
2236 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 11, NOVEMBER 2008

3-D Object Recognition Using 2-D Views
Wenjing Li, Member, IEEE, George Bebis, Member, IEEE, and Nikolaos G. Bourbakis, Fellow, IEEE

Abstract—We consider the problem of recognizing 3-D objects
from 2-D images using geometric models and assuming different
viewing angles and positions. Our goal is to recognize and localize
instances of specific objects (i.e., model-based) in a scene. This is in
contrast to category-based object recognition methods where the
goal is to search for instances of objects that belong to a certain vi-
sual category (e.g., faces or cars). The key contribution of our work
is improving 3-D object recognition by integrating Algebraic Func-
tions of Views (AFoVs), a powerful framework for predicting the
geometric appearance of an object due to viewpoint changes, with
indexing and learning. During training, we compute the space of
views that groups of object features can produce under the assump-
tion of 3-D linear transformations, by combining a small number
of reference views that contain the object features using AFoVs.
Unrealistic views (e.g., due to the assumption of 3-D linear transfor-
mations) are eliminated by imposing a pair of rigidity constraints
based on knowledge of the transformation between the reference
views of the object. To represent the space of views that an object can
produce compactly while allowing efficient hypothesis generation
during recognition, we propose combining indexing with learning
in two stages. In the first stage, we sample the space of views of
an object sparsely and represent information about the samples
using indexing. In the second stage, we build probabilistic models
of shape appearance by sampling the space of views of the object
densely and learning the manifold formed by the samples. Learning
employs the Expectation-Maximization (EM) algorithm and takes
place in a “universal,” lower-dimensional, space computed through
Random Projection (RP). During recognition, we extract groups
of point features from the scene and we use indexing to retrieve the
most feasible model groups that might have produced them (i.e.,
hypothesis generation). The likelihood of each hypothesis is then
computed using the probabilistic models of shape appearance. Only
hypotheses ranked high enough are considered for further verifi-
cation with the most likely hypotheses verified first. The proposed
approach has been evaluated using both artificial and real data,
illustrating promising performance. We also present preliminary
results illustrating extensions of the AFoVs framework to predict
the intensity appearance of an object. In this context, we have built
a hybrid recognition framework that exploits geometric knowledge
to hypothesize the location of an object in the scene and both geo-
metrical and intesnity information to verify the hypotheses.

I. INTRODUCTION

T HE ability to recognize objects and identify their po-
sitions in 3-D is one of the most fascinating skills of

the human visual system. This skill allows people to navigate
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in both familiar and unfamiliar environments, interact with
surrounding objects, avoid obstacles, and identify hazards.
Although recognition is a spontaneous, natural activity for
humans and other biological vision systems, building systems
capable of recognizing relevant objects in their environment
with accuracy and robustness has been a difficult and chal-
lenging task in computer vision [1]–[3]. This is mainly because
the appearance of an object can have a large range of variation
due to photometric effects, scene clutter, changes in shape (e.g.,
nonrigid objects), and most importantly, viewpoint changes.
As a result, different views of the same object can give rise to
widely different images.

Currently, there are two main research directions in object
recognition: i) geometrical models, largely based on shape in-
formation and ii) intensity models, also known as empirical
models [4], are based on direct representations of image inten-
sity. Geometrical models employ descriptions based on the pro-
jected boundary of an object. Typically, geometric invariant de-
scriptions and index functions are employed for recognition. An
excellent review on geometric models appears in [5]. On the
other hand, intensity models describe an object by a set of im-
ages which is acquired for a range of views and illumination
conditions that are expected to be encountered in subsequent
recognition. To account for clutter, occlusions, and viewpoint
changes, invariant local photometric descriptors are computed
from interest regions of an object [6], [7]. A representative col-
lection of papers in this area can be found in [8]. We review both
approaches in Section II.

In this paper, we consider the problem of recognizing and lo-
calizing 3-D objects from 2-D images using geometric informa-
tion under different viewing angles and positions. Our approach
is model-based, that is, we search for instances of specific ob-
jects in a scene. This is in contrast to category-based recognition
where the goal is to search for instances of objects that belong
to a certain visual category (e.g., faces or cars) [9]–[11]. Our
approach employs AFoVs [12]–[14], a powerful framework for
handling variations in the geometric appearance of an object due
to viewpoint changes, which is also supported by psychophys-
ical findings indicating that the human visual system works in a
similar way [15], [16]. Given an image that might contain one
or more objects in various positions and orientations, our goal
is to identify and localize all the models present in the image.
Pose information is only recovered implicitly by recovering the
AFoVs parameters.

Simply speaking, AFoVs are functions that express a rela-
tionship among a number of views of an object in terms of their
image coordinates alone. The main theoretical result indicates
that “the variety of 2-D views depicting the shape appearance
of a 3-D object can be expressed as a combination of a small
number of 2-D views of the object.” This suggests a simple but
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powerful framework for predicting shape appearance: “novel
2-D views of a 3-D object can be predicted by combining a small
number of known 2-D views of the object.” The main advantage
of using the AFoVs framework for recognition is that it does
not rely on invariants or full 3-D models. In fact, no camera
calibration or 3-D scene recovery are required. Also, it is fun-
damentally different from multiple-view approaches which per-
form matching by comparing novel views to prestored views of
the object (i.e., reference views). In contrast, AFoVs predict the
geometric appearance of a 3-D object in an novel view by com-
bining a small number of reference 2-D views of the object.

Although interesting and appealing, there are several restric-
tive assumptions behind the underlying theory that limit its prac-
tical use. For example, it is assumed that the feature correspon-
dences between the novel and reference views are known or that
the values of the AFoVs parameters are known. Moreover, it
is assumed that all geometric features of an object are present
in every view of the object (i.e., the objects are transparent).
We have made some progress in our past work towards making
AFoVs more practical for object recognition by: i) coupling
AFoVs with indexing to bypass the correspondence problem
[17], [18], ii) using groups of features to relax the requirement
of transparent objects [17]–[19], and iii) estimating the ranges
of values that the parameters of AFoVs can assume [17], [18],
[20]–[22] using Singular Value Decomposition (SVD) [23], [24]
and Interval Arithmetic (IA) [25], [26]. Using two reference
views per object and assuming 3-D linear transformations, we
have demonstrated the feasibility of our approach by recog-
nizing novel object views from quite different viewpoints and
locations.

This work builds upon our previous work on object recogni-
tion using AFoVs [17], [18], which is reviewed in Section III,
with the goal of further improving its efficiency and perfor-
mance. Although AFoVs allow us to compute the space of views
that an object can produce, representing this space compactly
and efficiently for recognition purposes is a critical issue. In
the past, we simply sampled the space of views that an object
can produce and represented information about the samples in
an index table using hashing. Although this approach produces
good results in practice, it has several drawbacks. First, it has
high space requirements even for a moderate number of objects.
Second, when generating the views of an object it is important
to eliminate all unrealistic views (i.e., due to the assumption of
3-D linear transformations). Without imposing extra constraints
on the generated views to identify and reject unrealistic views,
certain hypothetical matches would be invalid, slowing down
recognition. Third, implementing indexing using hashing is not
very effective since it generates a large number of hypothetical
matches, increasing recognition time. Finally, when predicting
the geometric appearance of an object in the scene, it would
help the recognition process if there was a scheme to estimate
the likelihood of each prediction before applying formal verifi-
cation.

