
[5]. Finally, to improve verification/identification accuracy and
robustness, we fuse information from different parts of the hand.
It is worth mentioning that the use of high-order moments is not
practical for many applications due to their noise sensitivity. How-
ever, this is not an issue in the context of our application since we
use a robust image acquisition process which provides very high
quality hand images as shown in Section 3.

Moments have been used before in a wide range of applications
in image analysis, and object recognition [6]. In the area of biomet-
rics, preliminary results have been reported using various types of
moments (e.g., geometric, Zernike, pseudo-Zernike, and Legendre
moments) for palmprint verification [7,8]. Zernike moments are
quite attractive for representing the geometry of the hand due to
having minimal redundancy (i.e., employ orthogonal basis func-
tions [9]), providing invariance to translation, rotation, and scale,
and demonstrating robustness to noise [6]. In most applications,
the use of Zernike moments has been limited to low-orders only
or small low-resolution images due to high computational require-
ments and lack of accuracy due to numerical errors. Capturing the
shape of the hand in sufficient detail, however, would require com-
puting moments of rather high-orders. Although there have been
several efforts to reduce computational complexity by employing
quantized polar coordinate systems, such transformations have
an effect on accuracy. In this study, we employ an improved algo-
rithm, proposed in one of our earlier studies [10], which can speed
up the computation of high-order Zernike moments without sacri-
ficing accuracy. To keep computational complexity low, we avoid
redundant computations by detecting common terms and using
look-up tables. To preserve accuracy, we avoid any coordinate
transformations and employ arbitrary precision arithmetic.

Fusing information from different biometric modalities (i.e.,
face, fingerprint, hand) has received considerable attention lately,
however, fusing information from different parts of the same bio-
metric has been considered to a lesser extent. For example, Ross
and Govindarajan [11] have reported a feature-level fusion scheme
which combines hand and face features. Kumar and Zhang [12]
have investigated feature selection of hand shape and palm print
features. Cheung et al. [13] have proposed a two-level fusion strat-
egy for multimodal biometric verification. Jiang and Su [14] have
proposed fusing faces and fingerprints to improve verification
accuracy. Our approach is mostly related to component-based ap-
proaches in object detection and recognition [15,16], face detec-

tion/recognition [17], and person detection [18]. The key idea
behind them is representing objects in terms of their parts and
geometrical relationships. Among them, the most relevant ap-
proach to ours is the face recognition approach reported in [17].
In that study, information from different parts of the face was fused
at the feature-level using Support Vector Machines (SVMs) [19].
Here, we report results using several different fusion strategies
including feature-level, score-level and decision-level. Earlier ver-
sions of our work have appeared in [20–22].

The rest of the paper is organized as follows: Section 2 contains
a review of hand-based verification and identification systems. An
overview of the proposed approach is presented in Section 3. Sec-
tion 4.2 reviews Zernike moments and presents an efficient algo-
rithm for computing high-order Zernike moments. Section 5
presents our methodology for separating the hand from the arm
and decomposing the hand silhouette in different parts corre-
sponding to the back of the palm and the fingers. Representing
the geometry of the shape of the palm and the fingers using Zer-
nike moments is discussed in Section 6. Section 7 presents the fu-
sion strategies investigated in this study. Experimental results and
comparisons are presented in Section 8. Finally, Section 9 provides
our conclusions and directions for future work.

2. Review of hand-based biometrics

The majority of hand-based biometric systems employ geomet-
ric measurements and are based on research limited to consider-
ably old patents and commercial products [23]. In these systems,
users are asked to place their hand on a flat surface and align it,
with the help of some guidance pegs. The alignment operation sim-
plifies feature extraction and allows for high processing speeds. A
mirror is usually used to obtain a side view of the hand using a sin-
gle camera. In most cases, a few hand-crafted geometric features
(e.g., length, width and height of the fingers, thickness of the hand,
aspect ratio of fingers and palm, etc.) are extracted, making it pos-
sible to construct a small template (i.e., 9 bytes in some commer-
cial systems).

Removal of pegs, to improve convenience, and use of more pow-
erful feature extraction techniques to capture the shape of the
hand more accurately represent promising research directions in
this area. Several studies have reported that peg-based alignment
is not very satisfactory and represents in some cases a considerable
source of failure [24,25]. Although peg removal provides a solution
to reduce user inconvenience, it also raises more challenging
research issues due to the increase in intra-class variance. Never-
theless, most recent studies have concentrated on the design of
peg-free systems.

Extracting extremities of the hand contour, such as finger val-
leys and finger tips, is usually the first processing step in these sys-
tems. In peg-free systems, fingers are not guaranteed to be at the
same position and orientation at different acquisition times; there-
fore they need to be segmented and identified in the input images.
Analysis of the silhouette contour to locate fingertips and palm–
finger intersections, which basically corresponds to curvature local
maxima, provides an effective solution to the segmentation prob-
lem [26,27]. Once the fingers have been segmented, geometric fea-
tures such as finger length and width can be measured at
predefined points along the finger axes [4,27–29].

Using geometric features helps to reduce storage requirements
but can not represent hand shape in detail. Moreover, accurate
localization of various landmark points on the fingers is not a
straightforward task. Some studies have introduced new features
capturing the full finger shape. Jain and Duta [30] have used the sil-
houette contour of the fingers and an iterative closest point (ICP)
alignment algorithm to compute a shape distance which is used
as a measure of similarity. Ma et al. [31] have followed a similar
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approach using B-Spline curves. Xioang et. al. [26] introduced a
semi-geometric approach by extracting geometric features after
aligning the fingers which are represented using ellipses. Kumar
et. al [32] used palmprint and hand geometric features where the
extremities of the hand contour were used to measure finger
length and palm width. Recently, Yoruk et. al. [33] introduced a
more accurate and detailed representation of the hand using the
Hausdorff distance of the hand contour, and Independent Compo-
nent Analysis (ICA)[19]. Their approach requires registering the sil-
houettes of the hand images using the locations of fingertips and
valleys. This study is among a few studies where hand-based bio-
metrics have been demonstrated both for verification and recogni-
tion purposes.

A marginally different feature extraction approach, which in-
volves reconstructing the 3D surface of the hand, was proposed
in [34]. Using a range sensor to reconstruct the dorsal part of the
hand, local shape index values of the fingers were used as features
in matching. In a related study, Lay [35] projected a parallel grating
onto the dorsal part of the hand to extract features that indirectly
capture 3D shape information. Use of multiple enrollment tem-
plates is an effective method to improve the recognition accuracy
of any biometric system. In the hand-based biometrics domain,
using multiple enrollment templates is vital part of any system
mainly due to the lower distinctiveness of hand shape. User-spe-
cific statistical models, such Mixtures of Gaussians [36,37], have
shown to improve system accuracy [27,29,36,37].

3. System overview

Fig. 1 shows the main stages of the proposed system. Our image
acquisition system consists of a VGA resolution CCD camera and a
flat lighting table, which forms the surface for placing the hand.
The direction of the camera is perpendicular to the lighting table

as shown in Fig. 2(a). The camera has been calibrated to remove
lens distortion. In practical settings, both the camera and the light-
ing table can be placed inside a box to completely eliminate light
interferences from the surrounding environment. Also, the whole
system can be made much smaller than the one shown in
Fig. 2(a) which is very bulky and was built for experimentation rea-
sons only. Nevertheless, the experimental set up in our laboratory,
shown in Fig. 2(a), provides high quality images without requiring
us to put much effort to control the environment. It should be
mentioned that capturing high quality hand images is critical for

Fig. 1. Main stages of the proposed system.

Fig. 2. (a) Image acquisition system, (b and c) images of the same hand acquired by
the system.
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our application as it allows us to use high-order Zernike moments
without worrying about noise sensitivity issues.

When users place their hand on the surface of the lighting ta-
ble, an almost binary, shadow and noise free, silhouette of the
hand is obtained as shown in Fig. 2(b) and (c). During acquisition,
subjects are required to stretch their hand and place it inside a
rectangular region marked on the surface of the table. This is to
avoid touching fingers, ensure the visibility of the whole hand,
and avoid perspective distortions. No restrictions were imposed
on the orientation of the hand. The image acquired is then bina-
rized and goes through the segmentation module. During seg-
mentation, the arm is separated from the hand and discarded
from further processing. Then, the hand is further processed to
segment the palm and the fingers. Feature extraction is per-
formed by computing the Zernike moments of each part of the
hand separately. The resulting representation is invariant to
translation, rotation and scaling. Verification/identification is per-
formed by fusing information from different parts of the hand.
We have experimented with different fusion strategies including
feature-level, score-level, and decision-level fusion. We employ
multiple enrollment templates per subject and compute similarity
scores using the minimum distance between a query image and
the templates of the subjects.

Next, we present the algorithm adopted in this study for the
efficient computation of high-order moments. Then, we describe
in detail each stage of the proposed system.

4. Efficient computation of high-order zernike moments

4.1. Motivation and issues

The majority of peg-free systems extract a number of landmark
points on the hand (e.g., finger joints) and represent hand shape by
explicitly measuring certain geometric features. Alternatively, one
can imagine utilizing more general shape descriptors to provide a
richer representation of the shape of the hand, replacing the con-
ventional hand-crafted geometric features. In this study, we pro-
pose representing the geometry of the hand implicitly using
Zernike moments. Zernike moments have the potential to provide
a more powerful representation of the shape of the hand, however,
capturing important shape details for verification/identification
purposes would require computing high-order moments. This
bring up the issues of speed and accuracy.

Although there exist some fast algorithms that rely on approx-
imate polar coordinate transformations [38–40], they do not yield
satisfactory results in the context of our application due to lack of
accuracy. To deal with these issues, we have adopted an efficient
algorithm that keeps computational complexity low without sacri-
ficing accuracy. To preserve accuracy, our algorithm avoids any
form of coordinate transformation by using arbitrary precision
arithmetic. To reduce computational complexity, it avoids recom-
puting common terms and employs look-up tables.

