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Crater Detection Using Unsupervised Algorithms
and Convolutional Neural Networks
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Abstract— Craters are among the most abundant features on
the surface of many planets with great importance for planetary
scientists. They reveal chronology information about planets and
may be used for autonomous spacecraft navigation and landing.
Although numerous research efforts have been carried out in
the field of crater detection, existing crater detection algorithms
(CDAs) are only helpful in a limited number of applications.
A promising crater detection approach involves two main steps:
1) hypothesis generation (HG) and 2) hypothesis verification
(HV). During HG, potential crater locations are detected. The
validity of the hypothesized crater locations is then tested in a HV
step. In this context, we discuss some commonly used algorithms
for HG such as highlight-shadow region detection and Hough
transform as well as our novel and enhanced algorithms based
on interest point detection and convex grouping. A key objective
of this paper is to analyze their performance while paying special
attention to how they affect the accuracy of the verification step.
To deal with different size craters, we focus on multiscale HG. For
HV, we have chosen convolutional neural networks which have
recently achieved state-of-the-art performance in many computer
vision applications. Due to the variation of test sets in the
literature, it is often challenging to compare the performance
of different CDAs in a fair way. In this paper, we present a
comprehensive performance evaluation and comparison of CDAs.
Each algorithm has been trained/tested using common data sets
generated by a systematic approach.

Index Terms— Convex grouping, convolutional neural net-
works (CNNs), crater detection.

I. INTRODUCTION

THE amount of data obtained from the moon, mars, and
other planetary surfaces has been constantly increasing

by new exploratory missions. Craters are among the main
topographic features available on these surfaces created by
the impact of meteoroids. As the main application of crater
detection, accumulated numbers of craters and their size-
frequency distribution provide the primary mechanism in
studying chronology of planetary surfaces and their geo-
logical processes. Craters also provide significant landmarks
for terrain-based navigation systems and have been used in
applications such as accurate spacecraft landing, navigation,
and control [1]–[4].
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It is clear that the analysis of the huge planetary data
available demands some sort of automation. Despite significant
amount of work in crater detection, there exist no standard
and generally acceptable tool for automatic carter detection.
In practice, accurate crater detection is challenging due to
variations in size, level of degradation, internal morphologies,
and imaging parameters. Overlapping craters or other geolog-
ical features may also bring difficulties in automatic crater
detection [5].

Numerous automatic crater detection approaches have been
proposed in the past. These algorithms detect craters using
supervised, unsupervised, or a combination of both techniques.
Although many of these algorithms have only been tested
on a limited data set, they have also been used as the
basis to improve lunar and planetary crater catalogs [6]–[9].
Recent advances in the field of computer vision and machine
learning have motivated the investigation and development of
more effective crater detection algorithms (CDAs). In this
paper, we investigate CDAs based on the combination of
fast unsupervised techniques and advanced supervised deep
neural network classifiers. Similar to other object detection
applications, such as vehicle detection [10], we consider a two-
step detection process, consisting of a multiscale hypothesis
generation (HG) step and a hypothesis verification (HV) step.
In the HG step, the candidate crater regions are hypothesized
using unsupervised and fast image processing techniques.
The resultant hypotheses are then provided to the HV step
for verification. We have investigated four HG algorithms in
this paper based on Hough transform [11], highlight-shadow
regions [12], convex grouping [13], and interest points [14].
The performance of the HG algorithms and their impact on
the HV step have been analyzed using extensive experiments.
HV is essentially a two-class pattern classification problem
between crater and noncrater classes. In this paper, convolu-
tional neural networks (CNN), which have recently achieved
state-of-the-art performance in many computer vision appli-
cations, have been investigated for HV. In particular, the per-
formance of three CNN architectures for crater classification
has been investigated in an effort to improve HV performance.
A systematic approach for creating and augmenting a crater
detection training set has also been considered along with a
study on the effects of the training set to the HV performance.

This paper has its origin in NASA’s Crater Detection Chal-
lenge [15] with the eventual goal of providing information on
planetary formation and geology, along with applications in
landing site selection, and rover path planning and navigation.
Although we have targeted the detection of specific size craters
(i.e., 10–100-m radius) on lunar surface, due to the greater
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importance of small craters in planetary science applications,
the findings of this research provides insights for small crater
detection on similar planetary surfaces.

To our knowledge, this paper presents the most com-
prehensive evaluation and improvements of HG approaches.
First, we have proposed a novel and effective CDA based
on interest point detection. Second, the performance of our
convex grouping-based CDA has been significantly improved
compared to the original algorithm proposed in [16]. Third,
the Hough transform and highlight-shadow region-based HG
algorithms, inspired from popular crater detection approaches,
have been included in our evaluation. Using a common data set
has allowed us to perform a fair performance evaluation and
comparison of these algorithms. The evaluation of the brute-
force (i.e., sliding-window) approach further demonstrates the
benefits of the two-step HG and HV approach.

