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Abstract. Detection of foreground objects in video requires a robust
technique to model its background. Current background modeling tech-
niques use heuristics to build a representation of the background, while it
would be desirable to obtain this model automatically. Also permanent
changes to the background model, such as removed/added objects to
the scene are not addressed explicitly in currently existing methods. In
this paper a robust technique based on recursive learning of video back-
ground model is presented. The proposed modeling technique achieves a
fast convergence speed and an adaptive, accurate background model. Our
contributions can be described along four directions. First, a recursive
learning scheme is developed to build the models based on pixel features;
i.e. color. Second, for each pixel in the scene, a distinct classification cri-
terion is derived from its background model and is used to label it as
background/foreground. Third, we exploit dependencies between pixel
colors to insure that the model is not restricted to using only indepen-
dent features. Finally, an adaptive pixel-wise schedule is proposed used
to adapt the model convergence. The proposed method has this ability
to re-insert the uncovered parts of the background into its model while
handling difficult dynamic backgrounds.



1 Introduction

In visual surveillance systems, stationary cameras are typically used. However,
due to camera shake, or inherent changes in the background itself, such as fluctu-
ations in monitors and fluorescent lights, waving flags and trees, water surfaces,
etc. the background of the video may not be completely stationary. In these types
of backgrounds, referred to as quasi-stationary backgrounds, a single background
frame is not useful to detect moving regions. Pless et al. [1] evaluated different
models for dynamic backgrounds. Typically background models are defined in-
dependently on each pixel, and depending on the complexity of the problem, use
the expected pixel features (i.e. colors) [2] or consistent motion [3]. Also they
may use pixel-wise information [4] or regional models of the features [5].

In [4], a single 3-dimensional Gaussian model for each pixel in the scene is
built, where the mean and covariance of the model were learned in each frame.
Kalman Filtering [6] is also used to update the model. These background mod-
els were unable to follow and represent multi-modal situations. A Mixture of
Gaussians modeling technique was proposed in [7] and [8] to address the multi-
modality of the underlying background. There are several shortcomings for the
mixture learning methods. First of all, the number of Gaussians needs to be
specified. Second, this method does not specifically deal with spatial dependen-
cies. Also, even with the use of incremental-EM, the parameter estimation and
its convergence is noticeably slow where the Gaussians adapt to a new cluster.
The convergence speed can be improved by sacrificing memory as proposed in
[9], limiting its applications where mixture modeling is pixel-based and over long
temporal windows. A recursive filter formulation is proposed by Lee in [10]. How-
ever the problem of specifying the number of Gaussians as well as the adaptation
in later stages still exists. Also this model does not account for the situations
where the number of Gaussians change due to occlusion or uncovered parts of
the background.

In [2], El Gammal et al. proposed a non-parametric kernel density estimation
for pixel-wise background modeling without making any assumption on its prob-
ability distribution. Therefore, this method can easily deal with multi-modality
in background pixel distributions without determining the number of modes
in the background. However there are several issues to be addressed using non-
parametric kernel density estimation. First, these methods are memory and time
consuming. For each pixel in each frame the system has to compute the average
of all the kernels centered at each training feature vector. Second, the size of the
temporal window used as the background buffer needs to be specified. Too small
a window increases the estimation speed, while it does not incorporate enough
history for the pixel, resulting in a less accurate model. Also the adaptation will
be critical by using small window sizes. Increasing the window size improves the
accuracy of the model but with the cost of memory and slower convergence. Fi-
nally, the non-parametric KDE methods are pixel-wise techniques and do not use
the spatial correlation of the pixel features. In order to adapt the model a sliding
window is used in [11]. However the model convergence is critical in situations
where the illumination suddenly changes. In order to update the background for



scene changes such as moved objects, parked vehicles, or opened/closed doors,
Kim et al. in [12] proposed a layered modeling technique. This technique needs
an additional model called cache and assumes that the background modeling is
performed over a long period. It should be used as a post-processing stage after
the background is modeled.