4.2. Review of zernike moments

Zernike moments are based on a set of complex polynomials
that form a complete orthogonal set over the interior of the unit
circle [5]. They are defined as the projection of the image on these
orthogonal basis functions. Specifically, the basis functions
Vn;mðx; yÞ are given by

Vn;mðx; yÞ ¼ Vn;mðq; hÞ ¼ Rn;mðqÞejmh ð1Þ

where n is a non-negative integer, m is a non-zero integer subject to
the constraints n� jmj is even and jmj < n, q is the length of the
vector from origin to ðx; yÞ, h is the angle between the vector q

and the x-axis in a counter clockwise direction, and Rn;mðqÞ is the
Zernike radial polynomial which is defined as follows:

Rn;mðqÞ ¼
Xn

k¼jmj;n�k¼even

ð�1Þ
n�k

2 nþk
2 !

n�k
2 ! kþm

2 ! k�m
2 !

qk ¼
Xn

k¼jmj;n�k¼even

bn;m;kqk ð2Þ

Note that Rn;mðqÞ ¼ Rn;�mðqÞ. The basis functions in Eq. (1) are
orthogonal, therefore, satisfying the constraint:

nþ 1
p

Z Z
x2þy261

Vn;mðx; yÞV�p;qðx; yÞ ¼ dn;pdm;q ð3Þ

where

da;b ¼
1 if a ¼ b

0 otherwise

(
ð4Þ

The Zernike moment of order n with repetition m for a digital
image function f ðx; yÞ is given by [41]:

Zn;m ¼
nþ 1

p
X X

x2þy261

f ðx; yÞV�n;mðx; yÞ ð5Þ

where V�n;mðx; yÞ is the complex conjugate of Vn;mðx; yÞ. To compute
the Zernike moments of a given image, the center of mass of the ob-
ject is taken to be the origin. The magnitude of the Zernike mo-
ments is rotation invariant by its definition (see Eq. (5)). Taking
the center of mass of the object as the origin of the coordinate sys-
tem makes them translation invariant as well. Additionally, to pro-
vide scale invariance, the object is scaled inside the unit circle.

The function f ðx; yÞ can then be reconstructed by the following
expression [41]:

~f ðx; yÞ ¼
XN

n¼0

Cn;0

2
Rn;0ðqÞ þ

XN

n¼1

X
m>0

ðCn;mcosmhþ Sn;msinmhÞRn;mðqÞ

ð6Þ

where N is the maximum order of Zernike moments used, while Cn;m

and Sn;m denote the real and imaginary parts of Zn;m, respectively.

4.3. Computation of high-order zernike moments

A method to improve the speed of Zernike moments computa-
tion involves using a quantized polar coordinate system. In [38],
Mukundan and Ramakrishnan proposed a recursive algorithm for
the computation of Zernike and Legendre moments using polar
coordinates. In [39], Belkasim et al. introduced a different recursive
algorithm using radial and angular expansions of Zernike orthonor-
mal polynomials. For an M �M image, the angles were quantized
to 4M and the radii were quantized to M levels. In a more recent
study, Gu et al. [40] employed the ‘‘square to circle” transformation
of Mukundan and Ramakrishnan [38] and more efficient recursive
relationships to develop an even faster algorithm, however, its
accuracy was still limited to that of [38] due to the quantization
step in the coordinate transformation.

A side effect of quantization is that errors are introduced in the
computation of high-order Zernike moments (see Section 4.4). In
this work, we have adopted a novel algorithm which avoids using
any quantization, therefore, the computation of the moments is as
accurate as in the traditional approach (i.e., no approximations). To
save computation time, the improved algorithm finds the terms
that occur repeatedly in various orders and avoids recomputing
them. Additional computations can be saved using a look-up table.
To ensure high accuracy, it uses arbitrary precision arithmetic.

Specifically, by substituting Eqs. (2) and (1) in Eq. (5) and re-
organizing the terms, the Zernike moments can be computed as
follows:
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Zn;m ¼
nþ 1

p
X X

x2þy261

Xn

k¼jmj
bn;m;kqk

 !
e�jmhf ðx; yÞ

¼ nþ 1
p

Xn

k¼jmj
bn;m;k

X X
x2þy261

e�jmhqkf ðx; yÞ

0
@

1
A

¼ nþ 1
p

Xn

k¼jmj
bn;m;kvm;k ð7Þ

The terms vm;k, defined in Eq. (7), are common in the computa-
tion of moments having the same repetition as shown in Fig. 3 in
the case of repetition m = 0. In general, to compute Zernike mo-
ments up to order N, we would need to compute vm;k for each rep-
etition. However, computing vm;k only once would be sufficient for
computing Zernike moments of any order and any repetition by
simply taking linear combinations as shown in Eq. (7). As an exam-
ple, Table 1 shows the terms vm;k required to be computed up to
order 10. Moreover, the coefficients bn;m;k (see Eq. (2)) do not de-
pend on the input image or the coordinates; therefore, they can
be stored in a small look-up table to save additional computations.

An important issue in the computation of high-order Zernike is
the issue of numerical precision. Depending on the image size and
maximum order, double precision arithmetic does not provide en-
ough precision and serious numerical errors can be introduced in
the computation of the moments. This is demonstrated in Table
2 which shows the differences between Zernike moments up to or-
der 50, computed using double precision and arbitrary precision
arithmetic for a 300� 300 image. As it can be observed, the error

becomes more and more significant with increasing order and
decreasing repetition.

Fig. 4 shows the effect of numerical errors on the orthogonality
of the basis functions. As it can be observed in Fig. 4(a), obtained
using double precision arithmetic, the orthogonality of the basis
functions is violated seriously. On the other hand, the orthogonal-
ity of the basis functions is preserved using arbitrary precision
arithmetic as shown in Fig. 4(b) (i.e., only one delta peak is
present).

4.4. Comparisons with other methods

We have compared the accuracy of our algorithm with several
other algorithms [38–40] using the fidelity of reconstruction as a
criterion. The test image that we used in our experiments is shown
in Fig. 5(top). This is a 64� 64 image and Zernike moments up to
order 40 were utilized for reconstruction. Fig. 5(a–c) show the re-
sults using Mukundan’s method [38], Gu’s method [40] and our
method, respectively. As it can be observed, the former two algo-
rithms give poor reconstructions mainly because of the square to
circle transformation. The effect of the transformation is clearly
visible in the reconstructed images.

The reconstruction results using Belkasim’s [39] method and
Zernike moments up to order 60 is shown in Fig. 6(a) while the
reconstruction results using our method is shown in Fig. 6(b).
We used arbitrary precision arithmetic in the implementation of
Belkasim’s method to make the comparison fair. It can be observed
that Belkasim’s method introduces some distortions at the edges
while our method produces smoother edges in general.

To make the differences between the two methods more clear,
we have computed reconstruction errors for each method, shown
in Table 3, using different orders. The formula use to compute
the error is shown below:

er ¼
P

x

P
yj~f ðx; yÞ � f ðx; yÞj2P

x

P
yf ðx; yÞ2

ð8Þ

where f ðx; yÞ is the original image and ~f ðx; yÞ is the reconstructed
image (up to order N).

In general, it would be reasonable to expected that the recon-
struction error decreases as the order of moments increases. Our
method exhibits this behavior, however, Belkasim’s method be-
haves quite differently which indicates that the quantization of
the polar coordinates has a serious effect on the computation of
higher-order moments.

Table 4 shows the number of multiplications and additions re-
quired by each method. We have assumed an image of size
M �M pixels and Zernike moments up to order N. In the case of
our method, first we need M2N multiplications to compute
qkf ðx; yÞ, k ¼ 0;1; . . . ;N. Then, we must compute vm;k ¼P

x

P
ye�jmhqkf ðx; yÞ. The number of vm;k required to compute Zer-

nike moments up to order NðevenÞ is N
2

N
2 þ 1
� �

. Since there is no
need for any multiplication when m ¼ 0 and vm;k is a complex
number, this step requires M2NðN2 þ 1Þ multiplications and
2ðM2 � 1Þ N

2 þ 1
� �2 additions. For large N and M, the number of mul-

Fig. 3. Common terms in the computation of Zernike moments up to order 10 with
zero repetition.

Table 1
The terms vm;k required to be computed up to order 10.

Repetition m vm;k

0 v0;0,v0;2,v0;4,v0;6,v0;8,v0;10
1 v1;1,v1;3,v1;5,v1;7,v1;9
2 v2;2,v2;4,v2;6,v2;8,v2;10
3 v3;3,v3;5,v3;7,v3;9
4 v4;4,v4;6,v4;8,v4;10
5 v5;5,v5;7,v5;9
6 v6;6,v6;8,v6;10
7 v7;7,v7;9
8 v8;8,v8;10
9 v9;9

10 v10;10

Table 2
Differences between Zernike moments up to order 50, computed using double precision and arbitrary precision arithmetic for a 300� 300 image.

Order, repetition 0 2 4 6 8 10 . . . 40 42 44 46 48 50

42 7.28e�4 6.60e�4 1.91e�4 2.72e�4 1.72e�4 6.54e�6 . . . 1.17e�17 3.82e� 17
44 3.50e�3 5.57e�3 1.11e�3 1.18e�3 1.05e�4 1.49 e�4 . . . 1.52e�15 1.30e�17 1.04e�17
46 3.97e�1 6.48 e�3 5.25e�3 2.04e�3 2.57e�3 1.07e�3 . . . 2.12e�14 1.48e� 15 9.06e�17 2.60e�18
48 1.86e0 6.91e�2 4.39e�2 2.83e�2 1.66 e�2 3.50e�3 . . . 5.23e�14 5.92 e�14 3.11e�16 1.20e�16 3.47e�18
50 1.38e1 1.81e0 1.06e�1 9.39e�2 6.92e�2 7.12e�2 . . . 7.52e�12 2.67 e�13 1.60e�14 8.60e�16 4.65e�17 2.17e�18

G. Amayeh et al. / Computer Vision and Image Understanding 113 (2009) 477–501 481



Author's personal copy

tiplications and additions required to compute Zn;m is negligible
according to Eq. (7). Asymptotically, our method has comparable
computational complexity with Belaksim’s method (i.e., OðN2M2Þ
multiplications) although Belaksim’s method performs less addi-
tions (i.e., OðNM2Þ versus OðN2M2Þ).