This paper is an extension of [16] with some major improve-
ments and extensions. First, we have improved some of the
HG algorithms (i.e., convex grouping) investigated in [16]
and added new ones (i.e., interest points) which have shown
the best overall performance. Second, we have performed
additional experiments by introducing new training sets where
instead of choosing the training samples randomly, we chose
them from the hypotheses generated using the HG algorithms.
This has yielded more performance improvements compared
to using random training sets. Finally, three CNN architectures
were evaluated in this paper compared to only one CNN in
[16]. Moreover, we have experimented with different parame-
ters such as using rectified linear unit (ReLU) activation func-
tions in this paper compared to sigmoid activation functions
in [16].

The rest of this paper is organized as follows. Section II
summarizes previous work. In Section III, the details of the
CDAs investigated are explained. Our experimental results and
discussion are presented in Section IV. Finally, Section V
presents our conclusions and future research directions.

II. BACKGROUND

A large number of CDAs have been proposed in the
literature including in more than 70 publications reviewed in
[3]. In this section, we discuss the most recent and major work.

Unsupervised CDAs are a major part of previous work on
crater detection. Assuming some intuitive visual characteristics
for craters, unsupervised algorithms employ image processing
and pattern recognition techniques to locate these features.
For instance, by assuming circular rims for craters, techniques
like Hough transform have been customized to detect such
regions. Variations of the Hough transform have been among
the most popular techniques to detect craters as circular
features. Troglio et al. [17] employed a generalized Hough
transform to detect the center of crater regions; these points
are then used as seeds for watershed segmentation to detect
the actual crater regions. Galloway et al. [18] used Hough
transform to verify regions which are manually extracted from
images. Bue and Stepinski [19] employed Hough transform
to detect candidate crater regions on binary curvature maps
computed from Martian DEMs. Candidate regions are then
verified based on criteria on crater rim pixel distributions.

Honda et al. [20] have also evaluated the effect of several
preprocessing techniques on the performance of crater detec-
tion based on the Hough transform.

Salamuniccar and Lončarić [21] employed fuzzy Hough
transform for crater detection on Martian DEMs which
improves performance by taking into account the gradient
value and orientation of edges. The detected circles are
verified based on probabilities computed from several crater
morphological criteria, and the final craters parameters are
fined tuned. This CDA was later successfully employed in [22]
to detect craters on DEMs reconstructed from lunar optical
images. Other circle detection approaches such as tensor
voting [23] or genetic algorithms [20] have also been used
for crater detection.

In a pioneer automated crater detection work,
Banderia et al. [24] detected craters by analyzing the
probability volume obtain from template matching-based
algorithm. The volume is particularly calculated from the
template matching of circular crater templates in the possible
range of radiuses with the extracted edge images. Assuming
convex groups of edges for crater rims, candidate crater
region detection based on convex grouping is proposed by
Emami et al. [16]. Highlight and shadow regions of craters
have also been used as the main features for crater detection.
Smirnov [25] detected crater highlight and shadow regions
based on thresholding and analysis of edge shapes. Urbach
and Stepinski [12] considered highlight and shadow features
as an indicator of possible crater regions. The extracted
features are then filtered using, power, area, and shape
filters. The remaining highlight and shadow features are
then matched to detect candidate regions. As it can inferred
from previous works, unsupervised approaches alone cannot
be used for accurate crater detection and the hypotheses
generated by these algorithms need to be verified, typically
using supervised techniques.

Stepinski et al. [26] employed decision trees for the
verification of candidate regions which are detected using
a flooding-based algorithm from enhanced digital elevation
models (DEM). Decision trees work based on craters’ mor-
phological attributes such as diameter, depth, and elongation.
Ubrach and Stepinski [12] used moments and other simple
shape features to represent image patches which are classified
as crater and noncrater using decision trees. Savage et al. [27]
presented a parametric model to characterize small craters
based on morphological features such as diameter, rim height,
and eccentricity on imagery and elevation modes of Martian
surface using a Bayesian approach. The model is then utilized
to distinguish between primary and secondary small craters.

Haar-like features have also been extensively used in
the literature for crater region classification [28]–[30].
Emami et al. [31] studied the application of various
feature descriptors in combination with support vector
machines (SVMs) for crater region classification. As in
many other computer vision applications, CNNs have also
been employed for automatic crater detection in recent
years. Cohen et al. [32] applied a CNN on already
extracted image patches from a crater detection data set.
Emami et al. [16]also employed a CNN to classify regions
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Algorithm 1
1- Negate the input image (I) to obtain the negative image
(N).
2- Remove large features from both images using:

I = I − M I

N = N − M N

where MI and MN are smoothed images obtained by median
filtering of I and N respectively.
3 - Update the input image by combining I and N:

I = I + N

4 - Apply a Gaussian filter G on I at multiplescales toobtain
smoothed images I1, I2, and I3.
-Perform steps 5-8 on images I1, I2, and I3:

5 - Detect edges using Canny edge detector.
6 - Perform line fitting on the detected edges.
7 - Extract convex group of lines.
8 - Find the enclosing boundingbox Bc around each

detected convex group.
9 - Combine overlapping detections (Bs)

extracted by convex grouping. Palafox et al. [33] used CNNs
to detect other planetary features such as volcanic rootless
cones (VRCs) and transverse aeolian ridges (TARs) on martian
images. They employ five different size networks trained for
each class of VRCs and TARs. A sliding window is applied
on the test images to feed regions to the CNNs.