We have addressed the above issues in this work, improving
the AFoVs-based recognition framework in several important
ways. First, when generating the space of views that an ob-

ject can produce, we propose imposing a pair of rigidity con-
straints to identify and reject unrealistic views. This saves space
and improves recognition time by reducing the number of in-
valid hypotheses. Second, when representing the space of views
that an object can produce, we propose using a more powerful
scheme that represents the space of views more compactly and
efficiently for recognition purposes by combining indexing with
learning in two stages. In the first stage, we sample the space of
views of an object sparsely and represent the samples using in-
dexing. In the second stage, we build probabilistic models of
shape appearance by sampling the space of views of the ob-
ject densely and learning the manifold formed by the samples.
Learning employs the EM algorithm [27] and takes place in
a “universal,” lower-dimensional, space computed through RP
[28], [29].

The purpose of the first stage is to generate rough hypo-
thetical matches between the models and the scene fast, while
keeping the space requirements of indexing low. To account
for indexing a sparse number of views, we employ a powerful
indexing scheme based on the Sproull - tree [30], [31] which
performs nearest-neighbor search. The purpose of the second
stage is to quickly filter out as many invalid hypotheses as pos-
sible avoiding explicit model verification which could be time
consuming. It should be mentioned that once the probabilistic
models of shape appearance have been built, we only need
to store a few parameters per model (e.g., using mixtures of
Gaussian, we need to store the mixing parameters as well as the
mean and covariance of each component; see Section IV-C);
therefore, the overall space requirements of the method depend
mainly on indexing. Finally, when performing verification, we
propose ranking the hypotheses and verifying the most likely
hypotheses first. Ranking is a byproduct of representing the
space of views of an object using probabilistic models of shape
appearance and reduces recognition time significantly. An
earlier version of this work has appeared in [32].

It is worth mentioning that using geometric models alone is
a viable approach for recognition when color information does
not provide sufficient discrimination information or when ob-
jects luck detailed texture. In general, geometric and intensity
models could be combined in order to build more accurate and
robust recognition systems [4]. In this context, we have extended
the AFoVs recognition framework to predict both geometric
and intensity object appearance. We present preliminary results
where geometric information is used to establish a number of
hypothetical matches between the models and the scene while
both geometric and intensity information is used to verify the
hypothetical matches.

The rest of the paper is organized as follows. In Section II,
we provide a brief review of object recognition. Background
information on AFoVs and our previous work on recognition
using AFoVs is provided in Section III. The improved recog-
nition framework using AFoVs is presented in detail in Sec-
tion IV. Section V presents our experimental procedures and
results using both artificial and real 3-D objects. Employing
AFoVs to predict the intensity appearance of an object along
with preliminary results showing how to employ both geomet-
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Fig. 1. (a) Hypothetical matches using two-point correspondences between a
model and the scene. (b) Match1 produces more matches (good hypothesis),
while (c) Match 2 fails to produce more matches (bad hypothesis).

rical and intensity models for recognition are presented in Sec-
tion VI. Finally, our conclusions and plans for future work are
given in Section VII.

II. OBJECT RECOGNITION REVIEW

Geometrical models are based on the idea that much of the
information about an object resides in its geometric properties.
Thus, they use geometric models to represent the shape of the
object and explore correspondences between the geometric
model and image features during recognition. Given an un-
known scene in this case, recognition implies the identification
of a set of features from the unknown scene which approxi-
mately match a set of features from a known view of a model
object. Fig. 1 shows an example where a set of point features are
used for matching. In general, more robust and discriminative
features can been considered for matching such as regions [33],
[34] or convex groups of line segments [35].

Traditional object recognition systems often lack scalability
when a large number of objects or extensive variations in object
appearance are encountered [36]. Since usually there is no
a priori knowledge of which model features correspond to
which scene features, recognition can be computationally too
expensive, even for a moderate number of models. To limit
the possible number of matches, perceptual organization cues
have been typically employed in order to extract salient struc-
tures from the scene [35]. Also, methods based on geometric
constraints [37] or minimum possible number of feature corre-
spondences [38] have been proposed. Indexing is an alternative
paradigm which uses a priori stored information to quickly
eliminate incompatible matches during recognition [39]–[43].

Accommodating variations due to viewpoint changes is a cen-
tral problem in the design of any object recognition system. Typ-
ical strategies for dealing with the varying geometrical appear-
ance of an object due to viewpoint changes include using geo-
metric invariants [39], [41], explicit 3-D models [38], [44], [45],
and multiple views [46], [36]. According to the first strategy,
invariant properties of geometric features (i.e., properties that
vary little or not at all as viewing conditions change) have been
employed during recognition. In particular, indexing based on
invariants is very efficient since only a single entry for each

set of features needs to be stored, regardless of changes in the
viewpoint. The main problem with this strategy is that it is diffi-
cult or even impossible to find general case geometric invariants
(e.g., no general case invariants exist in the case of visual im-
ages under 3-D perspective projection) [47], [48].

The second strategy employs explicit geometric 3-D models
(e.g., CAD models). When used with indexing, 2-D appear-
ances of the 3-D model are generated and arranged in the
index space [38], [44], [45]. During recognition, a model of the
image formation process is applied on the 3-D model objects in
order to generate predictions of the appearance of the objects.
This strategy is not very practical since 3-D models are not
always available. The last strategy models an object by a set
of 2-D views (i.e., reference views), essentially showing how
the shape of the object appears from different viewpoints. The
aspect graph is probably the most well known multiview rep-
resentation approach [49], [50]. The aspect graph of an object
is a graph structure where every node in the graph represents a
topologically distinct view of the object. Arcs between nodes
represent visual events that occurs as we move from one view
to another by changing viewpoints. Methods based on this
strategy perform recognition by matching one of the reference
views to some part of the novel view. This strategy is not very
efficient because, in general, a large number of views must be
stored for each model object.

Intensity models do not need to recover object geometry
and can learn the appearance characteristics of an object from
training imagery. One idea to capture intensity appearance is by
using grayscale or color histograms [51], [52]. To handle illu-
mination changes, several robust measures have been proposed
[53]. Another idea to capture intensity appearance involves
enumerating many possible object appearances in advance, ob-
tained under various viewpoints and possibly different lighting
conditions. In this case, each model view is stored as a vector
of image intensities, represented in a low dimensional space
[54]. This approach was first used in [55] for face recognition
using Principal Component Analysis (PCA) for dimensionality
reduction. Later, this approach was extended for general object
recognition by parameterizing the PCA space in terms of pose
and illumination [56]. A hyper-surface in this space represents
a particular object. Recognition was performed by projecting
the image of an object onto a point in the eigenspace. The
object was recognized based on the hyper-surface on which it
lies. The exact location of the point determines the pose of the
object. Employing feature selection schemes in PCA spaces to
select subsets of features has shown to improve object detection
results [57].

The most severe limitation of intensity-based approaches is
that they require isolating the object of interest from the back-
ground. Although some of these methods have been demon-
strated successfully on isolated objects or presegmented images,
it is difficult to extend them to cluttered and partially occluded
images due to their global features. To improve the robustness
of intensity-based methods to occlusion and clutter, component-
based object representation schemes have been proposed [58]. A
key issue in this case is how to choose an appropriate set of com-
ponent to represent an object. For certain object classes (e.g.,
faces or cars), this is quite intuitive and the components can be
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chosen manually [58], [59], [60]; however, a more systematic
approach is needed in general. Lately, the emphasis has been on
representing objects in terms of a large number of local descrip-
tors which are computed by applying generic “interest” opera-
tors and computing invariant photometric and image transfor-
mation descriptions from a local region in a vicinity around the
interest points [7], [61], [62]. Using local descriptors for recog-
nition has several advantages including that they are more dis-
tinctive, robust to occlusion, less sensitive to local image distor-
tions (e.g., scale changes, 3-D viewpoint changes) and do not
require segmentation.