5. Component-based hand representation

This stage includes the binarization of the hand image and its
segmentation into different regions corresponding to the arm,
hand, palm, and fingers. Our current set up yields very high quality
images, which are almost free of shadows and noise. As a result,
binarization can be performed using a fixed threshold. To separate
the forearm from the hand, first we detect the palm by finding the
largest circle that can be prescribed inside the hand–arm silhou-
ette. Then, we take the intersection of the forearm with the circle’s
boundary. To separate the fingers from the palm, first we filter out
the fingers using morphological closing [42]. Then, the palm is sub-
tracted from the hand silhouette. Specific details are provided
below.

5.1. Binarization

The hand images can be captured using a grayscale camera;
however, we used a color CCD camera as it was already available
in our laboratory. To obtain a grayscale image, we used the lumi-
nance value Yi;j of each pixel ði; jÞ:

Yi;j ¼ 0:299Ri;j þ 0:587Gi;j þ 0:114Bi;j ð9Þ

where Ri;j;Gi;j;Bi;j denote the RGB values of the pixel. Fig. 7(a) and (b)
show the original color and grayscale images, respectively. The bin-
ary value Bi;j of a pixel ði; jÞ was calculated as follows:

Bi;j ¼
1 if Yi;j < T

0 otherwise

�
ð10Þ

where T is a fixed threshold which was determined experimentally.
In all of the experiments reported in this study, T ¼ 0:5 was used.

Fig. 4. Dot product between basis function of order n ¼ 43 and repetition m ¼ 7 with other basis functions up to order 50 using (a) double precision arithmetic and (b)
arbitrary precision arithmetic.

Fig. 5. Original (top) and reconstructed images using moments of order up to 40:
(a) Mukundan’s method, (b) Gu’s method, and (c) our method.

Fig. 6. Reconstructed images using moment of order up to 60: (a) Belkasim’s
method, and (b) our method.

Table 3
Reconstruction error using our method and Belkasim’s method.

Order Our method Belkasim’s method

35 0.0647 0.0648
40 0.0621 0.0628
45 0.0596 0.063
50 0.0370 0.0557
55 0.0203 0.0645
60 0.0133 0.0665

Table 4
Computational complexity of various methods.

Number of addition Number of multiplication

Mukundan’s method N2M2

2 þ 1
8 NM3 2N2 þ N2M2 þ 1

4 MN3

Belkasim’s method NðM þ 2ÞðM � 1Þ N2 M2

2 þ 2MN

Gu’s method 3
8 N2M þ 2NM2 þ 1

12 N3M þ 1
4 N2M2 N2 M

2 þ 2M2N

Our method 2ðN2 þ 1Þ2ðM2 � 1Þ N2 M2

2 þ 2M2N
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Fig. 7(c) shows the output of the binarization process. The resulting
silhouettes are very accurate and consistent due to the image acqui-
sition set up. This is critical as high-order Zernike moments are sen-
sitive to small changes in silhouette shape.

5.2. Hand–arm segmentation

The binary silhouette obtained during image acquisition is the
union of the hand with the arm. The arm does not have many dis-
tinctive features while its silhouette, at different acquisition ses-
sions, is not expected to be the same due to clothing and
freedom in hand placement (see Fig. 2(b) and (c)). To segment
the arm, we assume that the user is not wearing very loose cloth-
ing on the arm. Under this assumption, the palm becomes the
thicker region of the silhouette, which enables its detection it by
finding the largest circle that can be prescribed inside the silhou-
ette. We use a robust, iterative morphological closing algorithm
based on a circular structuring element [42] to find the largest cir-
cle. The main steps of our algorithm can be summarized as follows:

(1) Initialize the radius of the circular structuring element D to a
large value (e.g., R ¼ 85).

(2) Apply morphological closing on the image using D.

(3) If the output is an empty image, then set R ¼ R� 1 and go to
Step 2; otherwise, the resulting image corresponds to the
largest circle inside the silhouette.

This algorithm has shown to work well in our experiments,
however, its main drawback is that it is time consuming due to
its iterative nature and the use of morphological operators. This
is especially true when the size of the hand is relatively small.
For example, it requires 29 morphological closing operations on a
480� 640 assuming that the radius of the largest circle inside
the hand silhouette is about 57 pixels which is typical for smaller
hands. Implementing the algorithm in MATLAB 7.4.0 on a 3.19 GHz
64-bits machine with 2 GB of RAM, it would take more than 6 s to
segment the hand and forearm in this case.

One way to speed up processing is by reducing the number of
iterations. This can be done by initializing the radius of the struc-
turing element D more conservatively. To address this issue, we
have developed a multi-resolution scheme which operates on dif-
ferent resolution images of the hand. First, the largest circle inside
the hand silhouette is found approximately but fast using a low-
resolution image of the hand. Next, to refine the position and size
of the circle found, the same process is repeated at a higher resolu-
tion. To reduce the number of iterations, the radius of the structur-
ing element at higher resolutions is initialized using the radius of
the circle found at lower resolutions. This process is repeated until
the highest resolution hand image (i.e., original hand image) is
processed.

To represent a hand image at different resolution levels, we
scale it down by simply down-sampling it. Fig. 8 illustrates the
hierarchy of hand images obtained by down-sampling the input
image three times, each time by a factor of two. The multi-resolu-
tion algorithm can be summarized as follows:

(1) Generate a hierarchy of different resolution hand images by
down-sampling the input image.

(2) Initialize the radius of the circular structuring element D to a
small value (e.g., R0 ¼ 11).

(3) Consider the lowest resolution hand image.
(4) Find the largest circle ðRmaxÞ inside the hand silhouette.

Fig. 7. (a) Color image, (b) grayscale image and (c) binarized image.

Fig. 8. Illustration of the multi-resolution hierarchy of hand images for reducing the
computational cost of the hand–arm segmentation module. The hierarchy is obtained
by down-sampling the binarized image three times, each time by a factor of two.

Fig. 9. (a) Binarized image, (b) largest circle that can be prescribed inside the hand–arm silhouette, and (c) segmented hand silhouette.
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(5) Set the radius of the circular structuring element D to
2� Rmax þ 2.

(6) If a higher resolution image is available, go to Step 4; other-
wise, stop.

In our experiments, the multi-resolution hierarchy contains
four levels, that is, we scale down the original image three times.
The algorithm starts by processing the lowest resolution hand im-
age which is eight times smaller than the original one. At this level,
the largest circle prescribed inside the hand silhouette can be
found very quickly (i.e., typically, within 4–5 iterations). When
considering higher resolutions, the number of iterations stays
low by initializing the radius of the structuring element conserva-
tively based on the size of the circle found at lower resolutions.
Considering the small hand example mentioned earlier, it takes
five iterations at the lowest resolution image and only two itera-
tions at the highest resolution (i.e., original) image. Overall, seg-
menting the hand and forearm reduces processing time from 6 to
0.69 s for this example. The average processing time on 250 sample
images was 0.58 s.

Fig. 9(b) shows the output of the algorithm on the sample image
shown in Fig. 9(a). Once the largest circle has been found, the arm
can be segmented by finding its intersection with the circle and the
boundary of the hand–arm region. Fig. 9(c) shows the resulting
hand silhouette after discarding the arm region.

5.3. Palm–finger segmentation

To simplify finger segmentation, subjects were instructed to
stretch their hand during image acquisition in order to avoid
touching fingers; however, finger motion was unavoidable. Several
sample images collected from the same subject are shown in Fig. 2.
As it can be observed, the relative position of the fingers varies sig-
nificantly from sample to sample. The processing steps of the fin-

ger segmentation module are shown in Fig. 10. First, a
morphological closing operator based on a circular disk is applied
on the hand image as shown in Fig. 10(a). The radius of the struc-
turing element was experimentally set to 25 pixels, making it
thicker than the widest finger in our database. The closing opera-
tion filters out the fingers from the silhouette as shown in
Fig. 10(c). The remaining part of the silhouette corresponds to
the palm, which is subtracted from the hand image to obtain the
finger segments as shown in Fig. 10(d). It should be mentioned that
an alternative way to segment the fingers from palm is by detect-
ing certain landmark points on the hand, such as fingertips and val-
leys. This solution, however, would be more prone to errors due to
inaccuracies in landmark detection.

To identify each of the fingers quickly, we assume that hand
rotations are less than 45�. In our prototype system, larger rota-
tions would correspond to purposeful, unnatural hand placement
by the users. In general, it would be possible to deal with larger
rotations by using additional information for each finger such as
length, width, aspect ratio, and area. To extract each finger and
the back of the palm, we use connected component analysis [43].

5.4. Post-processing of finger regions

A closer examination of the results shown in Fig. 10(d) reveal
that the segmented fingers have sharp tails at the locations where
they meet the palm. The curvature of the hand contour at these
locations is smoother for the little, point, and thumb fingers as
shown in Fig. 11(left). As a result, there might be significant differ-
ences in the length of the tails corresponding to these fingers as
shown in Fig. 11(a), where different samples from the same subject
are shown. In some cases, especially when the hand is small (i.e.,
mostly for female hands), there are significant differences in the
length of the tails, which introduces significant errors in the com-
putation of the Zernike moments. This can be illustrating by

Fig. 10. (a) Hand silhouette, (b) structuring element, (c) the result of morphological closing and (d) the result of subtracting the back of the palm from the hand silhouette.

Fig. 11. (Top) The junctions of finger with the palm in the hand counter where their curvature is too smoother than the others. (Right) Pairs of segmented little, point, and
thumb fingers. Each pair corresponds to two different samples of the same subject. (a) Before applying the additional step, and (b) after applying the additional step.
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observing the differences in the size of the circles enclosing the fin-
gers in Fig. 11(a) versus those in Fig. 11(b) where the tails have
been removed using post-processing.