III. AUTOMATIC CRATER DETECTION

In this section, we provide details about the crater detection
approaches considered in this paper based on multiscale HG
and HV using CNNs.

A. Multiscale Hypothesis Generation

The goal of HG is the detection of possible crater regions
using fast image processing techniques in order to avoid
classifying the whole image. For this purpose, we consider
prior assumptions about the appearance of craters. Specifically,
we look for convex groups of edges, circular groups of
edges, highlight and shadow regions, and groups of interest
points. In Sections III-A1–III-A4, each of these algorithms is
explained.

1) HG Using Convex Grouping: Algorithm 1 detects convex
groups of edges as candidate crater locations. This algorithm
is based on our original algorithm proposed in [16] with mod-
ifications that lead to significant performance improvements.

In steps 1–3, large image features in the image are removed
using a median filter of size 101. To detect various sized
craters, multiscale Gaussian filtering is performed in step 4
using

G(x, y) = 1

2πσ 2 e
− x2+y2

2σ2 (1)

where (x, y) represents a sample pixel location.

Algorithm 2
1- Apply median filter on input.
2 - Apply the Gaussian filter G on I at multiple scales to
obtain smoothed images I1, I2, and I3.
-Perform steps 3-5 on each image I1, I2, and I3 :

3 - Detect edges using Canny edge detector.
4 - Apply Hough Circle Transform.
5 - Find the enclosing bounding box Bc around each

detected circle.
6 - Combine overlapping detections (Bs)

Steps 5–8 apply convex grouping to generate a preliminary
set of hypotheses. The split-and-merge algorithm [34] has
been used to fit lines on the detected edges in step 6. These
line segments are characterized by direction, orientation, and
length. Convex groups of lines are then detected using the
technique propose by Jacobs [13]. Based on the convex
grouping technique, a set of oriented lines form a convex
shape, if for each line segment, all the other line segments
lie on the same side as its normal. The algorithm only detects
the most salient convex groups. A convex group of lines is
salient if

L1,n

L1,n + G1,n
> k (2)

where L1,n represents the sum of lengths of all the line
segments (li ) in group, G1,n represent sum of gap lengths
(Gi ) in the group, and k is predefined threshold. The algorithm
starts by considering every line segment as a convex group,
and then expand the groups by adding additional line segments
using backtracking [13].

Any of the proposed HG algorithms might detect multiple
regions corresponding to a single crater. Multiple detections
slow down HV and result in a larger number of false detec-
tions. Step 9 removes such detections using two substeps. First,
the detected regions are clustered based on an intersection over
union (IOU) criterion which is computed as

IOU(Bi , B j ) = Area(Bi ∩ B j )

Area(Bi ∪ B j )
(3)

where Bi , B j are two sample rectangular regions. Bi and
B j are clustered together if IOU

(
Bi , B j

)
is greater than a

predefined threshold. In the second substep, each cluster of
boxes is represented by a box whose sides are the average
width and height.

2) HG Using Hough Transform: The HG algorithm based
on Hough transform is straightforward. This algorithm gen-
erates hypotheses by applying Hough circles transform on
multiscale edge images as follows.

Noise reduction is a key step for robust Hough transform
results. In Algorithm 2, median filtering first and then multi-
scale Gaussian filtering perform this job. The circular Hough
transform [11] is then applied followed by the next steps
similar to Algorithm 1.

3) HG Using Highlight-Shadow Region Detection: Craters
typically consist of matching pairs of highlight and shadow
regions. This assumption is a key factor for the next HG
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Algorithm 3
1- Negate the input image (I) to obtain the negative image
(N).
2- Remove large features of both images using:

I = I − M I

N = N − M N

where MI and MN are smoothed images obtained by median
filtering of I and N respectively.
3 - Apply thresholding on I and N.
4 - Extract connected components CI and CN from I and N
and respectively.
5 - Find the enclosing bounding box bi for each ci ∈ CI

and b j for each c j ∈ CN ; call them BI and BN respectively.
6 - Match the pairs of highlight (bi ∈ BI ) and shadow
(b j ∈ BN ) regions when:

di stance(bi , b j ) < 2 × sq r t(max(area(bi ), area(b j )))

(4)

7 - Find the enclosing bounding box Bc around each paired
region and the remaining unpaired regions.
8 – Combine overlapping detections (Bs).

algorithm. This algorithm is inspired from the CDA proposed
in [12], and consists of the following steps.