One way to compute a set of local descriptors is by placing a
grid on the image and applying certain filters (e.g., Gabor) at the
nodes of the grid [9]. However, centering the grid on the object
when there is occlusion might be difficult. To deal with the is-
sues of occlusion and clutter, first a number of landmarks are de-
tected on the surface of the object by applying various “interest”
operators such as the Moravec operator [63] or the Harris corner
detector [64]. Then, local descriptors are computed from a small
region around each interest point. During training, local descrip-
tors are extracted from a set of reference images and stored in
a database. During recognition, local descriptors are extracted
from a new image; then, they are matched to the database to
establish candidate matches. Fast indexing or nearest-neighbor
algorithms are typically used to speed up this step. Consisted
groups of matched features (i.e., groups of features belonging
to a single object) can be found using transformation clustering.
To eliminate false positives, each match is filtered by identi-
fying subsets of features that agree on the object and its location,
scale, and orientation in the new image. Finally, verification is
performed, for example, using a least-squares approach, to find
consistent pose parameters.

Using local descriptors for category-based object recognition
relies more on powerful representation schemes and learning
algorithms than recognizing specific objects. Due to the chal-
lenges involved in representing and learning the variability be-
tween objects in the same category as well as objects between
different categories, issues related to viewpoint changes have
not been treated explicitly. Instead, they have been considered
as another factor contributing to the variability of objects in the
same category. Therefore, the emphasis has been how to “learn”
this variability using either generative or discriminative models.
Examples of category-based object recognition methods include
the “Bag of Keypoints” approach [10], [65], the “constellation”
model approach [66], [67], and the “pictorial structures” ap-
proach [60], and the “boosting” approach [68].

Two important issues must be addressed when using using
local descriptors for object recognition. First, how to extract
“interest” points that are invariant to illumination changes and
image transformations and second, how to compute a local de-
scriptor for a small region around each interest point that is also
invariant to illumination changes and image transformations.
Both issues have been addressed extensively over the last few
years. Regarding the issue of interest point detection, a lot of em-
phasis has been given on developing scale and affine invariant
detectors while being also resistant to illumination changes. Ex-
amples include the Kadir–Brady detector [69], the Difference of
Gaussians detector [62], the Harris–Laplace detector [70], and

the affine extension of the Harris–Laplace detector [6]. A de-
tailed comparison of various invariant detectors can be found in
[6], [71]. Typically, interest point detectors return some addi-
tional information that allows for determining a scale or affine
invariant region around each interest point. To describe the local
region around each interest point, various photometric, scale and
affine invariant descriptors have been proposed. Examples in-
clude SIFT features [62], PCA-SIFT features [72], moment in-
variants [73], and complex filters [74]. A detailed comparison
of various descriptors can be found in [7].

In general, methods based on geometric models can handle
viewpoint changes explicitly and are more appropriate when
searching for instances of specific objects in the scene; however,
they suffer from problems in extracting geometric features reli-
ably and robustly, have difficulty in describing “nongeometric”
objects, and are not quite capable in differentiating between
a large number of objects. On the other hand, methods based
on intensity models employ more powerful feature extraction
schemes, allowing them to deal more effectively with clutter
and occlusion, and can distinguish among a large numbers of
objects. However, they cannot deal well with objects lacking
detailed texture while viewpoint changes are typically handled
implicitly by considering them as an extra factor of variation
that must be “learned” into the model.

Using geometric or intensity models alone should not be
expected to address very challenging recognition problems.
A more promising direction is probably integrating geometric
with intensity models [4]. The benefits of incorporating geo-
metric information in intensity models has been demonstrated
in a number of studies including [10], [60], [62], [66], [67],
[75]. In some cases, a geometric model is used to confirm
the presence of an object in the scene [62], [75], while in
other cases, geometric information is integrated with intensity
information in the same model [10], [60], [66], [67]. In our
work, we have extended the AFoVs framework to predict
both the geometric and intensity appearance of an object. We
present preliminary results illustrating cases where geometric
information is used to hypothesize the location of objects in the
scene and both geometric and intensity information are used to
verify the hypotheses.

III. BACKGROUND

This section provides a brief review of the theory of AFoVs
as well as our previous work on 3-D object recognition using
AFoVs. Detailed information about AFoVs can be found in [12],
[76], [14], [13], [77], and [78] and about our work in [17]–[22].

A. Review of AFoVs

Simply speaking, AFoVs are functions which express a rela-
tionship among a number of views of an object in terms of their
image coordinates alone. In particular, it has been shown that if
we let an object undergo 3-D rigid transformations and assume
that the images of the object are obtained by orthographic pro-
jection followed by uniform scaling (i.e., a good approximation
to perspective projection when the camera is far from the ob-
ject), then novel views of the object can be expressed as a linear
combination of three other views of the same object (i.e., refer-
ence views) [12]. This result can be simplified by removing the
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Fig. 2. Novel views can be obtained by combining a small number of reference
views. This figure illustrates how to predict the coordinates in the new view from
the coordinates in the reference views using (1).

orthonormality constraint associated with the rotation matrix.
In this case, the object undergoes 3-D linear transformations in
space and AFoVs become simpler, involving only two reference
views.

Specifically, let us consider two reference views and
of the same object which have been obtained by applying dif-
ferent linear transformations, and two points ,

, one from each view, which are in correspondence.
Then given a novel view of the same object which has been
obtained by applying another linear transformation and a point

which is in correspondence with point and , the
coordinates of can be expressed as a linear combination of the
coordinates of and as

(1)

where the parameters , , , are the same for all
the points which are in correspondence across the three views
(see Fig. 2). It should be noted that the above equations can be
re-written using the -coordinates of the second reference view
instead.

The above results hold true in the case of objects with sharp
boundaries; however, similar results exist in the case of objects
with smooth boundaries [76] as well as nonrigid (i.e., articu-
lated) objects [12] (i.e., more reference views are required in
these cases). The extension of AFoVs to the case of perspec-
tive projection has been carried out in [13] and [14]. In partic-
ular, it has been shown that three perspective views of an object
satisfy a trilinear function. Moreover, Shashua [14] has shown
that a simpler and more practical pair of algebraic functions
exist when the reference views have been obtained under scaled
orthographic projection (one perspective and two orthographic
views satisfy a bilinear function). In this work, we consider the
case of orthographic projection assuming 3-D linear transfor-
mations.

B. Recognition Using AFoVs

AFoVs are quite attractive for object recognition since vari-
ations in the geometrical appearance of an object can be repre-
sented in a simple and compact form for the system to handle.
Given a novel view of an object, AFoVs can be used to predict
the image coordinates of object features in the novel view by ap-
propriately combining the image coordinates of corresponding
object features across the reference views. We have exploited
this idea in our past work to recognize unknown views of a
3-D object from a small number of 2-D reference views of the
same object, assuming orthographic projection and 3-D linear
transformations which can handle affine transformations [17],
[18], [19]. To bypass the correspondence problem between the
novel and reference views, we proposed coupling AFoVs with
indexing. Moreover, we relaxed the requirement of transparent
objects by applying AFoVs on groups of features (i.e., we do
not require that all the features of an object are visible from any
viewpoint).

Using AFoVs for recognition involves two main phases:
training and recognition as illustrated in Fig. 3. During
training, we sample the space of views that groups of point
features can produce and represent the sampled views in a
hash table using a simple hash function that involves scaling
and quantizing the image coordinates. During recognition,
groups of points are extracted from the scene and used to
retrieve from the hash table the model groups that might have
produced them (i.e., hypothesis generation). Each hypothesis
is then verified to confirm the presence of the hypothesized
model in the scene. To sample the space of views that groups
of model points can produce, we sample the space of AFoVs
parameters. The range of values that the parameters of AFoVs
can assume were estimated using SVD [23], [24] and IA [25],
[26] (also, see Section III-C). To reduce space requirements
without degrading recognition accuracy, we have showed that it
is possible to represent in the hash table only the -coordinates
(or -coordinates) of the views at the cost of making hypothesis
generation slightly more complicated (also, see Section IV-D).