To keep these errors as low as possible, we post-process each
finger by applying an extra morphological closing step as shown
in Fig. 11(b). The structuring element was chosen experimentally
to be a simple 4 by 4 square with values set to one. Table 5 illus-
trates the effect of this step by showing the normalized distances
between the pairs of corresponding fingers shown in Fig. 11. Obvi-
ously, this step improves matching scores considerably.

Tables 6 and 7, present statical results (i.e., mean and variance)
to further support the benefits of this step in terms of matching
and non-matching distances. For each finger, we have computed
all possible matching and non-matching distances in our database,
before and after post-processing, using Zernike features up to order
20 (121 features). Since our database contains 101 people with 10
images per person, there were 4545 matching distances and
1,010,000 non-matching distances for each finger. Our results indi-
cate that finger post-processing reduces the overlap between
matching and non-matching distances significantly in the case of
the little, point, and thumb fingers; however, it does not seem to
have an important effect in the case of the ring and middle fingers.
This was an expected result since there are more segmentation
problems with these fingers due to their greater motion freedom.

6. Feature extraction

In this step, we represent the geometry of the back of the palm
and the fingers implicitly using Zernike moments. A critical issue at
this stage is choosing the order of Zernike moments appropriately
in order to capture sufficient shape information for verification and
identification purposes. Our experimental results indicate that

capturing important shape details for verification/identification
purposes requires using high-order moments.

In general, using very high-order moments would preserve more
and more information. Fig. 12 demonstrates this idea using a
300� 300 binary image, shown at the top left corner, which contains
information at various levels of detail. The reconstructed images
using moments up to order 20 contain only a rough silhouette of
the wolf. The reconstructions using moments up to order 50 show
the head of wolf clearly, however, the letters in the logo are still
blurred. Using orders up to 70 improves the reconstruction of the let-
ters in the logo as well. Using very high-orders is not practical, how-
ever, due to information redundancy and computational complexity
issues. Moreover, Liao and Pawlak [44] have shown that there is an
inherent limitation in the precision of arbitrary high-order Zernike
moments due to the circular geometry of the domain.

Here, we used the average reconstruction error (i.e., Eq. (8)) on a
large number of palm and finger images to decide the appropriate
order for our application. Our objective was to preserve important
details while keeping the orders as low as possible. Specifically, by
analyzing the reconstruction error, the maximum order chosen for
the fingers was 20 while the maximum order chosen for the back
of the palm was 30. Fig. 13(a) shows several finger reconstructions
using different orders. Fig. 13(b) shows the reconstruction error
using different orders in this case. As it can be observed, the error
almost saturates for orders higher than 40. This is also visually evi-
dent from the finger reconstructions shown in Fig. 13(a). In gen-
eral, using orders higher than 20 does not offer major
improvements. Therefore, to keep computational cost low, the
highest order chosen in the case of fingers was 20. Similar experi-
ments and analysis in the case of the back of the palm revealed that
the highest order useful for verification/identification purposes
was 30. It should be mentioned that the reconstruction criterion
used here to select the order of Zernike moments might not yield
the most discriminant moments [45]. In the future, we plan to
investigate feature selection schemes [46] to select a subset of dis-
criminant Zernike moments for each part of the hand.

Using a similar analysis to represent the geometry of the whole
hand, we found that orders as high as 70 were required. Fig. 14(a)
shows a hand image while Fig. 14(b) shows several reconstructions
using different orders. The reconstruction error is shown to the
right of Fig. 14. Clearly, using a component-based representation
of the hand offers major computational savings.

Table 5
The effect of the extra morphological closing operator on the normalized distances
between the Zernike moments (up to order 20) of the segmented finger pairs before
(Fig. 11(a)) and after (Fig. 11(b)) the extra step.

Pair of fingers dbefore dafter

Little 0.5904 0.0901
Point 0.7881 0.1135
Thumb 0.7424 0.1253

Table 6
Mean and Variance of matching distances for each finger before and after post-
processing.

Finger lbefore lafter rbefore rafter

Little 0.1724 0.0998 0.1039 0.0873
Ring 0.1085 0.0817 0.1004 0.0952
Middle 0.0823 0.0810 0.0983 0.0995
Point 0.1928 0.0716 0.1287 0.0886
Thumb 0.1843 0.1205 0.1262 0.0843

Table 7
Mean and Variance of non-matching distances of each finger before and after post-
processing.

Finger lbefore lafter rbefore rafter

Little 0.3564 0.2869 0.1162 0.0341
Ring 0.3072 0.2861 0.0531 0.0289
Middle 0.2859 0.2870 0.0290 0.0268
Point 0.3672 0.2715 0.1454 0.0248
Thumb 0.4136 0.3120 0.1216 0.0616

Fig. 12. Original and reconstructed images using different orders of Zernike
moments.
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Computing very high-order Zernike moments is quite computa-
tionally expensive, especially when precision is a requirement. The
algorithm proposed in Section 4.2 was initially implemented in
C++ using arbitrary precision arithmetic (i.e., 200 digits) on a
2.66 GHz pentium IV with 256 MB memory. In this case, it takes
about 6 min to compute Zernike moments up to order 70, while
it only takes 35 s to compute Zernike moments up to order 30.
We have verified experimentally that moments up to order 30
can be computed quite accurately without resorting to arbitrary
precision arithmetic. In our application, using double precision in-
stead of arbitrary precision to compute moments up to order 36
yields an error less than 0:5%. Using double precision in C++ on
a 3.19 GHz 64-bits machine with 2 GB of RAM, it takes less than
0.01 s on the average to compute moments up to order 30. The
time savings using double precision are significant and can be fur-
ther improved by computing the Zernike moments of different
parts of the hand in parallel. In practice, a hybrid implementation
can be employed where the use of arbitrary precision arithmetic is
restricted only to orders higher than 36, therefore, reducing com-
putational complexity. It should be mentioned that using feature
selection [46] to choose a subset of discriminant Zernike moments,
as mentioned earlier, will further decrease time requirements.

Hardware implementations could also be considered for real time
applications [47,48].

7. Fusion

At this step, we fuse information from different parts of the
hand to improve verification/identification accuracy and robust-
ness. In general, fusion can be implemented at different levels. In
this paper, we have experimented with three different fusion strat-
egies: feature-level, score-level, and decision-level fusion.

In feature-level fusion, the features extracted from the fingers
and the back of the palm can be fused to create a more compact
and powerful feature set. Commonly, feature-level fusion is per-
formed using dimensionality reduction or feature selection [45].
In score-level fusion, the matching scores of the fingers and the
palm can be fused to obtain an overall score. The sum rule or the
weighted-sum rule are common score-level fusion techniques
[49]. In decision-level fusion, verification/identification results
based on different parts of the hand can be fused to obtain an over-
all authentication decision. Majority voting, and AND/OR rules are
widely used decision-level fusion techniques [49]. We provide
more details in the following subsections.

Fig. 13. (a) Original image (top left) and reconstructed images (left to right, top to bottom) up to order 2, 5, 10, 20, 30, 40, 50, 60, and 70, (b) reconstruction error.

Fig. 14. (a) Original and (b) reconstructed images (left to right, top to bottom) up to order 10, 20, 30, 40, 50, 60, 70, 80, and 90, (right) reconstruction error.
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7.1. Feature-level fusion using Principal Component Analysis

Using Principal Components Analysis (PCA) [45] for feature-le-
vel fusion is a very common approach. According to this ap-
proach, the feature vectors of the back of the palm and the
fingers are combined into a single feature vector. Then, PCA is ap-
plied to map them into a lower dimensional space. The resulting
PCA features are linear combinations of the original finger and
palm features.

7.2. Score-level fusion using weighted sum

The weighted-sum rule has been extensively investigated in the
literature and it is probably the most straightforward fusion strat-
egy at the score-level. First, we compute matching scores between
corresponding parts of the hand (i.e., back of the palm and fingers)
in the query and the template. Then, the matching scores are com-
bined into a single score using a weighted-sum rule as shown
below:

SðQ ; TÞ ¼
X6

i¼1

aiSðQi; TiÞ ð11Þ

where S is the similarity measure (e.g., Euclidean distance) between
the query Q and the template T. Qi and Ti represent the ith part of
the hand, i ¼ 1;2; . . . ;6. In our system, the first five parts correspond
to the little, ring, middle, point and thumb fingers while the sixth
part corresponds to the back of the palm. The parameters ai are
the weights associated with the ith part of the hand; they need to
satisfy the following constraint:

X6

i¼1

ai ¼ 1 ð12Þ

The key issue with this method is determining a set of appropri-
ate weight values.

7.3. Score-level fusion using Support Vector Machines

A Support Vector Machine (SVM) is a binary classifier that maps
input patterns X to output labels y 2 �1;1 [45]. In general, an SVM
has the following form:

f ðXÞ ¼
X
i2X

aiyiKðX;XiÞ þ b ð13Þ

where ai are the Lagrange multipliers, X corresponds to the indices
of the support vectors for which ai–0, b is a bias term, X is an input
vector, and KðX;XiÞ is a kernel function. Classification decisions are
based on whether the value f ðXÞ is above or below a threshold. We
have employed SVM to implement an alternative score-level fusion
strategy. Given a pair of hands to be verified, the input vector X is
composed of the matching scores between corresponding parts of
the hand. Assigning the input vector to the class ‘‘1” implies that
both hands come from the same subject while assigning it to the
class ‘‘�1” implies that they come from different subjects.

7.4. Decision-level fusion using majority voting

Majority voting is among the most straightforward decision-le-
vel fusion strategies. In this case, the final decision is based on the
output results of several matchers. In the context of our applica-
tion, first we verify/identify each subject using different parts of
the hand (i.e., fingers and palm). Then, if three or more parts of
the hand yield a positive verification/identification, then verifica-
tion/identification is considered successful; otherwise, the subject
is rejected.