In this paper we propose an adaptive learning technique in a recursive for-
mulation to generate and maintain the background model. There are four major
contributions presented in our proposed method. (i) The recursive formulation
accumulates sufficient evidence for background model through time, and unlike
the mixture learning techniques does not assume any parameters and probabil-
ity densities for the background pixels. Unlike non-parametric density estima-
tion techniques, our method does not use any fixed size temporal window, as
the learning rates are independent and adaptive at each pixel. This builds the
background model, using information in all frames from the beginning, without
compromising the stability of the model and memory needs. By incorporating a
learning rate, the model converges to the actual one at each pixel and a forget-
ting rate is proposed to account for those background samples that are not valid
anymore due to occluded or uncovered parts of the background. This implies an
independent, variable and adaptive window size for the background pixels that
can deal with difficult situations such as suddenly changing background. (ii)
Dependencies between the pixel features are exploited in our implementation,
resulting in more accurate models. (iii) We build up a model for each back-
ground pixel and these models are used to derive an adaptive decision criterion
for each pixel. In the classification, these models are compared and the pixels
are classified as foreground or background based on the adaptive classification
criteria. (iv) In the proposed method instead of a global learning rate for all
the pixels in the scene an independent, adaptive learning schedule is used over
time to enhance the model convergence. Finally, we use the spatial correlation
of the models for neighboring pixels to achieve the spatial consistency of the
background and foreground models.

The rest of this paper is organized as follows: in Section 2 the proposed algo-
rithm is presented and we explain how the model incorporates the dependencies
between features. In Section 3, classification by using a threshold map as well
as enforcing the spatial consistency of the neighboring models are discussed. In
Section 4 the experimental results of the proposed method are presented and
the performance of this method is compared with existing techniques. Finally
the conclusion of this paper is drawn in Section 5.

2 Adaptive Background Learning

In this section we describe the proposed recursive learning scheme. The formu-
lation is discussed in one dimension as the extension to higher dimensions is
straightforward. Then we discuss how dependencies of pixel features in higher
dimensions can be captured. The proposed method, in pseudo-code, is shown in
Figure 1.
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Fig. 1. Our proposed recursive learning algorithm.

Let z(t) be the the intensity value of a pixel at time ¢. The non-parametric
estimation of the background model that accurately follows its multi-modal dis-
tribution can be reformulated as:

0:() =[1 =Bt 01—1(-) + - Ha [745601-1(")] (1)

where 6,(+) is the probability density function of each pixel at time ¢ and is
updated by the local kernel H [z;6;—1(-)] with bandwidth A, and a; and f; are
the learning rate and forgetting rate schedules, respectively. In currently existing
methods, both parametric and non-parametric, the learning rates are selected
to be constant and have small values. This makes the convergence of the pixel
model to be slow and keeps its history in the recent temporal window of size
L = 1/a. This window size in non-parametric models is critical as we need to
cover all the possible fluctuation of the background model. In other words, the
changes of a pixel intensity value may not be periodic and regular, thus do not fit
in a temporal window. In such cases larger windows are needed, resulting in more
memory requirements and computational power to achieve real-time modeling.
Another issue in existing non-parametric techniques is that window size is fixed
and the same for all pixels in the scene. Notice that some pixels may have less
fluctuations and therefore need smaller windows to be accurately modeled, while
others may need a much longer history to cover all of their possible changes.

In order to speed up the convergence of the modeling, in the proposed
method, we build a schedule for learning the background model at each pixel
based on its history. At early stages the learning occurs faster (a(t) = 1) and by
time it decreases and converges to the target rate (a(t) — ag). The forgetting
rate schedule is used to account for removing those values that have occurred
long time ago and no longer exist in the background. These schedules will make
the adaptive learning process converge faster, without compromising the stability
and memory requirements of the system. Also training these rates independently
for each pixel based on spatial changes in the scene makes the convergence more
effective for different situations. This learning schedule is shown in equation (2).

alt) = (1 o a0> (2)




Function h(t) is a monotonically increasing function, used instead of ¢, to
make the updating process adaptive to different situations, such as sudden
changes in the illumination and removal/adding new objects to the background.
Once the system detects a sudden change, the function h(t) resets to 1 and the
learning rate jumps to its original large value, improving the model recovery
speed. In the current implementation we assume that the forgetting rate is a
portion of the learning rate; 8(t) = k - a(t), where k < 1 and is chosen based
on the amount of inherent changes in the background. The less forgetting rate
is chosen, the more history of covered background is preserved.