The main goal of steps 1–4 is the extraction of highlight
and shadow regions in the original (I ) and negative (N)
images. The first two steps are similar to Algorithm 1 and
their goal is to remove large image features. Prior to the
connected component extraction in step 4, small regions are
filtered using morphological opening. In step 6, a highlight
(bi ) and shadow (b j ) region are matched if the Euclidean
distance between the center points of these boxes is less than
the distance computed in (4). This threshold is relative to the
size of the larger region and is obtained empirically. In the
case of a match, the minimum enclosing box containing the
matched boxes is considered as the new hypothesized location.
The previous steps do not guarantee the extraction of both
highlight and shadow regions for each crater, especially for
eroded craters. To avoid missing such craters, the remaining
unmatched regions are also added to the final set of hypotheses
in step 7.

4) HG Using Interest Points: Craters often have strong
intensity variations in multiple directions. This characteristic
is the key factor for the next HG algorithm based on the Shi–
Tomasi corner detector [14]. To detect interest points, for each
pixel p, neighborhood N(p) is considered and a covariance
matrix is computed over N(p) as

M =

⎡
⎢⎢⎢⎢⎣

∑
N(p)

(
d I

dx

)2 ∑
N(p)

(
d I

dx
× d I

dy

)

∑
N(p)

(
d I

dx
× d I

dy

) ∑
N(p)

(
d I

dy

)2

⎤
⎥⎥⎥⎥⎦ (5)

where (d I/dx) and (d I/dy) are the derivatives in x- and
y-direction computed using the Sobel operator. The

Algorithm 4
1- Create an image pyramid by down-sampling the input
four times: {I1, I2, I3, I4}
For each image Ii in the image pyramid perform steps 2-4:

2- Calculate matrix M (equation 5) for every pixel in the
image, and store the minimum eigenvalues.
3- Threshold the stored eigenvalues (equation 6) to detect
the interest points.
4- Generate a box Bc of size 10×10 around each interest
point.

5- Upscale the detections (Bs)
6- Combine overlapping detections (Bs)

eigenvalues of M are then computed and the minimum
eigenvalue λmin is stored for each pixel. To select the interest
points, the stored eigenvalues are compared to an empirically
obtained threshold which is computed as

λmin + (λmax − λmin)/10 (6)

where λmin and λmax are the minimum and maximum eigenval-
ues computed over all image pixels. The HG algorithm using
interest points consists of the following steps.

The image pyramid is built by subsampling the input image
by a factor of 2 at each level. As a result, the resulted
detections are also scaled by the same factor. In particular,
in step 5, we upscale each box by a factor of 2l , where l is
the level where the interest point was detected at. It should
be mentioned that interest points were first used for crater
detection in [35] although using a different approach. Our
implementation of that approach resulted in very poor results
which prompted us to develop the modified approach presented
in Algorithm 4.

B. CNNs for Crater Region Verification

The set of hypothesized craters typically contain a large
number of false detections which must be removed in the HV
step. In this paper, we have only considered CNNs for HV
as they have outperformed traditional classification methods
(e.g., SVMs) in [16].

Unlike conventional approaches involving feature extraction
and classifier training, CNNs learn both the features and clas-
sification model during training. In this way, they reduce the
need of designing optimal preprocessing, feature extraction,
and classification techniques to obtain the best classification
results. Here, we analyze the performance of three different
CNN architectures for crater HV. These networks are named
CNN15C2F1, CNN32C2F1, and CNN32C2F3. In each of the
names, the size of the input image is represented by the
subscript of CNN, while the number of convolutional layers
and fully connected layers are represented by the subscripts
of C and F, respectively. The CNN architectures are illustrated
using the feature maps in Fig. 1. Next, we explain these
architectures in more detail.

1) CNN15C2 F1: This network is inspired from the CNN
proposed in [32]. The input layer is fed with images of size
15 × 15, followed by two convolutional layers involving the
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Fig. 1. Convolutional/pooling and fully connect layer’s feature maps of (a)
CNN15C2 F1, (b) CNN32C2F3, and (c) CNN32C2F1 networks.

application of 20 kernels of size 5×5. A fully connected layer
involving 500 neurons follows the second convolutional layer.
Although kernels of size 4 × 4 were used in [32], the kernel
size was changed to 5 × 5 in this paper based our validation
set experiments.

2) CNN32C2F: This network is based on the popular LeNet
[36] and received images of size 32 × 32 as input. The next
two layers consist of convolutional and max pooling modules
where the convolutional layers consist of 6 and 16 kernels of
size 5 × 5, respectively. Three fully connected layers of sizes
120, 84, and 10 neurons follow the convolutional layers.

3) CNN32C2F1: This network, which is also LeNet based
and has been motivated by our earlier work [16], is applied
on images of size 32 × 32. The input layer is followed by a
convolutional and max pooling module, with six convolutional
filters of size 5 × 5. A similar module with 12 convolutional
filters and a fully connected layer with 768 neurons make the
rest of the network.

All three CNNs outputs are calculated through soft-max
functions. Also, the outputs of all layers are passed through
ReLUs which have shown better performance compared to
other activation functions. The max-pooling operations in the
networks are obtained using 2 × 2 filters.