8. Experimental results and comparisons

In order to evaluate the proposed system, we have collected
hand images from 101 people of different age, sex and ethnicity.
For each subject, we collected 10 images of their right hand during
the same session. To test the performance of our system on time
passage, additional hand images were collected in a separate ses-
sion from 20 of these subjects 9 months later. During each session,
subjects were asked to stretch their hand and place it inside a
square area drawn on the surface of the lighting table; no other
restrictions were imposed on the subjects. To capture different
samples within each session, subjects were asked to remove their
hand from the lighting table, relax it for a few seconds, and then
place it back again. We report results both on hand-based verifica-
tion and recognition.

8.1. Hand-based verification results

For person verification, one must differentiate a genuine hand
from imposter hands as the user provides his/her hand image in
support of his/her claimed identity. For this purpose, we calculate
the Euclidean distance between the hand of the applicant and each
of his/her templates in the database and take the minimum dis-
tance D:

D ¼ minifjjQ � Tijjg; i ¼ 1; . . . ; k ð14Þ

where Q corresponds to the query hand, Ti corresponds to the ith
template of a given subject in the database, and k corresponds to
the number of templates of that subject. If D is below a threshold,
verification is successful; otherwise, the subject is rejected.

In the following subsections, we present the results of several
different experiments. First, we investigate the performance of a
baseline system which uses the whole hand for verification. Then,
we investigate the verification power of different parts of the hand
by implementing several systems that perform verification using
each part of the hand separately. Finally, we evaluate the proposed
system which fuses information from different parts of the hand
for verification.

8.1.1. Verification using whole hand
To provide a baseline for comparisons, first we experimented

with a simpler system that uses the whole hand for verification.
In this case, a global representation of the hand is used for verifica-
tion. Preliminary results based on this approach have been re-
ported in an earlier work [20], however, this section presents
results based on more comprehensive experiments and a larger
database.

The first step in this baseline system is to separate the arm from
the hand using the methodology presented in Section 5. Then, the
geometry of the silhouette of the whole hand is represented using
Zernike moments. As mentioned in Section 6, capturing the shape
details of the whole hand requires computing Zernike moments up
to order 70; this yields feature vectors containing 1296
components.

To test the approach, we used different number of samples
(i.e., 3, 4, and 5) for each subject as enrollment templates. To ac-
count for regularities in the choice of the templates, we repeated
the experiments 30 times, each time choosing the enrollment
templates randomly. The remaining samples were used to con-
struct matching and non-matching sets and estimate the False
Acceptance Rate (FAR) and False Reject Rate (FRR) of the system.
Fig. 15(a) shows the average ROC curves obtained using this pro-
cedure. As it can be observed, using more templates improves
verification accuracy, however, it this would also increase verifi-
cation time.
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Since the size of the feature vectors was very high, we have also
experimented with PCA to reduce their dimensionality. Using a
similar procedure, we repeated the experiments 30 times, choosing
3, 4, and 5 templates randomly each time. In each experiment, the
eigenvectors were computed from the covariance matrix of the en-
rolled templates by preserving 99:9% of the information. Fig. 15(b)
shows the average ROC curves obtained using PCA features. Table 8
provides comparative results in terms of the Equal Error Rate (EER),
as well as the mean, and standard deviation of the True Acceptance
Rate (TAR) when FAR ¼ 0:1%. As it can be observed, PCA improves
verification results by increasing TAR while at the same time
reducing its standard deviation. Overall, the best verification per-
formance using the whole hand was obtained with PCA features
and five enrollment templates per subject.

8.1.2. Verification using different parts of the hand
To investigate the verification power of different parts of the

hand, we experimented with several systems, each performing ver-
ification using a different part of the hand. In this case, local repre-
sentations of the hand were used for verification. Each system was
tested using five enrollment templates (i.e., using less templates
results in lower accuracy) and repeating the experiments 30 times
as before by choosing the enrollment templates randomly each
time. For each system, we report the average ROC curves obtained.
To ensure that the comparison was fair, we used the same training
and test data as in the case of the whole hand. To calculate the dis-

tance between corresponding parts of the hand (i.e., fingers or back
of the palm) in the query and the template hands, we used Eq. (14)
as before.

Fig. 16 (blue solid line) shows the average ROC curves obtained
for each part of the hand. In addition, we performed experiments
using PCA to reduce the dimensionality of the feature vectors. In
each case, we preserved 99.9% of the information. Fig. 16 (red
dashed line) shows the results obtained in this case. Also, Table 9
shows specific details for each case using raw and PCA features
when FAR ¼ 0:1%. As it can be observed, PCA features improve
accuracy slightly only in the case of the back of the palm.

To illustrate performance differences between various parts of
the hand more clearly, we have plotted all six ROC curves, corre-
sponding to raw features, on the same graph shown in Fig. 17. As
it can be observed, the best performance was obtained using the
index, middle, and ring fingers. Among them, the index yielded
the best results. On the other hand, the thumb yielded the lowest
performance among all parts. This can be explained by the fact that
the thumb has higher degree of freedom than any other part, mak-
ing it difficult to fix its position.

8.1.3. Verification by fusing information from different parts of the
hand

In this subsection, we report results by fusing information from
different parts of the hand for verification. To ensure that our re-
sults are comparable to the previous experiments, we used the
same evaluation methodology as well as the same training and test
sets. Using feature-level fusion, we combined the feature vectors of
each part of the hand into a single feature vector yielding 861 fea-
tures. Using PCA and keeping 99.9% of the information, yields be-
tween 72 and 81 features. In the case of score-level fusion using
the weighted-sum rule, we experimented with different sets of
weight values, using the results from the previous section as a
guide. The best results, reported below, were obtained using the
following values: w1 = 0.5/12 (little finger), w2 = 2.5/12 (ring fin-
ger), w3 = 3.0/12 (middle finger), w4 = 4.5/12 (index finger),
w5 = 0.5/12 (thumb), and w6 = 1.0/12 (back of the palm). The

Fig. 15. Average ROC curves using whole hand for verification: (a) raw features, (b) PCA features. Each experiment was repeated 30 times, using 3, 4, and 5 enrollment
templates per subject.

Table 8
Verification using whole hand: comparison using raw and PCA features.

Enrollment size 3 4 5

Features Raw PCA Raw PCA Raw PC

Number of features 1296 182–203 1296 221–242 1296 252–274
EER ð%Þ 3.55 2.69 2.95 2.38 2.78 2.21
TAR ð%Þ (FAR = 1%) 94.22 95.84 95.62 96.66 96.26 97.06
rTAR ð%Þ (FAR = 1%) 1.62 1.60 1.61 1.26 1.27 1.16

Table 9
Comparison using different parts of the hand for verification: raw versus PCA features.

Finger Little Ring Middle Index Thumb Palm

Feature Raw PCA Raw PCA Raw PCA Raw PCA Raw PCA Raw PCA

Number of features 121 23–24 121 18 121 16 121 16 121 43–45 256 87–96
EER ð%Þ 1.77 1.78 1.62 1.66 1.28 1.44 0.93 0.98 3.62 3.53 2.05 1.90
TAR ð%Þ (FAR = 1%) 96.9 96.6 97.3 97.1 98.3 97.8 99.2 99.1 92.2 92.0 96.9 97.5
rTAR ð%Þ (FAR = 1%) 1.3 1.41 0.79 0.8 0.54 0.72 0.34 0.42 1.7 1.76 1.23 1.16
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weights were fixed in all experiments. In the case of score-level fu-
sion using SVMs, we experimented using different parameter val-
ues. The best results (i.e., on the average) were obtained using
the Gaussian kernel with r ¼ 0:01 and C ¼ 1 (i.e., cost term). These
parameter values were kept fixed in all of our experiments.

Fig. 18 shows the average ROC curves obtained for each fusion
strategy using 3, 4, and 5 templates per subject. In general, using
more enrollment templates per subject improves verification per-
formance although it would also increase verification time. Among
the four fusion strategies considered, decision-based fusion per-
forms best. Between the two different decision-based fusion
schemes considered, majority voting performs best. Feature level
fusion based on PCA had the lowest performance, however, it
should be mentioned that PCA reduces the size of templates more
than 10 times.

Fig. 19 compares all fusion strategies on the same graph assum-
ing five enrollment templates. Additional details are shown in Ta-
ble 10 which compares the fusion strategies, using five enrollment
templates, in terms of EER and the mean and the standard devia-
tion of TAR when FAR ¼ 0:1%. As it can be observed, all fusion have
improved verification performance, for example, TAR is more than
99.4% when FAR is more than 0.1%. Table 11 shows specific details
in the case of majority voting.

8.2. Hand-based identification results

For person identification, the user does not provide any identity
claim, but the system must find out the user’s identity by compar-
ing him/her to a database of enrolled users. Assuming that there
are N subjects in the database and that each subject i has ki tem-

Fig. 16. Average CMC curves using different parts of the hand for identification: (a) little, (b) ring, (c) middle, (d) index, (e) thumb, and (f) back of the palm. Each experiment
was performed 30 times using five samples for each subject as enrollment templates.
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plates, then the total number of templates stored in the database is
K ¼ k1 þ k2 þ � � � þ kN . Given a query hand Q, we compute the
Euclidean distance between Q and all the templates Tj; j ¼
1; . . . ;K in the database. Then, the identity of the user is established
by finding the minimum distance, that is, by finding the subject
whose template(s) best match the query hand:

i� ¼ argiminfjjQ � Ti
jjjg; j ¼ 1; . . . ; ki; i ¼ 1; . . . ;N ð15Þ

where Ti
j corresponds to the jth template of the ith subject in the

database. In our experiments, we have assumed a ‘‘closed-uni-
verse” [50], that is, we have assumed that the user is among
the subjects stored in the database (i.e., has already enrolled).
The ‘‘closed-universe” model allows to investigate how good is
our recognition algorithm at identifying a query hand by not only

asking the question ‘‘is the top match correct?” but also the ques-
tion ‘‘is the correct match among the top n matches?”. This
allows to determine how many templates must be examined in
order to get a desired level of performance. In this context, we
report identification results by using Cumulative Match Charac-
teristic (CMC) curves which are plots of true match rate versus
rank [50]. It should be mentioned that in the case of an ‘‘open-
universe” [50] (i.e., the user has not enrolled), the minimum dis-
tance must also be below a threshold in order to be able to reject
imposters.