2.1 Capturing Feature Dependencies

In the above section we described the recursive learning scheme in 1-D where
background and foreground models are updated using intensity values of the
pixel at each time. To extend the modeling in higher dimensions and using color
and spatial information, we can consider each pixel as a 5 dimensional feature
vector in R®, as f (R, G, B, z,y). The kernel H in this space is a multivariate
kernel H . In this case, instead of using a diagonal matrix Ha, we use a full
multivariate kernel. The kernel bandwidth matrix A is a symmetric positive def-
inite d x d matrix. Once each pixel is labeled as background, having accumulated
enough evidence, its features are used to update the bandwidth matrix. Let’s
assume that we have N pixels, x1,Xs, -, Xy, labeled as background. We build
a3 x N —1matrix X = {xj — xj_1]i = 2,--+, N;x; = [r;, 9:b;]" } of successive
deviations. The bandwidth matrix is a updated by:
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3 Foreground/Background Classification

For each pixel, considering that current time is ¢, we have a function 6,(-) for the
background model. The domain of this function is R, where N is the dimen-
sionality of the pixel feature vector. For simplicity, assume the one dimensional
case again, where 6(-) is the background model whose domain is [0, 255], be-
cause intensity values are gray scale and take values between 0 to 255. From
equation (2), each model ranges between 0 to 1 and its value shows the amount
of evidence accumulated in the updating process; i.e. the estimated probability.
For each new intensity value, I, we have the evidence of each pixel model as
0:(I). The classification uses a simple decision rule, 6;(-) < k to label the pixel
as foreground if this criterion is satisfied.

In many applications with dynamic or quasi-stationary backgrounds, we need
an adaptive classification criteria. Because not all the pixels in the scene follow
the same changes the decision threshold x should be adaptive and indepen-
dent for each pixel and has to be driven from the history of that pixel. Figure
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Fig. 2. Adaptive classification criteria

2(a) shows an arbitrary frame of a video sequence containing water surface. As
expected, pixels in the sky do not have much inherent fluctuation, but those be-
longing to the water surface change their values through time. It is expected that
when the pixel values do not change much, fewer samples give enough evidence
for the background (or foreground) model, but those with more fluctuation need
more samples to gather the same amount of evidence. We expect that for pixels
with more inherent changes, the value x needs to be small in short term, while
for those pixels with less changes, larger values for k work well to label them
correctly as background or foreground. This can be observed in Figure 2(b),
where darker parts refer to smaller values for k¥ and brighter ones show larger
values. Thresholds k;;, for each pixel (4, j), should adapt to a value T such that
the classifier gives the 5% false negative rate:

255

> 6i(z) 2095 (4)
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The same argument is valid for the learning schedules. For those pixels with
more changes, the learning schedule has to decrease slower to compensate for the
small rate of evidence accumulation; shown in Figure 2(c). Thus the derivative
of function h(t), in equation (2) is inversely proportional to the model variance;
h(t) = WM-)) where ) is chosen so that equation (2) is normalized.

The temporal consistency is addressed in the recursive background model
learning, but we have not explicitly incorporated spatial consistency of the mod-
els. In other methods such as [7] and [13] the spatial consistency is addressed
using connected components and morphological post processing. The correlation
between neighboring pixels in video frames can be modeled using the Markov
Random Field property [14].
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Fig. 3. Convergence and recovery speed

The spatial consistency in our proposed method is enforced on foreground
and background regions as an intermediate process. The main idea is apply the
classification criterion on the median on the models in a spacial neighborhood
instead of the model itself. Given a pixel values I(z,y) at time ¢ its model is
67Y(I(x,y)). The median of models in an 8-connected neighborhood C, can be
computed by € = med(AC(I¢)) where I¢ are pixel values in the neighborhood.