Indexing-based 3-D object recognition using AFoVs offers a
number of advantages. First of all, the index table can be built
using a small number of reference views per object. This is in
contrast to common approaches that build the index table using
either a large number of reference views or 3-D models. Second,
recognition does not rely on the similarity of the novel views
with the reference views; all that is required for the novel views
is to contain some common groups of features with the reference
views. Third, verification becomes simpler. This is because can-
didate models can be back-projected onto the scene by simply
combining a small number of reference views of the candidate
model group using the predicted AFoVs parameters. Finally, the
proposed approach is more general and extendible since there
exist AFoVs over a wide range of transformations and projec-
tions as mentioned in the previous section.

C. Estimating the Ranges of AFoVs Parameters

In this section, we present briefly the main ideas for esti-
mating the ranges of values of the AFoVs parameters. Under the
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Fig. 3. Original AFoVs-based recognition framework (from [17]). During training, we sample the space of views that groups of point features can produce and
represent the sampled views in a hash table. During recognition, groups of points are extracted from the scene and used to retrieve from the hash table the model
groups that might have produced them (i.e., hypothesis generation). Each hypothesis is then verified to confirm the presence of the hypothesized model in the scene.

assumption of orthographic projection and 3-D linear transfor-
mations, given the point correspondences between the reference
views and the novel view, the following system of equations is
satisfied from (1):

(2)

where , , , and , ,
, are the coordinates of the points in the refer-

ence views and respectively, and , , ,
are the coordinates of the points in the novel view .

Dividing the above system of equations into two sub-systems,
one involving the parameters and one involving the pa-
rameters, we have

(3)

(4)

where is the matrix formed by the and coordinates of the
reference views [same as the first matrix in the left part of (2)].

and are vectors corresponding to ’s and ’s, and ,
are vectors corresponding to the and coordinates of the

novel view. Since both (3) and (4) are over-determined, they can
be solved using SVD.

To determine the possible range of values for and , we
assume first that the novel view has been scaled such that the

and coordinates assume values in a specific interval. This
can be done, for example, by mapping the novel view to the
unit square. In this case, the and coordinates would assume
values in [1]. To determine the range of values for and , we
need to consider all possible solutions of (3) and (4), assuming
that and belong to the interval [1]. We have used IA (i.e.,
Interval Arithmetic) [25], [26] to find the interval solutions of
this problem (see [17] and [18] for details). It should be noted
that since both (3) and (4) involve the same matrix and

and assume values in the same interval, the and interval
solutions are the same.

IV. IMPROVING RECOGNITION USING AFOVS

The main advantage of AFoVs is that they allow us to com-
pute the space of views that a 3-D object can produce by com-
bining a small number of reference views of the object. We have
exploited this idea for recognition by sampling the space of 2-D
views that an object can produce (i.e., by sampling the space
of the AFoVs parameters) and representing appropriate infor-
mation about the samples in a hash table. This information is
used during recognition to hypothesize the presence of certain
models in the scene. This work builds upon our previous work
on object recognition using AFoVs with the goal of further im-
proving its performance and efficiency. In particular, we have
addressed a number of important issues which are discussed
below.

First, when sampling the space of AFoVs parameters to gen-
erate the 2-D views of an object, it is important to ensure that
the generated views are realistic. However, since we assume the
case of 3-D linear transformations and the ranges of AFoVs pa-
rameters are estimated using IA [25], [26], certain parameter
values will not yield valid views. Although this issue does not
have a serious effect on recognition performance, it does in-
crease space requirements (i.e., invalid views are represented)
and recognition time (i.e., invalid hypotheses are generated). In
this work, we propose imposing a pair of rigidity constraints on
the AFoVs parameters to avoid representing information about
unrealistic views and reduce the number of invalid hypotheses
during recognition.

Second, despite the well-known advantages of indexing
for efficient hypothesis generation, recognition performance
depends on the number of sampled views indexed. This is
because general case invariants do not exist in 3-D [47], [48];
therefore, achieving high recognition rates requires indexing
a large number of sampled views. However, this increases
space requirements as well as recognition time due to an ex-
pected increase in the number of hypothetical matches. To take
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Fig. 4. Improved AFoVs-based recognition framework (see text for details).

advantage of efficient hypothesis generation using indexing
while keeping space requirements low, we propose a two-stage
scheme that combines indexing with learning.

The first stage involves indexing a sparse number of sam-
pled views; therefore, space requirements are lower compared
to the original approach that uses dense sampling. To account
for indexing a small number of views, we have replaced the
original indexing scheme based on hashing, which simply per-
forms range search, with a more efficient scheme based on the
Sproull - tree [30], [31], which performs nearest-neighbor
search. The second stage involves building probabilistic models
of shape appearance by sampling the space of views that an
object can produce densely and learning the manifold formed
by the samples. Learning employs the EM algorithm [27] and
takes place in a “universal,” lower-dimensional, space computed
through RP (i.e., Random Projection) [28], [29]. Once the prob-
abilistic models of shape appearance have been built, we only
need to store a few parameters per model; therefore, space re-
quirements are minimal and overall space requirements depend
on indexing.

Specifically, the main purpose of the first stage is to provide
rough hypothetical matches fast, while keeping storage require-
ments low. The main purpose of the second stage is to eval-
uate each hypothesis fast without resorting to explicit verifica-
tion which might be time consuming. In fact, it should be ex-
pected that a fairly large number of neighbors needs to be re-
trieved from the - tree to ensure correct recognition results
due to indexing a “sparse” number of views only. To avoid veri-
fying each hypothesis explicitly, we “filter” them by computing
their likelihoods using the probabilistic models of shape appear-
ance built at the second stage.

Finally, we take advantage of representing shape appearance
probabilistically to enhance the verification stage by ranking the
hypotheses based on their likelihoods and verifying the most
likely hypotheses first. Verification is performed as before by
back-projecting the hypothesized model(s) onto the scene by
combining a small number of reference views of the model(s),
using the predicted AFoVs parameters [17]–[19]. Hypothetical

Fig. 5. (Top) Unrealistic views using a car model. (Bottom) Realistic views
using rigidity constraints (threshold = 0.0001).

matches are evaluated by computing the back-projection error
between the model(s) and the scene.

A. Eliminating Unrealistic Views

When sampling the AFoVs parameters using (1) in order to
sample the space of views that an object can produce, it is pos-
sible to generate views that are not realistic in practice. There
are two main reasons for this. First, the equations in (1) corre-
spond to the case of 3-D linear transformations, a superset of
3-D rigid transformations. Second, the interval solutions for the
AFoVs parameters are not tight in general [17], [18] which im-
plies that certain solutions would not satisfy (2). Fig. 5 (top)
shows several examples of unrealistic views generated using a
car model.

We can identify and eliminate such views by imposing a pair
of rigidity constraints. This, however, requires knowledge of the
transformation between the reference views. Specifically, if we
assume that the two reference views are related by some rotation

, then the AFoVs parameters in (1) must satisfy the following
two constraints [12]:

(5)

(6)

where and are the first two elements of the rotation ma-
trix . By applying these two constraints, the sampled views can
be effectively refined. In our experiments, we obtain the refer-
ence views by placing the model objects on a turn table. There-
fore, the reference views are related to each other by a rotation
about the -axis. In practice, the rotation matrix could be esti-
mated using structure from motion techniques [12]. To check the
rigidity constraints, we test whether the expressions on the left
hand-side of (5) and (6) are less than a small threshold. Fig. 5
(bottom) shows some of the views obtained with the rigidity
constraints enforced.