In the following subsections, we report identification results
based on similar experiments as in the case of verification. First,
we investigate the performance of a baseline system which uses

Fig. 18. Average ROC curves for verification: (a) feature-level fusion based on PCA, (b) score-level fusion based on the weighted-sum rule, (c) score-level fusion based on
SVMs, and (d) decision-level fusion based on majority voting. In each case, we performed the experiments 30 times using 3, 4, and 5 templates per subject.

Fig. 19. Comparison of the four different fusion strategies for verification using five
enrollment templates per subject.

Fig. 17. Verification results using different parts of the hand and raw features.
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the whole hand for identification purposes. Then, we investigate
the recognition power of different parts of the hand by implement-
ing several systems that perform identification using each part of
the hand separately. Finally, we evaluate the proposed system
which fuses information from different parts of the hand for
identification.

8.2.1. Identification using whole hand
To provide a baseline for comparisons, first we experimented

with a simpler system that uses the whole hand for identification.
In this case, a global representation of the hand was used for identi-
fication. Fig. 20(a) shows the average CMC curves obtained using this
procedure while Fig. 20(c) shows the corresponding standard devia-
tions. As it can be observed, using more templates improves recogni-
tion accuracy, however, it also increases recognition time. Since the

size of the feature vectors was very high, we have also experimented
with PCA to reduce their dimensionality. Using a similar procedure
like in the case of verification (i.e., see Table 8), we obtained the aver-
age CMC curves shown in Fig. 20(b). The corresponding standard
deviations are shown in Fig. 20(d). As it can be observed, PCA has al-
most identical performance to the approach using raw features.

8.2.2. Identification using different parts of the hand
To investigate the identification power of different parts of the

hand, we experimented with several systems, each performing rec-
ognition using a different part of the hand. Each system was tested
using five enrollment templates and repeating the experiments 30
times as before by choosing the enrollment templates randomly
each time. For each system, we report the average CMC curve ob-
tained. To ensure that the comparison was fair, we used the same
training and test data as in the case of the whole hand. To calculate
the distance between corresponding parts of the hand (i.e., fingers
or back of the palm) in the query and the template hands, we used
Eq. (15) as before. Fig. 16 (blue solid line) shows the average CMC
curves obtained for each part of the hand. In addition, we per-
formed experiments using PCA to reduce the dimensionality of
the feature vectors. In each case, we preserved 99.9% of the infor-
mation (i.e., see Table 9, for details). Fig. 16 (red dashed line) shows
the results obtained in this case. As it can be observed, PCA has
slightly worse recognition accuracy to the approach using raw fea-
tures, especially for low ranks.

To illustrate performance differences between various parts of
the hand more clearly, we have plotted all six CMC curves, cor-
responding to raw features, on the same graph shown in
Fig. 22(a). The corresponding standard deviations are shown in
Figs. 20(b) and 22(b). As it can be observed, the best perfor-
mance was obtained using the index, middle, and ring fingers.

Fig. 20. Average CMC curves using whole hand for identification: (a) raw features, (b) PCA features, (c) standard deviation of raw features, and (d) standard deviation of PCA
features. Each experiment was repeated 30 times, using 3, 4, and 5 enrollment templates per subject.

Table 10
Detailed comparison of different fusion strategies for verification using five enroll-
ment templates per subject.

Method PCA Weighted sum Majority voting SVM

EER ð%Þ 0.523 0.052 0.044 0.136
TAR ð%Þ (FAR = 0.1%) 99.47 99.98 99.98 99.86
rTAR ð%Þ (FAR = 0.1%) 0.231 0.052 0.059 0.12

Table 11
Fusion using majority voting for verification: mean and standard deviation of TAR
when FAR ¼ 0:1%.

No. of training vectors 3 4 5

TAR (%) 99.92 99.96 99.98
rTAR (%) 0.1115 0.0697 0.0594
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Among them, the index yielded the best recognition results (i.e.,
both higher accuracy and lower standard deviation). On the
other hand, the thumb yielded the lowest recognition perfor-
mance among all parts (i.e., both worst accuracy and higher
standard deviation). These results are consistent with those ob-
tained for verification.

8.2.3. Identification by fusing information from different parts of the
hand

In this subsection, we report results by fusing information from
different parts of the hand for identification. In particular, we
tested the same fusion strategies except score-level fusion using
SVMs since the use of SVMs for identification would require
extending SVMs to multiple-class classification. Such an extension
would require a large number of training samples (i.e., enrollment
templates) per subject to guarantee good performance. As previ-
ously, we used the same evaluation methodology as well as the

same training and test sets for consistency. Fig. 23 shows the aver-
age CMC curves obtained for each fusion strategy using 3, 4, and 5
templates per subject. In general, using more enrollment templates
per subject improves identification performance although it would
also increase identification time. Among the three fusion strategies
considered, score-level fusion had slightly better performance (i.e.,
higher accuracy and lower standard deviation) for low ranks.
Fig. 24(a) compares all three fusion strategies on the same graph
assuming five enrollment templates. Fig. 24(b) shows the corre-
sponding standard deviations.

8.3. Comparison between global-based and component-based hand
representations

Representing the hand it terms of its components and per-
forming verification or identification using different parts of
the hand separately or fusing information from different parts

Fig. 21. Average ROC curves using different parts of the hand for verification: (a) little, (b) ring, (c) middle, (d) index, (e) thumb, and (f) back of the palm. Each experiment was
performed 30 times using five samples for each subject as enrollment templates.
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of the hand offers important advantages both in terms of time
and accuracy. In terms of time, a component-based representa-
tion of the hand allows for representing shape information using
a smaller set of features and lower Zernike moment orders. In
terms of accuracy, a component-based representation, using fu-
sion or individual parts of the hand, improves verification and
identification performance compared to using a global-based
representation.

Fig. 25(a) shows the ROC curves corresponding to the three
most representative verification approaches tested here: (i) whole
hand, (ii) index finger only, and (iii) fusion based on majority vot-
ing. Obviously, fusion improves performance significantly (e.g.,
when FAR = 1%, TAR increases from 96.06% in the case of whole
hand to 100% in the case of fusion). Similarly, Fig. 25(b) shows
the CMC curves corresponding to the three most representative
identification approaches tested here: (i) whole hand, (ii) index fin-

Fig. 23. Average CMC curves for identification using (a) feature-level fusion based on PCA, (b) score-level fusion based on the weighted-sum rule, and (c) decision-level fusion
based on majority voting. In each case, we performed the experiments 30 times using 3, 4, and 5 templates per subject.

Fig. 22. (a) Identification results using different parts of the hand and raw features; (b) standard deviation.
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ger only, and (iii) fusion based on weighted sum. Obviously, fusion
improves identification performance significantly (e.g., when
rank = 1, recognition accuracy increases from 96.75% in the case
of whole hand to almost 100% in the case of fusion).

It should be mentioned that the main reason that the baseline
approach (i.e., whole hand) did not perform very well is because
it cannot tolerate well finger motion. As shown in Fig. 2(b) and
(c), finger motion is unavoidable in different sample images of
the same subject. Although Zernike moments can tolerate some
degree of finger motion(e.g., 6� rotation about the axis being per-
pendicular to the joint of the finger with the palm), they are sensi-

tive to larger finger motions. Moreover, they cannot tolerate well
situations where the hand is bent at the wrist. Fig. 26, illustrates
that finger motion affects the Zernike moments of all orders. Seg-
menting the hand in different parts alleviates these problems.

8.4. Comparisons with other approaches

In this section, we report both qualitative and quantitative re-
sults between our method and methods reported in the literature.
Table 12 shows a qualitative comparison of the performance of our
system and methods reported in the literature. Since there is no

Fig. 24. (a) Comparison of different fusion strategies for identification using five enrollment templates per subject; (b) Standard deviation.

Fig. 25. Comparison of the three most representative approaches for (a) verification and (b) identification, using five enrollment templates per subject: (i) whole hand, (ii)
index finger, and (iii) majority voting (for verification) and weighted sum (for identification).

Fig. 26. (a and b) Images of the same hand containing finger motion, (c) normalized Zernike moment differences.
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standard acquisition method and no benchmark databases, quanti-
tative comparisons of different systems should be considered only
indicative and not conclusive. To make the comparison more fair,
for each study considered, we report several other factors including
the number of subjects, the number of images per person, the
number of enrollment templates, the use/no-use of pegs, the type
of features, and the distance measure. The results reported for our
system in Table 12 correspond to using five enrollment templates.
Our database size is comparable to most of the systems reported in
the table while our error rates are better than or equal even to the
ones reported on much smaller databases.

As it can be observed from Table 12, the majority of existing
systems employ hand geometric features for verification or identi-
fication. It has been illustrated in the literature that these features

work well and can be computed efficiency. To better assess the
performance of our method, we have performed quantitative com-
parisons, using the same database, to investigate whether Zernike
descriptors offer any potential advantages over geometric features
in terms of robustness and accuracy. The geometric features used
in our experiments is a subset of the features introduced by San-
chez-Reillo et al. [36,37]. Fig. 27(a) shows a sample image taken
by their image acquisition system. They used 31 features (see
Fig. 27(b)): width of four fingers and palm in different locations
(18 features), height of middle and little fingers and palm (3 fea-
tures), distances between the three inter-finger points (3 features)
and angles between the inter-finger points and horizontal line (3
features), distances between a middle point of the finger and the
middle point of the straight line between the inter-finger point

Table 12
Qualitative comparison with existing methods.