This explicitly addresses the coherence between neighboring pixels. However,
because the proposed adaptive learning technique uses long-term information,
the effect of noise becomes less dominant, as the model learns the complex modes
of the underlying data.

4 Experimental Results and Comparison

In this section, we present the results of the proposed method on several diffi-
cult situations and compare its performance with some existing techniques both
quantitatively and qualitatively.

Convergence speed. Our first experiment compares the convergence and
recovery speed of our proposed scheduled learning rates with the fixed learning
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Fig. 4. Water surface: Comparison of methods.

rate and constant window size used in non-parametric density estimation. In this
experiment we took a video containing water surface as a part of its background.
One sample frame of this video is shown in Figure 2(a). Figure 3(a) shows the
convergence speed of the proposed method. In this figure we have taken the first
300 frames of the water surface video sequence. The modeling error is plotted
against time. As there were no objects in the scene, the modeling error is the
difference of the background model from the actual background, which can also
be considered as normalized number of false positives. The solid curve shows the
error of the model using the proposed scheduled learning. The model converges to
the actual background in less than 10 frames. The dashed curve shows the effect
of a constant, large learning rate, which converges slower than our method and
finally the dotted curve shows the effect of a non-parametric density estimation,
with a constant small window size. Because the size of the window is small, the
model converges in about 20 frames, but it can not learn all the possible changes
in the background model, so it converges to a higher error. By increasing the
window size, the error decreases with the price of convergence speed.

Recovery speed. Figures 3(b) and 3(c) show the comparison of the recovery
speed of the model from an expired background model to the new one. This
happens in the situation where in an indoor scene, lights go off (Figure 3(b))
or they go on (Figure 3(c)) or when a new object is permanently added to or
removed from the background. In Figure 3(b) there are three global illumination
changes at frames 23, 31 and 47, consequently and it stabilizes after frame 47.
As it can be seen in Figure 3(b), our proposed method recovers the background
model after these changes in less than 4 frames. The constant, large learning
rate recovers much slower, shown by the dashed curve, and the non-parametric
density estimation technique, the dotted curve, is not able to recover even in 150
frames. A similar situation, when lights are turned on, is shown in Figure 3(c).
It needs to be mentioned that the mixture learning algorithms are even slower
in convergence and recovery. A typical mixture learning technique proposed in
[7], converges in more than 1000 frames.

Irregular motion. By using the water surface video sequence, we compare
the results of foreground region detection using our proposed method with a
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Fig. 5. Result of the proposed foreground region detection.
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Fig. 6. Shopping mall: (a) First frame of the scene. (b) The background model after
50 frames and (c) after 95 frames.

typical non-parametric kernel density estimation [2]. For this comparison the
sliding window of size L=150 is used in KDE method. The results of KDE
method are shown in Figure 4(b) and the foreground masks detected by our
proposed technique are shown in Figure 4(c). Because in the water surface the
changes occur slowly and do not have any regular patterns, the model (even with
a large window size), is not able to learn all the changes, resulting in detection of
some waves on the water surface. Our technique learns all the possible changes
and the temporal consistency of the foreground masks is maintained by using
both foreground and background models.

Challenging environments. Shown in Figure 5 are the results of the pro-
posed foreground detection method on several challenging video sequences. In
Figure 5(a), an indoor situation with flickering monitors is shown. In Figure
5(b), there is a fountain in the background of the scene having dynamic texture
and in Figure 5(c) there are waving trees as a typical outdoor scenario causing
an irregular dynamic pattern in the background. In all of the above cases, our
proposed method is able to detect the foreground regions accurately and ignores
the background movements.