Table I summarizes the main steps of the view generation
process with the rigidity constraints imposed. Compared to our
previous work, there is one more modification; we have reduced
the space of AFoVs parameters from eight to six by disregarding
the translation parameters and . This is possible by nor-
malizing the groups such as their centroid lies at the origin. By
applying the same normalization on the scene groups during
recognition, the values of and become zero; therefore, they
do not need to be considered when generating the space of views
of an object. Step 5.2 is the same as before and its purpose is to
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TABLE I
MAIN STEPS ILLUSTRATING HOW VALID VIEWS ARE GENERATED

verify whether the generated views lie within the unit square as it
is required by the normalization step discussed in Section III-C
(i.e., novel views should be normalized such that and lie
in [1]). In general, this constraint is not satisfied by certain sets
of parameters due to the fact that interval solutions are not tight
[25], [26].

B. Representing the Space of Views Using Indexing

Coupling AFoVs with indexing is critical in making AFoVs
more practical for recognition. Indexing is a mechanism which,
when provided with a key value, allows rapid access to some
associated data. It is based on the idea of using a priori stored
information about the model objects in order to quickly elimi-
nate incompatible model-scene matches during recognition. As
a result, only the most feasible matches are considered for verifi-
cation, that is, the matches where the model features could have
produced the scene features.

During a preprocessing step, groups of model features are
used to index appropriate information in a data structure. The
locations indexed are filled with entries containing references to
the model objects and some additional information that later can
be used to recover the transformation between the model and the
scene. During recognition, image features are used to retrieve
information from the data structure. The models listed in the
indexed entries are collected into a list of candidate models and
the most often indexed models are selected for verification.

We have employed indexing in the past to represent infor-
mation about the views that an object can produce in an index
table. As described in the previous section, the views that an ob-
ject can produce are computed by sampling the space of AFoVs
parameters. Given a novel view of an object, we use information
stored in the index table to estimate the AFoVs parameters that
predict the appearance of the object in the scene. Thus, instead
of having to search the space of all possible appearances and ex-
plicitly reject invalid predictions through verification, indexing
inverts the process so that only the most feasible predictions are
considered. This step essentially bypasses the correspondence
problem between the novel view and the references views.

Coupling AFoVs with indexing offers significant advantages,
however, recognition performance depends on the number of

Fig. 6. 2-D �-� tree is a data structure which partitions the space using hyper-
planes as shown in (a). The partitions are arranged hierarchically to form a tree
as shown in (b).

views indexed. As a result, space requirements could be ex-
pected to be high even for a moderate number of models. To take
advantage of efficient hypothesis generation based on indexing
while keeping storage requirements low, we propose indexing
only a sparse number of views per object. The goal is to gen-
erate rough hypothetical matches very fast during recognition.
Further hypothesis validation would be required as described
in the next section. Generating a sparse number of views for a
given object is done the same way as before except that the space
of AFoVs parameters is sampled coarser this time.

In our past work, we used hashing to store information about
the views of an object in a table. The same mechanism was
used to retrieve the closest model views to a given novel view
during recognition. Hashing, however, performs range search
which would be very inappropriate to use when storing a sparse
number of views like in our case. In contrast, it would be more
appropriate to employ a more powerful indexing scheme, for ex-
ample, a scheme that would be capable of performing nearest-
neighbor search. Perhaps the most widely used algorithm for
searching in multiple dimensions is a static space partitioning
technique based on a -dimensional binary search tree, called
the - tree [30]. The - tree is a data structure (see Fig. 6)
which partitions the space using hyper-planes. The partitions
are arranged hierarchically to form a tree.

In its simplest form, a - tree is constructed as follows. A
point in the database is chosen to be the root node. Points lying
on one side of a hyperplane passing through the root node are
added to the left child and points on the other side are added
to the right child. This process is applied recursively on the
left and right children until a small number of points remain.
The resulting tree of hierarchically arranged hyper-planes in-
duces a partition of space into hyper-rectangular regions, termed
buckets, each containing a small number of points. The - tree
can be used to search for nearest neighbors as follows. The
coordinates of a novel point are used to descend the tree to find
the bucket which contains it. An exhaustive search is performed
to determine the closest point within that bucket.

In a typical - tree [30], the partition of a hyperplane is
perpendicular to the coordinate axes. In this work, we use the
Sproull - tree [31] which is a radical refinement to the tradi-
tional one. The choice of the partition plane is not orthogonal
or “coordinate based.” Instead, it is chosen by computing the
principal eigenvector of the covariance matrix of the points. Al-
though -trees can retrieve data fast assuming low-dimensional
data, retrieval time increases significantly with an increase in the
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data dimensions [45]. This is not an issue in our work since the
dimensionality of the data used for indexing is low (i.e., six).

C. Representing the Space of Views by Learning Shape
Appearance

Although AFoVs allow us to generate the views that an ob-
ject can produce efficiently, representing this information com-
pactly would be important from a practical point of view. In this
work, we propose combining indexing using statistical models
of shape appearance, yielding an attractive scheme for model-
based recognition. Specifically, the purpose of the indexing step
is to generate rough hypothetical matches between the models
and the scene fast. Due to the sparseness constraint and nearest-
neighbor search at indexing, many hypothetical matches would
be expected to be invalid. Evaluating potential matches without
resorting to expensive verification (i.e., see Section IV-F) would
be important in keeping recognition time low.

In this work, we propose evaluating the likelihood of the hy-
pothetical matches generated by indexing using probabilistic
models of shape appearance. In particular, the views that an
object can produce form a manifold in a “universal” lower di-
mensional space which can be learned efficiently using mixture
models and the EM algorithm. It should be mentioned that the
structure of this manifold will not be linear in general due to the
rigidity constraints imposed (see Section IV-A). Since we can
generate a large number of views using AFoVs, we can build
effective models of shape appearance by revealing and learning
the true structure of this manifold. This is in contrast to similar
approaches in the literature where a large number of images is
required to ensure good results [56].

A mixture model is a type of density model which consists
of a number of component functions, usually Gaussian. These
component functions are combined to provide a multimodal
density. Specifically, let the conditional density for the sample
data belonging to an object be a mixture of component
densities

(7)

where a mixing parameter corresponds to the prior prob-
ability that data was generated by component and where

. Each mixture component is a Gaussian with
mean and covariance matrix in a case of -dimensional
space, i.e.,

(8)

Mixture models provide great flexibility and precision in
modelling the underlying statistics of sample data. They are
able to smooth over gaps resulting from sparse sample data and
provide tighter constraints in assigning object membership. In
the past, they have been used to model the color appearance
of objects for tracking and segmentation [79]. They have also
been applied to learn the distribution of various object classes
such as human faces [80].

EM is a well established maximum likelihood estimation al-
gorithm for fitting a mixture model to a set of training data [27],

Fig. 7. Four manifolds, shown in different colors, each corresponding to the
space of views that a different group of points can produce. As it can be ob-
served, the manifolds overlap since although the groups are different, they might
look quite the same if projected from specific viewpoints. RP was used to project
the data to a three-dimensional space for visualization purposes.

Fig. 8. Mixture model shown in (a) corresponds to a group of 8 point features
(i.e., 9 to 16) from the artificial object shown in (b).

[81]. It is iterative with the mixture parameters being updated
in each iteration. It has been shown that it monotonically in-
creases the likelihood with each iteration, converging to a local
maximum. However, EM suffers from singularities in the co-
variance matrix when the dimensionality of the data is high.