IV. EXPERIMENTAL RESULTS

A. Data Set

Our crater detection data set consists of 578 images of size
600×400 with a resolution of 1 meter per pixel obtained from
the Lunar Reconnaissance Orbiter Narrow Angle Cameras.
Each image has tens of craters with a radius in the range
of 10–100 m which have been confirmed by multiple NASA
citizen scientists. Our algorithms have been designed to detect
craters within this size range, although in practice smaller

Fig. 2. (Top) Positive and (Bottom) negative samples using (a) randomly
extracted image patches, (b) Hough transform, (c) highlight-shadow region
detection, (d) convex grouping, and (e) interest points.

craters are also often detected. We have randomly chosen
400 images from the data set for training purposes while the
rest are kept for testing. In order to train and evaluate the
performance of our algorithms, several data sets have been
extracted from each set of images.

1) Training Set 1, Randomly Chosen Image Patches: The
positive training samples of this data set are extracted around
the labeled craters. Data augmentation is used to increase the
variation of the training data. In particular, the labeled regions
are slightly mislocalized by resizing them or applying transla-
tions in random directions. The transformed regions maintain
at least 50% overlap with the original regions. The negative
samples are extracted randomly from noncrater regions in the
training images. Using this approach, 7600 samples of each
class are extracted. The final training set contains 6600 sam-
ples of each class while the rest of the samples are kept for
validation purposes.

2) Training Set 2, Hypothesized Image Patches: This data
set consists of four mutually exclusive training sets. To pro-
duce each set, one of the four HG algorithms is applied on the
training images. The hypothesized regions are then manually
checked and labeled as crater or noncrater regions. Each of
the four training sets was generated by randomly selecting
6600 samples of each class from the hypothesized regions.
Sample image patches form Training Set 1, and four parts of
Training Set 2 are shown in Fig. 2.

3) Test Set 1, Randomly Chosen Image Patches: Similar to
the approach used to generate Training set 1, this test set is
generated by extracting 3500 positive and negative samples
from the original test.

4) Test Set 2, Fully Labeled Images: Test set 2 contains
20 images randomly selected from the original set of test
images. As mentioned earlier, although our algorithms are
adjusted to detect craters with radius larger than 10 m, smaller
craters are also often detected. For a fair comparison, smaller
regions which are detected by our algorithms are not counted
as true or false positives. Therefore, to estimate the number
of false positives correctly, smaller size craters need to be
labeled too. In our experiments, hundreds of various size
craters were manually labeled in each test image, and used
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Fig. 3. Sample test site with all labeled craters shown in white.

as ground truth to test all combinations of the HG and HV
algorithms. Fig. 3 shows a sample test region with all labeled
craters shown in white.

B. Evaluation Criteria

To evaluate crater detection performance, we need to define
a criterion for true detections. A hypothesis is considered a
true positive if its IOU with ground truth is at least 30%;
otherwise, it is considered a false positive. The choice of
the threshold was motivated from an earlier “crater detection”
NASA challenge [15]. The recall and precision rates are used
to evaluate performance

Recall = TP

GP
× 100, Precision = TP

TP + FP
× 100 (7)

where TP, FP, and GP are the number of true positives, false
positives, and ground truth craters, respectively.

Additional criteria are needed to evaluate the performance
of the HG algorithms. For instance, although hypothesized
regions with more than 30% IOU with ground truth are con-
sidered true, more accurate localization is desired. Therefore,
the average IOU between ground truth and the generated
hypotheses is reported.

Furthermore as mentioned earlier, multiple hypotheses
might correspond to the same crater. However, hypothesized
regions with higher IOU have a better chance to be verified
which leads to an overall better performance. Therefore,
the average IOU between ground truth and the highest over-
lapping hypotheses is also reported for each HG algorithm.

Finally, the average number of hypotheses per image is
reported for each HG algorithm. Less number of hypotheses
is desirable since it lowers the computational load of the HV
step and leads to less false detections overall.

C. Performance Evaluation of HG Algorithms

In this section, we analyze the performance of the HG
algorithms on Test Set 2. Table I summarizes the results of
these experiments. As shown in the first row of Table I, all
HG algorithms achieve close to perfect recall rate in detecting
true craters. This due to designing these algorithms and fine-
tuning their parameters with the goal of achieving a high recall
rate at the expense of more false positives. This is desirable
because while it is possible to reject false positives in the HV
phase, false negatives cannot be recovered in that phase.

In order to show the effectiveness of the two phase crater
detection scheme based on HG and HV compared to the brute
force approach, we have also employed a sliding window
approach for HG. The second column in Table I illustrates the

performance of this approach. Similar to other HG algorithms,
we have adjusted the sliding window parameters to obtain near
to perfect recall rate. Specifically, the window moves over
the image by a stride half its size and a scale factor of 2.
Although a finer set of parameters could be used, the chosen
parameters resulted a recall rate of 99.61% while generating
only 2813 hypothesis for each image. For obvious reasons,
the sliding window approach generates hypotheses having the
lowest average IOU (41.20%) with the ground truth. It is
interesting to note that due to the high number of hypotheses
generated, the best hypothesized regions have a relatively high
IOU (56.64%) with ground truth.