System(s) # of
people

# of sample
per person

Pegs # of
template(s)

Feature(s) Similarity Verification
performance

Identification
performance

Jain [2] 50a 10 Yes 2 Geometric featuresk (16 features) Mahalanobis FAR = 0.01 —
FRRb � 0.17

Wong [27] 22c 12–15 No 9 Thirteen geometric features and
three fingertip regionsk

GMM FAR = 0.022 —

FRR = 0.1111

Jain [30] 53d 2–15 Yes 1e Contour of five fingers Shape Distance FAR = 0.01 —
FRRb � 0.06

Reillo [36,37] 20 10 Yes 5 Geometric featuresk deviation and
angles between the inter-finger points
(25 features)

Euclidean EERh = 0.049 97.0 � 10�2

Hamming Error ratef
6 0.1

GMM

Ma [31] 20 6 No 1 4 B-Spline curves, length of thumb
and width of palm

Shape distance Error rate = 0.05 —

Kumar [4] 100 10 No 5 Geometric featuresk hand area
(16 features) and

Correlation coefficient FAR = 0.01 —

FRRi � 0.32

Bulatov [29] 70g 10 No 5 Thirty geometric featuresk Nearest box FAR = 0.01 96.5 � 10�2

FRR = 0.03

Ribaric [28] 130 5 No 1 Twenty geometric featuresk Euclidean FAR = 0.153 —
FRRj = 0.13

Xiong [26] 108 5 No 1 Width of four fingers at 45 different
location for each figure

Shape distance EER = 2.41 � 10�2 —

Yoruk [51] 100l 3 No 2 Independent Component Analysis
(ICA) (200 features)

Cosine of the angle
between vectors

EER = 1.15 � 10�2 98.81 � 10�2

Oden [55] 35 Not clear No Total 20 Combination of implicit polynomials and
geometric features (total 16 features)

Mahalanobis FAR = 0.01 95.0�10�2

FRR = 0.01

Our method 100 10 No 5 Zernike moments (861 features for
fingers
and palm)

Euclidean FAR = 0.01 99.98 � 10�2

FRR ¼ 0:0
EER ¼ 4:38� 10�4

Error ratef = 7.42�10�4

a Out of 500 images, only 360 images were used and 140 images were discarded.
b Estimated from ROC curve in [2].
c A total of 288 images were used.
d A total of 353 images were used.
e Not all possible non-matching pairs were used.
f The minimum error rate, which is the sum of FAR and FRR.
g A total of 714 images were used.
h This is the best EER using five training vectors and GMM for verification [37].
i Hand geometry was used to improve the performance of palmprint-based verification. We have estimated FRR using only hand geometry information from the ROC curve

in [4] when FAR = 0.01.
j A multi-modal biometric system was designed in [28] using fingerprint, palmprint, and hand geometry. The FAR and FRR reported here relates to hand geometry only, see

[28].
k Geometric features such as length and width of the fingers, width of palm, thickness of hand and middle finger, etc.
l The database includes 458 people with three samples per person. EER has been reported for different populations (i.e., 20,35,50,100, and 458).
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and the last height where the finger width is measured (4 features).
However, their image acquisition system uses a mirror to capture a
side view of the hand in addition to a top view of the hand as
shown in Fig. 27(a). Since our system captures a top view of the
hand only, we cannot extract the height of the little and middle fin-
gers as well as the palm (3 features). Therefore, we have used only
28 features in our experimental comparisons. Fig. 27(c) shows the
main distances measured on the binarized hand images from our
database.

Systems employing pegs to fix the position of the hand, such as
[36,37], use predestined axes to facilitate feature extraction. In the
case of peg-free systems, several landmarks on the hand, such as
fingertips and valleys, must be extracted in order to define the
same or similar axes [26,31,27,51]. Here, we compute the curva-
ture of the hand boundary to extract the fingertip and valley loca-
tions by detecting curvature minima and maxima. The same
methodology has been employed in several other peg-free systems
including [31,26,27]. We provide more details about the landmarks
extraction algorithm in the next section.

Fig. 28(a) and (b) shows the performance of hand-based
authentication (i.e., using majority voting) and identification (i.e.,
using weighted sum) between our method based on Zernike
descriptors and the method of [36,37] based on geometric features.
In these experiments, five templates per person were employed for
enrollment while the rest of them were used for testing. We report
the average performance as before by repeating each experiment
30 times. As it can be observed, system performance using Zernike
descriptors is superior to using geometric features both in the case
of verification and identification. Therefore, Zernike descriptors
seem to be more powerful compared to geometric features. In
terms of time, as we discussed in Section 6, it takes less than
0.01 s on the average to compute moments up to order 30 on a
3.19 GHz 64-bits machine with 2GB of RAM, assuming double pre-
cision. Table 13 compares the time requirements of the proposed

method and the method based on geometric features. Although
the preprocessing step of the proposed method is more time con-
suming, it is most robust than detecting landmark points on the
hand as illustrated in the next section.

8.5. Comparison between morphological-based finger segmentation
versus landmarks-based finger segmentation

It could be claimed that segmenting the fingers and the palm
could be accomplished more efficiently using landmark points on
the hand than the algorithm described in Section 5 based on mor-
phological operators. The purpose of the experiment reported in
this section is to investigate this claim by comparing finger seg-
mentation using morphological operators, i.e., versus landmark
points. There are two main objectives behind our comparisons:
(i) to investigate the computational efficiency of each method
and (ii) to investigate the effect of segmentation errors on verifica-
tion and identification performance.

Fig. 29 illustrates how landmark points on the hand could be
used for finger segmentation. In particular, Fig. 29(a) shows the
location of the fingertips (blue dots)1 and valleys (red dots) while

Fig. 27. (a) A sample hand image taken using the image acquisition system in [36,37], (b) location of landmarks and features measured using the approach of [36,37], (c) the
main features measured based the on approach of [36,37] on a sample hand image from our database.

Fig. 28. Comparison between geometric features and Zernike descriptors: (a) authentication results, (b) identification results.

Table 13
Processing time for traditional and proposed methods. All numbers are in milli-
seconds.

Method Preprocessing Feature extraction

Traditional Constructing axes/30a Geometric/20a

Proposed Hand–arm
segmentation/580a

Palm–finger
segmentation/140a

Zernike/10b

a ms in MATLAB 7.4 on a 3.19 GHz, 64-bit machine with 2 GB RAM.
b ms in Visual Studio 2005 on a 3.19 GHz, 64-bit machine with 2 GB RAM.

1 For interpretation of the references to color in the text, the reader is referred to
the web version of this paper.
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Fig. 29(b) illustrates how to segment the fingers from the hand
using these landmarks. It should be noted that, to segment the
thumb, little finger, and index finger, some auxiliary points,
namely A0, C0, and D0, need to be considered where ID0 is equal to
ID, HC0 is equal to HC, and EA0 is equal to EA [26,31,27,51].

Accurate extraction of landmark points on the hand is a crucial
step for peg-free systems [26,31,27,51]. A common approach to de-
tect and extract the fingertips and valleys involves using curvature
information on the boundary of the hand [31,26,27]. The main idea
is detecting curvature minima (i.e., fingertips) and maxima (i.e.,
valleys); we have adopted this methodology here. The curvature
k of a planar curve, at a point on the curve, is defined as the instan-
taneous rate of change of the slope of the tangent at that point with
respect to arc length, and it can be expressed as follows:

kðtÞ ¼ ð
_xðtÞ€yðtÞ � _yðtÞ€xðtÞÞ2

ð _xðtÞ2 þ _yðtÞ2Þ
3
2

ð16Þ

where _xðtÞ, €xðtÞ, _yðtÞ, and €yðtÞ are the first and second derivatives of
xðtÞ and yðtÞ, respectively, and ðxðtÞ; yðtÞÞ is the parametric represen-
tation of the curve. To account for noise, xðtÞ and yðtÞ are typically
smoothed using a Gaussian function gðt;rÞ [52,53]. The smoothed
curve curvature kðt;rÞ can be expressed as follows:

kðt;rÞ ¼ ð
_Xðt;rÞ€Yðt;rÞ � _Yðt;rÞ€Xðt;rÞÞ2

ð _Xðt;rÞ2 þ _Yðt;rÞ2Þ
3
2

ð17Þ

where _Xðt;rÞ and €Xðt;rÞ are defined at the convolution of xðtÞwithe
the first and second derivatives of gðt;rÞ correspondingly. _Yðt;rÞ

and €Yðt;rÞ can be defined similarly. Before computing the curva-
ture, the hand boundary is re-sampled at 1024, equal-distant,
points [52,53]. Fig. 30(b) shows the curvature of the hand contour
shown in Fig. 30(a). Choosing the value of r is critical to ensure both
good detection and localization. In general, smaller r values lead to
better localization, however, noise could give rise to false positives.
On the other hand, larger r values reduce false positives but good
localization is difficult. To address this issue, multi-resolution
schemes have been proposed (i.e., curvature scale-space [52]), how-
ever, time requirements are higher. Since our system produces
images of high quality, we have found that a r value equal to 20
yields good detection and localization results.

It can be noted by observing Fig. 30(b) that the curvature of the
finger valley between the index finger and the thumb is much
smaller compared to the other valleys. As a result, detecting and
localizing point D is more difficult than the other three valleys.
Moreover, it is easy to confuse its location with other points on
the hand boundary, having similar curvature values such as point
X. To deal with this issue, we use a reference point (i.e., R) as shown
in Fig. 30(a). A disadvantage of using the landmarks shown in
Fig. 30(a) for partitioning the hand is that the palm cannot be sep-
arated from the hand silhouette. To address this issues, additional
landmark points would be needed, for example, on the opposite
sides of the wrist. However, detecting and localizing these points
reliably would be difficult since the curvature in the wrist region
is quite as Fig. 30(b) illustrates.

The goal of our first experiment in this section is to investigate
how errors in partitioning the hand could affect verification and
identification performance. Therefore, we have performed experi-
ments to compare landmarks-based segmentation versus morpho-
logical-based segmentation. Since the palm cannot be segmented
using landmark points, our comparisons used information from
the fingers only. First, we computed Zernike descriptors for each
finger up to order 20, segmented using landmarks or morphologi-
cal operators. Then, we performed verification experiments using
each finger separately in the spirit of the experiments reported in
Section 8.1.2.