We have encountered similar problems in our experiments
using large groups of point features. To avoid these problems,
we have used RP to project the sampled views into a low-dimen-
sional space before running the EM algorithm [28], [29]. The
same RP was used for each object, we we refer to this common
low-dimensional space as the “universal” object space. Fig. 7
shows an example of four manifolds, each corresponding to the
space of views that a particular group of point features can pro-
duce. The four groups come from the set of real objects used in
our experiments (see Section V-B).

RP has several important properties that allow EM to con-
verge without problems, for example, it preserves separation be-
tween clusters and makes eccentric clusters more spherical [28],
[29]. In our case, the space of views that groups of model points
can produce is generated by involving six parameters (i.e., ,

, , , , and ). Since we represent information only
about the -coordinates of the views (see Section IV-D), the ef-
fective dimensionality of our data is three. Therefore, we have
used RP to reduce the dimensionality of the -coordinates of
the groups down to three. It should be noted that the EM algo-
rithm requires providing the number of mixture components.
Here, we have determined the number of components automat-
ically using mutual information [82]. Fig. 8 shows the mixture
model obtained for a group of 8 points from an artificial objects
(i.e., rocket).

D. Decoupling Image Coordinates

We have shown in our previous work that i) the process that
generates the coordinates of the sampled views is exactly the
same to the process that generates the coordinates as shown in
(1) and ii) the interval solutions of the and parameters are
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exactly the same (see [17] and [18]). Therefore, similarly to our
previous work [17], [18], we use only the -coordinates of the
sampled views to represent information in the - tree as well
as to build the probabilistic models of shape appearance (i.e.,
Section IV-C).

This simplification offers significant advantages (e.g., we
need to sample the space of the parameters only), however,
it adds a slight overhead to the hypothesis generation step since
the - tree must be accessed twice per scene group. First, the

coordinates of the scene groups are used to form hypotheses
predicting the parameters, then, the coordinates of the
scene groups are used to form hypotheses predicting the
parameters. The likelihood of consistent hypotheses is then
estimated by combining the likelihoods from the and
coordinates of the groups using the statistical models of shape
appearance (see Section IV-E).

E. Hypothesis Generation and Ranking

The hypothesis generation step starts by extracting groups of
scene features from the scene and retrieving the closest model
groups from the - tree. Since we do not assume knowledge
of point correspondences between the models and the scene, we
consider all possible circular shifts of the points in the scene
groups. Assuming convex groups and that we traverse the points
in the group in the same order, the maximum number of circular
shifts is equal to the number of points in the group. In general,
we can avoid considering all possible shifts by identifying cer-
tain starting points in the group (e.g., see Section V-B). For each
query scene group, the number of nearest neighbors to be re-
trieved is controlled by a parameter (see Section V).

We test two simple constraints to evaluate each hypothesis
before computing its likelihood. First, we test whether both the

and coordinates of a scene group predict the same model
group. Second, we test whether the model group predicted is
similar enough to the scene group by requiring that the mean
square error (MSE) between the groups is below a threshold
(i.e., 0.3 pixels). Only hypotheses satisfying both constraints are
considered for further processing. These hypotheses are ranked
by computing their probability using the mixture models de-
scribed in the previous subsection.

For each scene group, we compute two probabilities, one
from the -coordinates of the group and the other from the -co-
ordinates of the group The overall probability for a particular
hypothesis is then computed as follows:

(9)

where . the number of hypotheses generated
by the - tree search, and are the proba-
bilities from the - and -coordinates of the current hypothesis,
and is the overall probability of the current hypoth-
esis. It should be noted that each object is assumed to have the
same probability of being present in the scene. Only hypotheses
ranked high enough are considered for further verification with
the most likely hypotheses verified first.

Fig. 9. Set of artificial objects used in our experiments.

F. Hypothesis Verification

Hypothesis verification takes advantage of hypothesis
ranking to verify the most likely hypothesis first. For each
hypothesis, the AFoVs parameters that predict the model in
the test view are estimated by solving an over-constrained
system of equations [i.e., (2)] using SVD. Then, the model
is back-projected onto the scene to evaluate the quality of
the prediction. Back-projecting the model onto the scene is
extremely simple in the case of AFoVs and involves combining
the reference views of the predicted model using the estimated
AFoVs parameters.

V. EXPERIMENTAL RESULTS

We describe below a set of experiments to evaluate and
demonstrate the proposed approach. To enable robust feature
extraction, we consider objects having sharp edges. Obviously,
this assumption can be relaxed by using “interest” [6] operators
as discussed in Section VII. Each object view is represented
by a set of point features corresponding to intersections of line
segments comprising the boundary of the object. To account
for occlusion, we use subsets (i.e., groups) of point features as
opposed to using all point features. In practice, we can select
salient groups of point features, for example, corresponding to
intersections of perceptually important groups of lines (e.g.,
convex groups of [35]). In this case, each point feature has a
certain ordering in the group which can facilitate matching as
discussed in Section IV-E.

A. Artificial 3-D Objects

First, we used a set of 10 artificial 3-D objects (see Fig. 9) to
evaluate the performance of the proposed approach. Each model
was represented by two reference views which were obtained by
applying different orthographic projections on the 3-D models.
For each model, we considered all possible groups having eight
(8) point features (i.e., 22 groups on average for each model). In
general, a value between 6 and 8 works well. Groups with less
than 6 points might not have good discrimination power. On the
other hand, groups with more than 8 points might not always be
available and would be prone to occlusions. The space of views
that the model objects can produce was computed according to
the procedure shown in Table I. First, a coarse - tree was built
by storing information about a sparse set of views. A total of
2,242 views were sampled and represented in the - tree. Then,
a dense number of views was generated for each model group
and its manifold was learned in a common random space using
the EM algorithm.
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TABLE II
PROBABILISTIC RANKING FOR THE CAR QUERY

The test views were generated by applying random ortho-
graphic projections on the 3-D models. We added 3 pixels
random noise to the point features of the test views to make the
experiments more realistic. We did not assume any knowledge
of the point correspondences between model and scene groups;
however, we did assume that point features have certain or-
dering in the group as discussed in Section IV-E. If noise affects
the ordering, then recognition can not be accomplished using
this group and a different group must be chosen. Assuming
that there is no easy way to select the initial point feature in a
group, we considered all possible circular shifts (i.e, eight (8)
in this case) of point features when searching the - tree. For
each query, we retrieved the 10 closest neighbors as this value
worked well experimentally.

The query results for three of our models (i.e, car, tank and
rocket) are shown in Table II, as well as their ranking, computed
by the mixture models. The first column in Table II indicates the
query group and the model it comes from, the second column
indicates the circular shift applied on the scene group (i.e, “shift
0” always corresponds to the correct correspondence), and the
third column shows the model candidates retrieved by the scene
query and corresponding circular shift. It should be mentioned
the third column shows only those hypotheses that satisfy the
two simple constraints discussed in Section IV-E. The fourth
column shows the un-normalized likelihoods computed for the

– and –coordinates respectively while the overall probabil-
ities, computed using (9), are shown in the last column. The
overall probabilities indicate the level of confidence for each
hypothesis and are used to rank them.

Only hypotheses ranked high enough (i.e., 0.9 or above) are
considered for further verification. In this case, the parameters

Fig. 10. Example verification results using different query groups: (a)–(b)
two groups of from the car model, (c)–(e) three groups of the tank model,
(f)–(h) three groups of the rocket model.

of the AFoVs are estimated accurately from the hypothetical
match using a least squares approach such as SVD. Using the
estimated AFoVs parameters, we then predict the appearance
of the candidate model using (1) and compare it with the scene.
Computing the MSE between the predictions and the scene pro-
vides a measure of similarity for deciding the presence of a
candidate model in the scene. Fig. 10 shows the verification re-
sults for the hypotheses listed in Table II. We received extremely
small MSE errors in all of our experiments using artificial data
sets.