The next column in Table I summarizes the performance of
the Hough transform-based HG. Achieving a 99.61% recall
rate, this algorithm generates a relative large number of
hypotheses per image (i.e., 773). The detected crater hypothe-
ses have an average IOU of 47.96% with ground truth, while
the highest overlapping detections have an IOU of 60.76%
with ground truth. These IOU results are relatively high com-
pared to the other algorithms, ranking Hough transform second
after convex grouping. The number of hypotheses generated
by this algorithm is the second highest after the sliding
window approach. This is due to the existence of various size
craters, eroded craters, and craters located close to each other
which makes it challenging to limit the range of the Hough
transform parameters to lower the number of detections while
keeping the recall rate high. As discussed in Section IV-D,
large number of hypotheses generated by this algorithm are
challenging noncrater regions which lower the precision of the
HV step. Overall, we believe that the application of the Hough
transform is practical for automatic crater detection in possibly
less cratered sites, or when looking for specific size craters;
alternatively, it can be used as a semiautomatic approach when
manual verification of false detections is feasible.

The performance of the highlight-shadow region-based HG
is summarized the fourth column of Table I. This algorithm
is able to obtain a high recall rate of 98.49% by generating
436 hypotheses per image. The hypothesized crater detections
IOU and the highest overlapping detections IOU were 45.08%
and 59.38% with the ground truth, respectively.

The next column shows the performance of convex group-
ing. Although the differences with the rest of the algorithms
are not significant, this algorithm seems to generate the most
accurate hypotheses with a 54.1% average IOU with ground
truth. Similarly, the highest overlapping hypotheses have an
average IOU of 61.85% with the ground truth. Moreover, this
algorithm produces the fewest hypotheses on average (i.e.,
213 per image).

It should be emphasized that the convex grouping approach
used here is significantly improved compared to the original
approach used in [16]. In particular, the preprocessing step of
removing large features from the original and negative images
has allowed us to choose a lower gap tolerance (i.e., 25% from
49% used in [16]) and a higher saliency threshold (k) (i.e., 0.75
versus 0.51 used in [16], leading to less and higher quality
groups. This has resulted in generating only 213 hypotheses
on average per image compared to 7889 hypotheses per image
in [16], while retaining similar recall rates.
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TABLE I

PERFORMANCE OF HG ALGORITHMS ON TEST SET 2

Fig. 4. Sample true hypotheses generated by (a) Hough transform,
(b) highlight-shadow region, (c) convex grouping, and (d) interest points.

The last column of Table I summarizes the performance
of using interest points for HG. As it can be observed,
the overlap between the generated hypotheses and ground
truth is lower than in the previous algorithms. However, this
approach generates 298 hypotheses on average per image
and ranks second after convex grouping. Most importantly,
as discussed in Section IV-D, these hypotheses can be verified
with high accuracy in HV which results in the best overall
crater detection performance.

In conclusion, all the HG algorithms considered in this
paper have been able in principle to detect craters with nearly
perfect recall rate due to fine-tuning their parameters. A more
meaningful analysis of their performance, however, can only
be achieved in combination with the HV phase.

Fig. 4 demonstrates each HG approach by showing several
sample hypotheses generated by each of them. For clarity,
we only show the highest overlapping hypotheses with ground
truth, while the rest of the hypotheses and the hypotheses
corresponding to smaller craters which are not part of the
ground truth have been removed. Specifically, Fig. 4(a) shows
the successful detection of four craters in a high-density crater
region using Hough transform. Fig. 4(b) demonstrates the
success of the highlight-shadow region approach to detect a
crater on the edge of a shaded part of the image with major
parts of the crater rim not visible. Fig. 4(c) shows the strength
of convex grouping in detecting two severely eroded craters.
Finally, Fig. 4(d) shows a sample region where the interest
points approach has detected two craters which are completely
located inside another eroded crater.

D. HV Using CNNs

In our experiments, many CNN hyper parameters were
tested on a validation set and the three CNNs discussed in

Fig. 5. Recall (dark gray) and precision (light gray) rates on Test Set 1 using
CNNs trained on Training Set 1.

Section III-B were chosen as the best performing networks.
In particular, various input image sizes were tested for each
network. For instance, an input size of 32, instead of 15, for
CNN15C2F1 results in lower accuracy. Adding more convo-
lutional or fully connected layers, or changing the activation
functions did not result in performance improvements on the
validation set. The three selected CNNs were trained using
the backpropagation algorithm with a learning rate between
0.01 and 0.05 based on the validation set experiments. The
intensity values of all training and test data fed to the CNNSs
were normalized in range −0.5 to +0.5.