Fig. 31 shows the verification results obtained for each finger.
Each experiment was performed 30 times, each time using five
samples per person for enrollment. Our results indicate that mor-
phological-based segmentation has better performance than land-
marks-based segmentation in the case of the little, ring, middle,
and index fingers. In the case of the thumb, morphological-based
segmentation performs better for FAR rates smaller than 0.04.
Obviously, segmenting the thumb from the hand is more challeng-
ing than the rest of the fingers due to its higher flexibility. These
results suggest that combining morphological-based with

Fig. 30. (a) A sample hand contour, (b) the curvature of the hand contour. R is a reference point which is used for identifying the landmarks. The hand boundary has been
re-sampled at 1024, equal-distant, points.

Fig. 29. (a) A sample hand contour and its landmarks. Points E� I and A� D show
the location of the fingertips and valleys; (b) finger segmentation using the
landmarks in (a) and some auxiliary points.
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landmarks-based segmentation for separating the thumb from the
hand might yield better results than either approach alone
although it would be more time consuming. Next, we performed
both verification and identification experiments by fusing informa-
tion from the fingers using both majority voting and weighted
sum. Fig. 32 shows the results obtained in this case for each seg-
mentation method. As it can be observed, landmarks-based seg-
mentation has similar performance to morphological-based
segmentation in the case of verification using majority voting.
However, morphological-based segmentation performs better than
landmarks-based segmentation in all other cases.

It is worth noting by comparing Fig. 19 to Fig. 32(a) and (b) that
using information from the palm in addition to information from
the fingers for verification (i.e., Fig. 19) does not lead to signifi-
cantly better results than using information from the fingers only
(i.e., Fig. 32(a) and (b)). Similar conclusions can be made in the case
of identification by comparing Fig. 24 with Fig. 32(c) and (d). On
the other hand, segmenting the palm from the hand is much more

expensive than segmenting the fingers from the hand. This is be-
cause segmenting the fingers from the hand requires applying a
single morphological closing operation using a fixed radius disk
structure element. However, segmenting the palm from the hand
requires applying the iterative process described in Section 5. If
the palm is disregarded, then there are no significant differences
in terms of time between landmarks-based segmentation and mor-
phological-based segmentation. In particular, implementing both
methods in MATLAB 7.4.0 on a 3.19 GHz 64-bits machine with
2 GB of RAM, landmarks-based segmentation takes 0.09 s on aver-
age while morphological-based segmentation takes 0.14 s on
average.

8.6. System performance over time

In this section, we report several results to illustrate the perfor-
mance of the proposed method over large lapses of time. In this
context, we recorded 10 new samples from 20 of the 101 subjects

Fig. 31. Average ROC curves using morphological-based and landmarks-based segmentation for verification using each finger separately: (a) little, (b) ring, (c) middle, (d)
index, and (e) thumb. Each experiment was repeated 30 times using five enrollment templates per subject and the average is reported.
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after a period of 9 months (i.e., 200 images). These samples were
used to test the performance of our system when there is a sub-
stantial passage time between the acquisition of the template
and test images. In a similar manner as before, we repeated each
experiment 30 times using 3, 4, and 5 samples from our initial data
collection as enrolment templates. To keep results consistent, we
used exactly the same enrolment templates in each experiment
as in our previous experiments. Fig. 33(a) and (b) show the average
ROC and CMC curves respectively obtained in this case. As it can be
observed by comparing Fig. 33(a) with Fig. 18(d), and Fig. 33(b)
with Fig. 23(b) there is a small deterioration in system perfor-
mance over time, however, this is quite reasonable and acceptable.

To further test the performance of our method on time lapse, we
performed more experiments using a publicly available hand data-

base provided by University of Notre Dame [54]. This database was
created by collecting data on three different sessions. In the first
session, two images from 132 subjects were collected. In the sec-
ond session, which was conducted a week later, three images were
collected from the same 132 subjects. The third session, which was
conducted 15 weeks later from the second session, three images
were collected from 177 subjects of which 86 had participated in
the first two data collections [54]. The database contains both
range and color images, each being 640� 480 in size.

In our experiments, we used the color images of the same 86
subjects who participated in all three sessions. To extract the hand
silhouette, we used the same algorithm described in [54]. However,
since lighting was not uniform in all images, some areas of the palm
have low contrast. As a result, the hand silhouette was defected

Fig. 32. Comparison of morphological-based and landmarks-based segmentation using different fusion strategies: (a) verification using weighted sum, (b) verification using
majority voting, (c) identification using weighted sum, and (d) identification using majority voting. Each experiment was repeated 30 times using five enrollment templates
per subject and the average is reported.

Fig. 33. Effect of time lapse: (a) average ROC curves for verification based on decision-level fusion (majority voting) using 3, 4, and 5 templates per subject; (b) average CMC
curves for identification based on score-level fusion (weighted sum) using 3, 4, and 5 templates per subject. The experiment was performed 30 times using the same
enrollment templates as in the previous experiments. For testing, we used 200 images from 20 of the 101 subjects, taken 9 months later.
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many times and we were not able to segment the palm satisfacto-
rily. Therefore, we decided to use only information from the fingers
in our experiments. Similarly to other experiments, we computed
Zernike descriptors for each finger up to order 20. Verification
was performed using the majority voting rule while identification
was performed using the weighted-sum rule. In both cases, we used
the samples from one of the three session as enrollment templates
and the samples from the other two sessions for testing.

For consistency reasons, we adopted the same setup as in [54]
to form the gallery (i.e., enrollment) and probe (i.e., test) image
sets. That is, gallery images were chosen to be images collected
prior to those chosen as probe images [54]. Following this rule,
only images collected during the second week could serve both
as probe and gallery images. For each time lapse, we performed
two experiments by switching the enrollment samples with the
test samples. Since the number of samples was not equal in all ses-
sions (e.g., two samples per person in the first session and three
samples per person in the second and third sessions), we report
average performance for each time lapse.

Fig. 34 shows the results obtained for each time lapse. Fig. 34(a)
shows that the performance of our method is close to 98% when
FAR is equal to 0.01; these results do not change much for different
time lapses. Fig. 34(b) illustrates that recognition is robust over
time. There is a slight inconsistency for ranks 1 and 2 (i.e., the rec-
ognition rate based on 16 weeks time lapse is higher than 1 and
15 weeks time lapse), however, this is probably due to the unequal
size of the data sets.

Table 14 reports the Equal Error Rate (EER) and TAR for each
method when FAR is equal to 5% assuming a 16 week time lapse
as reported in [54]. As it can be observed, our approach shows bet-

ter performance. Table 15 reports the identification results for each
method assuming 1 week and 16 weeks time lapse as reported in
[54]. Again, our methods shows better performance. Moreover,
our method seems to be more robustness over time since the iden-
tification rate does not change significantly.

9. Conclusion

We have presented a new approach to hand-based verification
and identification using a component-based representation of the
hand and fusion. The proposed method has several advantages
including that it is peg-free, it does require the extraction of any
landmark points on the hand, it is independent of the position
and orientation of the hand, and tolerates finger motion very well.
The only restriction imposed by our system is that users must
stretch their hand during image acquisition to avoid touching
figures.

Our system represents the geometry of the fingers and the back
of the palm using translation, rotation, and scale invariant Zernike
moments. To improve the computational efficiency and accuracy of
high-order Zernike moments, we have adopted an improved algo-
rithm that avoids redundant computations and uses arbitrary pre-
cision arithmetic and look-up tables. Using a database of 1010
images from 101 subjects and five enrollment templates per sub-
ject, we obtained a TAR = 99.98% when FAR = 0.1% and EER =
0.044 for verification, and 99.98% accuracy for identification.
Comparisons with alternative approaches using the whole hand
or individual parts of the hand, illustrate the superiority of the pro-
posed approach both in terms of speed and accuracy. Also, qualita-
tive comparisons with systems reported in the literature indicate
that our system performs comparable or better.

Implementing the proposed system on a 3.19 GHz 64-bits ma-
chine with 2 GB of RAM, the computation of Zernike moments up
to order 20/30 for the fingers and the palm using double precision
architecture in Visual C++ Studio 2005 is less than 0.01 s. The total
preprocessing time for hand–arm segmentation and finger–palm
segmentation using MATLAB 7.4.0 is less than 0.73 s on average.
Time can be further improved without sacrificing accuracy signifi-
cantly by disregarding the palm as discussed in Section 8.5. There-
fore the proposed system can be employed for on-line applications.

For future work, first we plan to perform larger scale verifica-
tion and identification experiments by increasing the size of our
database. This would allow us to obtain more accurate error esti-
mates. Moreover, we plan to perform additional tests to evaluate
the robustness of our method when there is substantial passage
time between the template and test images. Second, we plan to
investigate the idea of combining multiple templates into a single,

Fig. 34. Effect of time lapse: (a) average ROC curves for verification using score-level fusion (weighted sum) of fingers; (b) average CMC curves for identification using score-
level fusion (weighted sum) of fingers. 86 subjects participated in three separate sessions in which 2, 3 and 3 images were taken from each subject (total 688 images).

Table 14
Time lapse verification performance comparison between our method and Woodard’s
method [54] using the Notre Dame University database.

Time lapse 16 week

Method Woodard [54] (%) Proposed (%)

EER 5.5 1.72
TAR (FAR = 5%) 94 99.3

Table 15
Time lapse identification performance comparison between our method and Woo-
dard’s method [54] using the Notre Dame University database.

Time lapse 1 week 16 week

Method Woodard [54] Proposed Woodard [54] Proposed

Recognition Rate 91% 97.7% 94% 98.4%
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‘‘super-template”, in order to build more accurate models for each
subject and reduce storage requirements. Third, we plan to inves-
tigate feature selection schemes in order to reduce the dimension-
ality of the feature vectors without sacrificing discrimination
power. This would also reduce time requirements since we would
need to compute a small number of Zernike moments only. Finally,
we plan to perform additional comparisons with other methods in
the literature using the same database.
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