Table II shows that the hypotheses with the highest likeli-
hoods were also the correct hypotheses in all cases except in one
case (i.e, Rocket-g1). In that case, the first group of the rocket
model was matched to the model assuming two different solu-
tions due to symmetry, as shown in Fig. 10(f). We denote the test
group of point features using “+,” while the blue lines indicate
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Fig. 11. Example of a query object affected by 5% noise.

TABLE III
ACCURACY OF �-� TREE QUERY FOR DIFFERENT NUMBER OF

SPARSE VIEWS (� � ��)

the predicted views. Such symmetric solutions can be resolved
later during verification where more model point features are
used.

To evaluate the effect of indexing a sparse number of views
on recognition performance, we performed several experiments
by indexing different numbers of views. Specifically, we cre-
ated 3 test sets with each set containing 28 test views coming
from all the models in our database. The test views were ob-
tained by applying random orthographic projections on the 3-D
models. Moreover, we added 5% random noise to the point co-
ordinates of the test views. Fig. 11 shows a example of a test
view. The blue lines indicate the test view without noise while
the red “stars” show the locations of the noisy point features.

Three different - trees were generated by indexing different
number of sampled views each time (i.e., 2242, 22852, and
81236). For each query, we retrieved the 10 nearest neighbors
from the - tree. Table III shows the query accuracy for each of
the three test sets where “accuracy” is defined as the probability
that the correct model appears in the set of hypotheses retrieved
from the - tree. Obviously, if the correct model does not ap-
pear in the list of hypotheses retrieved from the - tree, it can
not be identified anyway during the subsequent steps of the al-
gorithm. As the table illustrates, indexing more sampled views
does not improve in general the accuracy significantly. In fact,
we can index 97% less views by sacrificing accuracy only by
4.7%.

Comparing indexing based on hashing (i.e., used in our
previous work) with - trees in terms hypothetical matches,
hashing is expected to generate more hypotheses in gen-
eral. Since hashing performs range search instead of nearest
neighbor search, it recovers all points within a given distance
from the query point, as shown in Fig. 12. The fact that we
index a sparse number of views implies that we would have to
use a fairly large neighborhood from the query point to ensure
that the correct model is always retrieved. This, however, would
increase the number of hypothetical matches. For example, let
us consider a hash table of size 10 10. Assuming that we
index 2,000 views, each hash table entry should store 20 entries

Fig. 12. Illustration of: (a) nearest neighbor search, (b) range search.

Fig. 13. Real objects used in our experiments, each represented using two ref-
erence views; the red dots show the features (i.e., points) used to represent the
objects while the yellow lines show the corresponding groups of features. The
points and lines have been drawn for visualization purposes only.

on the average, assuming that the data is distributed uniformly
on the table which might not always be easy [83]. Assuming
that we search a 3 by 3 neighborhood for each query, there
would be hypotheses generated for each query.
In contrast, the number of hypothesis generated using - trees
depends on the number of nearest neighbors retrieved (10–20 in
our experiments) which should be expected to be much lower
as shown in our experimental results.

B. Real 3-D Objects

In this section, we demonstrate the proposed approach using
several real 3-D objects shown in Fig. 13. In these experiments,
each object was represented using two reference views which
are shown in Fig. 13. In each case, the second reference view
was obtained by rotating the object about the –axis by a small
angle (e.g., 10–20 degrees). Having knowledge of the rotation
between the reference views allow us to enforce the rigidity con-
straints discussed in Section IV-A.

In our experiments, we used groups containing six (6) point
features. These groups were formed by combining two convex
subgroups [35] of size four (4) each, having two point features
in common. The groups extracted are shown by yellow lines in
Fig. 13. To order the points in a given group during recognition,
we choose the common points between the subgroups of size
four as starting points and trace the rest of points counterclock-
wise. A sparse set of 3118 sampled views of the groups were
represented in a - tree. The manifold of each group was then
learned using a dense number of views and the EM algorithm.
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TABLE IV
PROBABILISTIC RANKING FOR THE REAL DATA (PART I)

Fig. 14. Example recognition results illustrating the capability if the proposed
methods to handle viewpoint changes. Of particular interest are the results
shown in (g) and (j) as some of the input objects are not among the models
stored in the database. It should be mentioned that the lines have been drawn
on top of the objects to visualize the matches found (i.e., they are not given as
input to the recognition algorithm).

Fig. 14 shows some of the test views used in our experiments.
These scenes are simpler than those typically used to demon-
strate intensity-based object recognition methods; however, the
extraction of geometric features robustly and reliably in clut-
tered scenes is a challenging issue. Therefore, our emphasis in

these experiments is to demonstrate the capability of the pro-
posed methodology in handling viewpoint changes, which is the
main strength of AFoVs, rather than dealing with clutter.

As before, we extract groups of point features from the scene
and we use them to retrieve hypothetical matches from the

- tree. For each query, we retrieve the 20 closest neighbors
which was found to work well experimentally since real objects
contain more noise. Hypotheses satisfying the two simple
constraints mentioned in Section IV-E were then ranked using
the mixture models of the model groups. The query results
for each of the test groups shown in Fig. 14 with yellow lines
are shown in Tables IV–VI. As before, the first column in
each table indicates the query group and the model it comes
from, the second column indicates the circular shift applied
on the scene group (i.e, “shift 0” always corresponds to the
correct correspondence), and the third column shows the model
candidates retrieved by the scene group and the corresponding
circular shift. As before, the third column of each table shows
only the hypotheses satisfying the two simple constraints
discussed in Section IV-E. The fourth column of each table
shows the un-normalized likelihoods computed for the –
and –coordinates respectively while the overall probabilities,
computed using (9), are shown in the last column. The overall
probabilities indicate the level of confidence for each hypoth-
esis and are used to rank them.

Table VII lists the number of hypotheses generated from
the - tree (i.e., satisfying the two simple constraints of
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TABLE V
PROBABILISTIC RANKING FOR THE REAL DATA (PART II)

TABLE VI
PROBABILISTIC RANKING FOR THE REAL DATA (PART III)

Section IV-E) versus the hypotheses ranked high enough and
considered for further verification. It is clear that hypothesis
ranking reduces the number of hypotheses considered for verifi-
cation substantially. On the average, the number of hypotheses
generated from the - tree was eight (8), and the number of
hypothesis ranked high enough was two (2).

Due to similarities among the groups considered, some of
the correct models were not always ranked the highest. How-
ever, the correct model was always among the first two or three
highest ranked hypotheses. For example, Fig. 7 shows the man-
ifolds corresponding to four different groups. It can be seen that
the manifolds overlap significantly with each other. That means
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TABLE VII
NUMBER OF HYPOTHESES TO BE VERIFIED BASED ON HYPOTHESIS RANKING (RANKING THRESHOLD: 0.8)

Fig. 15. (a) MSE error for each of the test groups shown in Fig. 14; (b) number
of matched points over total number of model points.

that certain groups look similar from certain viewpoints. There-
fore, it is difficult to distinguish two groups using the mixture
models alone and further verification is required using mode
model point features. In general, however, combining the -
tree with the probabilistic models allow us to reject most invalid
hypotheses quickly.

During verification, we estimate the parameters of the AFoVs
using SVD, and compute the MSE between the predicted model
view and the test view. The verification results can be seen in
Fig. 14 where the yellow lines correspond to the scene groups
and the red lines correspond to the predicted models. During
this stage, we back-project all the model points onto the scene
to provide more evidence about the presence of the model in
the scene. The MSE error for each recognized object is always
below eight (8) pixels (see Fig. 15).