In the first set of our HV experiments, the CNNs are trained
on Training Set 1 and tested on Test Set 1. As shown in Fig. 5,
due to the similarity between Training Set 1 and Test Set
1, all CNNs result in high accuracy. CNN32C2F3 results in
slightly higher recall rate but lower precision rate compared
to the other CNNs. To perform a more meaningful comparison,
we applied the CNNs on Test Set 2 in our next set of
experiments

E. Performance Analysis by Combining HG With HV

Our goal in this set of experiments is to find the best
performance on Test Set 2 using different combinations of
HG and HV algorithms. We also investigate the effect of
HG performance on the verification phase. In the first set of
experiments, the hypotheses generated by each HG algorithm
were verified using CNNs trained on Training Set 1. Table II
summarizes the results of these experiments. Then, the same
set of experiments are performed using CNNs trained on
Training Set 2. Specifically, to apply a CNN on the hypotheses
generated by a particular HG algorithm, the CNN is trained
on a subset of Training Set 2 which is generated by the
same HG algorithm. Table III summarizes the results of these
experiments.
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TABLE II

PERFORMANCE OF HV ON TEST SET 2 USING CNNS TRAINED ON TRAINING SET 1

TABLE III

PERFORMANCE OF HV ON TEST SET 2 USING CNNS TRAINED ON TRAINING SET 2

The main observation by comparing Tables II with III is that
verification performance improves in general by employing
Training Set 2. The first row of Table II shows the results
of HV combined with the sliding window approach. The
hypotheses generated by the sliding window approach are quite
different from the ones generated by other HG approaches due
to their similarity with Training Set 1 samples. As a result,
HV accuracy is higher in this case. In particular, using sliding
window-based HG, it is possible to get the highest recall rate
of 88.75% and precision rate of 71.78% using CNN32C2F1.
The relative high precision rates compared to the next two
rows of the table can be explained by the fact that unlike the
hypotheses generated by the other algorithms, the majority
of the hypotheses generated by the sliding window approach
do not contain challenging geological features. In the case
of the other HG algorithms, however, the extracted regions
are typically more interesting containing geological features
that are likely to be misclassified as crater leading to high
false positive rates. The main drawback of the sliding window
approach is the large number of hypotheses compared to the
other HG methods (see Table I—row 4). Assuming that crater
detection is applied on large planetary sites, this can be very
problematic.

HV performance on hypotheses generated by the Hough
transform, especially in terms of precision, is the lowest
in Table II. Even CNN32C2F1, which shows overall the best
performance, has a recall rate of 89.92% and a precision rate
of 45.75%. The main reason for this is the high number of
challenging hypotheses generated by the Hough transform.
Many of the hypothesized regions include geological features
similar to craters which are not represented well in Training
Set 1. As Table III shows, it is possible to improve the
verification performance of all CNNs by training them on
Training Set 2. In this case, an improved recall rate of 91.47%
and precision rate of 62.59% is obtained for the Hough
transform by CNN15C2F1.

Similar observations can be made for HV combined with
highlight-shadow detection approach. Assuming the CNNs
trained on Training Set 1, the best verification performance

is obtained using CNN32C2F1 (i.e., 93.79% and 60.8% recall
and precision rates). As Table III shows, using Training Set 2
for training yields a recall rate of 94.18% and a precision rate
of 69.62% for CNN32C2F3.

Combining convex grouping with CNNs results in better
performance compared to the previous methods as shown
in Tables II and III. Among the CNNs trained on Training
Set 1, CNN32C2F1 has recall and precision rates of 88.75%
and 75.82%; using Training Set 2, it is possible to improve
these rates to 89.53% and 78.3%, respectively.

Considering precision rate alone, the best performance of
95.18% is obtained using interest point-based HG as shown
in Table III. However, as it could be expected from the low
IOU rates in Table I, the recall rates are relatively lower
than the other algorithms in Tables II and III. While there
is no clear best performing CNN in this case, the best recall
rate of 91.47% is obtained using CNN32C2F3 while the best
precision rate of 95.18% is obtained using CNN15C2F1.

Overall, Tables II and III show that verification performance
using Hough transform and highlight-shadow HG is not sat-
isfactory. This seems to be due to the fact that none of the
training sets can properly represent the large number of chal-
lenging noncrater test samples. We believe, however, that using
bootstrapping [16] to generate a more representative training
set could improve verification results of all the algorithms
discussed.

F. Further Discussion on the Experiments

To better understand the overall performance of each HG
algorithm, we report in Fig. 6 the average recall and precision
rates over all three CNNs. Our results indicate that regard-
less of the training data set used, verification of hypotheses
generated by the interest points approach yields the best
performance with convex grouping ranking second. Therefore,
we believe that HG using interest points or convex grouping
combined with CNN-based HV is the most promising crater
detection strategy. Fig. 7 shows some examples based on these
two approaches. The hypotheses generated by convex grouping
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Fig. 6. Average recall (dark gray) and precision (light gray) rates of HV,
categorized by the HG algorithm, using CNNs trained on (Top) Training Set
1 and (Bottom) Training Set 2.