Initially non-empty scene. Figure 6, shopping mall sequence, shows the
performance of the proposed method in situations where the first frames do
not contain only the background, but some foreground objects as well. In this
situations both traditional parametric and non-parametric background modeling
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Fig. 7. Room sequence: Result of the proposed method on modeling the background
of a video taken by a hand-held camera.

techniques fail to incorporate the uncovered background fast enough. As it can be
observed in Figure 6(a), the video does not have a clear set of background frames
to be modeled by a parametric or non-parametric technique using a constant
sized temporal window. Our proposed learning technique starts with the first
frame and incorporates the information from new frames to build its background
and foreground models. The resulting background model is visualized in Figure
6(b) and 6(c) after 50 and 95 frames (about 1.5 and 3 seconds, respectively.)
Our proposed method fades the objects that existed in the first frame to achieve
a clear background model.

Hand-held camera. Figure 7, Room video sequence, shows an experiment
on a video taken with a hand-held camera. The camera movement is quite notice-
able, yet it is not large enough to classify this video under categories containing
global motion. Because the movement of the camera does not follow a specific
pattern and is slow, it is very difficult to use a global motion filter to detect its
background and foreground regions. One arbitrary frame of such a video is shown
in Figure 7(a). Figures 7(b)-(f) show the result of proposed background modeling
on frames 2, 32, 61, 120 and 247, respectively. These frames are approximately
0.067, 1, 2, 4 and 8 seconds after the camera starts taking the video. White



pixels show those parts of the background erroneously labeled as foreground.
It can be seen that the amount of misclassified background pixels decreases by
time, showing that those pixels have gathered enough evidence and have seen
all the possible movement of the camera. This is also quantitatively illustrated
in Figure 7(g).

Table 1. Quantitative evaluation and comparison. The sequences are Meeting Room,
Lobby, Campus, Side Walk, Water Surface and Fountain, from left to right from [13].

[Videos |MR]LB|CAM[SW]|WS[FT |Avg]
Proposed|0.92{0.87| 0.75 |0.72|0.89]0.87(0.84
13] 0.91]0.71] 0.69 [0.57[0.85[0.67]0.74
7] 0.44]0.42] 0.48 [0.36]0.54]0.66/0.49

Quantitative evaluation. The performance of our proposed method is
evaluated quantitatively on randomly selected samples from different video se-
quences, taken from [13]. Detection results of some of these sequences are shown
in Figures 4 and 5. Figure 4 shows water surface video sequence and Figure 5
(b) and 5 (b) show fountain and campus vide sequences, respectively. The simi-
larity measure between two regions .4 and B is defined by, S(A, B) = %. This
measure is monotonically increasing with the similarity of the detected masks
and the ground truth, with values between 0 and 1. We calculated the average of
similarity measure of the foreground masks detected by our proposed method,
the Mixtures of Gaussians in [7] and [13]. By comparing the average of the sim-
ilarity measure over different video sequences in Table 1, we can see that the
proposed method outperforms techniques proposed in [7] and [13], while there
are no parameters to be heuristically selected in our proposed method. This can
also be observed by the fact that the masks detected by the proposed method
are more consistent on different video sequences.

5 Conclusion and Future Work

As the main contribution of this paper, an adaptive learning scheme for back-
ground and foreground modeling is presented in a recursive formulation. The
adaptive learning and forgetting rates proposed here make the generated models
adapt to gradual and sudden changes. As our second contribution, the decision
criterion for each pixel is trained independently, based on the pixel model. Be-
cause these criteria are data driven, they are automatically updated and add to
the accuracy of the overall performance. Third, by introducing adaptive learn-
ing rate schedules, modeling is temporally coherent and accounts for increased
recovery rate in situations where new objects are introduced to or removed from
the background. Finally, dependencies between pixel features can be captured
using multivariate models. The experimental results show that the system con-
verges reasonably fast to the underlying models and is able to recover fast from



each expired model. This ensures that our method re-inserts the uncovered parts
of the background into the background model while handling difficult dynamic
backgrounds such as water surface, waving trees, rain/snow, etc.

One direction of future investigation is to use this work in non-parametric
tracking approaches. Also by optimizing the learning rate schedules we can im-
prove the result of foreground object detection and recovery speed.
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