Fig. 7. Crater detection results using (a) convex grouping-based HG
combined with CNN32C2F1 for HV and (b) interest point-based HG combined
with CNN15C2F1. for HV. True positives, false positives, and false negatives
are shown in solid white, dotted white, and solid black, respectively

are verified by CNN32C2F1 [Fig. 7(a)] while CNN15C2F1
is applied to verify the hypotheses generated by the interest
points [Fig. 7(b)]. Both CNNs are trained on Training Set 2.
It should be noted that since only craters with a radius larger
than 10 m are considered in our evaluations, smaller craters
are not marked in the figure.

Fig. 8. Average recall (dark gray) and precision (light gray) rates on Test
Set 2 using CNNs trained on (a) Training Set 1 and (b) Training Set 2.

In evaluating different CNN architectures, Table II shows
that CNN32C2F1 outperforms the other two networks assum-
ing three different HG algorithms, namely, sliding win-
dow, Hough transform, and highlight shadow. Also in the
verification of hypotheses generated by convex grouping,
CNN32C2F1 and CNN15C2 F1 produce very similar results.
Finally, CNN32C2F3 shows the most satisfactory performance
using highlight-shadow and interest point-based HG algo-
rithms, although the other two networks produce better pre-
cision rates. Fig. 8(a) shows the performance of each CNN
averaged over all HG algorithms. Although averaging the rates
in Table II is not very accurate due to different numbers of
hypotheses generated by each HG algorithm, it still demon-
strates the superiority of CNN32C2F1 compared to the other
CNNs. It should be reminded that the positive and negative
samples in Training Set 1 are generated from random locations
around cratered and noncratered regions of the images, but
the hypotheses generated by the HG algorithms (except for
the sliding window) have different characteristics. Therefore,
the performance analysis of CNNs trained on Training Set 1,
and tested on hypotheses generated by HG algorithms implies
CNN32C2F1 generalizes better than the other two networks.

Unlike Table II results, analyzing Table III results from HV
perspective does not show that any of the CNNs is superior to
the others. In particular, CNN15C2F1 performs the best when
combined with Hough transform, while CNN32C2F3 shows
the best performance when combined with the highlight-
shadow HG approach. Both networks perform very well when
applied on interest point-based HG. In the case of hypotheses
generated by convex grouping, CNN15C2F1 and CNN32C2F1
perform relatively better than CNN32C2F3. Considering aver-
age verification performance, however, CNN15C2F1 performs
slightly better than the other networks [Fig. 8(b)]. Regardless
of average HV performance, the results of Table III show
which combination of HV and HG algorithms should be used
to obtain the best performance when training data similar the
test site is available.

Last but not least, it should be mentioned that a number of
false positives reported in our experiments are detected close
to ground truth craters but with an overlap less than 30% with
them. As shown in Fig. 7(a), this is especially the case when
using convex grouping for HG. By manually removing such
detections from the false positives, the precision rate of convex
grouping-based HG and CNN32C2F1-based HV can improve
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to 92.4%. The same modification results in 97.9% precision
for interest point-based HG and CNN15C2F1-based HV.

V. CONCLUSION

Crater detection is an important task in planetary sci-
ences with major applications in space exploration and
research. In this paper, we investigated a two-step approach for
automatic carter detection based on HG and HV. Specifically,
four unsupervised algorithms were considered for detecting
possible crater regions: Hough transform, highlight-shadow
region detection, convex grouping, and interest points detec-
tion. A sliding window approach was also considered for
comparison. Through comprehensive experiments, we inves-
tigated the performance of the HG algorithms in combination
with CNNs for HV. Our experimental results provide valuable
insights about the best combinations and the importance of the
training data on performance. Overall, the best HG algorithms
were based on interest points detection and convex grouping
in combination with CNNs for HV. It should be mentioned
that among the HG methods tested, only the convex grouping
method could provide a more accurate measure of the size of
the craters detected. This is because it encloses the detected
craters by a convex group of lines although the detections are
shown by the largest rectangle that encloses a convex group.
Depending on the application in mind, reporting crater size
information could be very important.

For future work, we plan to extend our methods in order
to detect smaller size craters (i.e., less than 10-m radius).
The main reason for limiting our work to craters within a
specific size range (i.e., 10–100 m), was the availability of
ground truth in that range. Although we have not performed
systematic experiments to detect smaller size craters, prelim-
inary results using our interest point-based CDA have shown
that it is possible to detect smaller craters with good accuracy
mainly because smaller craters form fairly compact clusters
of interest points. We also plan to analyze the performance
of our algorithms with respect to accurate crater localization
and sizing. Fusing hypotheses generated by different HG
techniques to further improve performance is also a topic
for future research. Although such an approach will increase
computational cost, we expect improved recall and precision
rates due to different characteristics of the HG approaches.

Moreover, we plan to study the problem of crater detection
assuming limited training data. In particular, using our trained
CNNs on lunar images and transfer learning approaches,
we intend to test our algorithms on data from other planets.
We also plan to enhance overall crater detection accuracy using
DEM. In particular, we plan to investigate the performance
hybrid CDAs which combine information both from optical
images and DEMs. By improving the resolution of planetary
DEMs using super resolution techniques, it might be possible
to apply our best performing CDAs based on interest point
detection or convex grouping to DEMs with few modifications.
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