It should be noted that some of the objects considered for
testing were not among our models such as the cars in Fig. 14(g)
and (j). Although, these objects had very similar local structures
with the model objects (i.e., certain groups of point features ex-
tracted from the two objects were similar to groups of point fea-
tures extracted from the models), overall similarity was pretty
low as shown in Fig. 14(g) and (j).

By computing the ratio between the number of matched
points between the model and the scene and the total number of
points in the model, we can quantify the accuracy of each match
more clearly. Fig. 14(b) shows these ratios for the each of the
15 test groups shown in Fig. 14(a). The two minima of the
curve shown in Fig. 14(b) correspond to the unknown objects.

VI. EXTENDING AFOVS TO PREDICT EMPIRICAL APPEARANCE

Employing AFoVs for 3-D object recognition represents a
powerful framework for predicting geometrical appearance.
However, using geometrical information only does not provide
enough discrimination for objects having similar geometrical
structure but probably different empirical appearance. To deal
with this issue, we have amended the proposed system by
integrating geometrical and empirical representations during
hypothesis verification to improve discrimination power and
robustness. This is a promising step towards making the
AFoVs-based recognition framework more general and effec-
tive.

As discussed in Section III, methods based on geometric
models are more efficient in segmenting objects from the scene
and more robust to occlusion. However, they can only handle
changes in geometrical (shape) appearance of the object. On
the other hand, methods based on empirical models are more
successful in handling the combined effects of shape, pose,
reflection and illumination but have serious difficulties in seg-
menting the objects from the complex background and dealing
with occlusion. Fig. 7 shows the geometric manifolds corre-
sponding to the space of views that four rather simple objects
can produce. As it can be observed, the manifolds overlap
significantly with each other. That means that there is much
similarity in terms of geometric features in different objects
and that certain objects look similar from certain viewpoints.
In such cases, it may still be possible to distinguish them using
empirical appearance.

To develop a viable recognition framework using AFoVs, a
more powerful model of appearance is required, entailing geo-
metric based recognition for shape and empirical based recog-
nition for surface details. Here, we demonstrate how to extend
AFoVs to predict the empirical appearance of an object. The
main idea is using geometric information to segment the objects
from the scene and generate the hypotheses, and both geometric
and empirical information for hypothesis verification. This gives
rise to a hybrid recognition framework, allowing for more re-
alistic predictions of object appearance than geometry alone,
thereby improving the performance of the system.

A. Establish Dense Correspondences

For each group of corresponding points, we apply triangu-
lation recursively to get dense correspondences. Note that, for
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Fig. 16. Examples illustrating: (a), (b) the first triangulation scheme,
and (c), (d) the second triangulation scheme. As it can be observed, the
second scheme provides a more uniform triangulation which allows predicting
intensity appearance more consistently.

Fig. 17. Illustrating the effect of refining the AFoVs parameters: (a), (b) before
refinement, (c), (d) after refinement. As it can be observed, refinement leads to
more accurate predictions.

any set of points under orthographic projection, the projection
of its centroid is the centroid of its projection. Two triangula-
tion schemes could be possible based on different ways to par-
tition a triangle. The first one divides the current triangle into
three sub-triangles using the centroid of the current triangle.
An example of this type of triangulation scheme can be seen in
Fig. 16(a) and (b). The second ones divides the current triangle
into four sub-triangles by considering the middle point of each
side of the current triangle. An example can be seen in Fig. 16(c)
and (d). As it can be seen from the figures, the second scheme
produces more canonical triangles (i.e., triangles that are con-
sistent both in shape and size). In both cases, we use the ratio
of the resulting triangle areas as a criterion to stop the iterative
triangulation process. Therefore, both schemes are scale inde-
pendent. This is important in order to get the same number of
triangles in different views of the same object.

B. Refine AFoVs’ Parameters

The parameters of AFoVs can be refined using the dense
correspondences obtained through triangulation as shown in
Fig. 17. To see the effects of parameter refinement, we compute
the AFoVs parameters in two ways, first using sparse correspon-
dences (i.e., using only the points that comprise the groups in
the reference views) and second, using dense correspondences
(i.e., using all the points generated through triangulation). In
each case, we predict the locations of the triangulated points
in the scene using AFoVs (red lines) and compare them with
the actual locations of the points in the scene (blue lines),

Fig. 18. PSNR versus number of triangles. As it can be observed, PSNR in-
creases up to a certain point with using more triangles.

obtained through explicit triangulation. Fig. 17(a) and (b)
shows the results using the nonrefined AFoVs parameters while
Fig. 17(c)and (d) shows the results using the refined AFoVs
parameters. Obviously, the predictions using the refined AFoVs
parameters are much more accurate (i.e., red and blue triangles
overlap much better).

C. Peak Signal to Noise Ratio (PSNR)

Empirical appearance can be predicted from the reference im-
ages using a simple scheme. Specifically, the predicted coordi-
nates can be determined using (1) as before. The intensity value
at each predicted location can be determined by combining the
intensity values at the corresponding locations in the reference
images, for example, by averaging. The predicted image can
then be compared with the query image. The quality of the
prediction can be evaluated using the peak-signal-to-noise ratio
(PSNR)

(10)

where and are the actual and predicted pixel intensi-
ties at location . and are the width and height of the
image. Fig. 18 shows how PSNR varies with the number of tri-
angles. Obviously, increasing the number of triangles improves
the quality of the prediction as expected. If the empirical ap-
pearance of the scene object is very different from the empirical
appearance of the predicted object, then the PSNR will become
very low, even though the two objects might have very similar
geometric structure. Therefore, incorporating empirical appear-
ance information could be very useful in distinguishing similar
geometric structures having different empirical appearances. It
should be mentioned that the above scheme for predicting em-
pirical appearance is rather simple and assumes that the scene
and reference images were captured under similar lighting con-
ditions. Obviously, more sophisticated schemes would be nec-
essary assuming arbitrary lighting conditions [84] or moment
invariants [73].

D. Preliminary Results

Figs. 19 and 21 show some preliminary results. Fig. 19(a) and
(b) shows two reference images of an object. Fig. 19(c) shows
a test image of the same object, taken from a very different
viewing angle. The yellow lines indicate the extracted groups of
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Fig. 19. Example results illustrating the idea of predicting intensity appear-
ance using AFoVs: (a), (b) reference views, (c) input image, and (d) prediction
results.

Fig. 20. Example results illustrating the idea of predicting intensity appear-
ance using AFoVs: (a), (b) reference views, (c) input image, and (d) prediction
results.

point features. Using the methodology outlined above, we have
predicted the appearance of the groups in the scene. Fig. 19(d)
shows the results. Fig. 20(a) and (b) shows two reference images
of a jeep. Fig. 20(c) shows a test image while Fig. 19(d) shows
the predicted appearance of the groups. In both examples, the
predictions are quite reasonable.

Fig. 21(a) shows a vehicle that was not among our models.
This is an interesting example since the vehicle shown in
Fig. 21(a) has similar local geometric structure to one of our
models [i.e., the jeep shown in Fig. 20(a) and (b)]. Due to the
local geometrical similarity, the groups extracted match the
“jeep” model, however, this hypothesis can be easily rejected
by predicting the empirical appearance of the groups as shown
in Fig. 21(b) and (c)–(f) shows additional examples. In the
case of Fig. 21(e), both incorrect geometrical and empirical ap-
pearances have been predicted [see also Fig. 14(g)] which can
make rejecting this hypothesis with much higher confidence.
Please, note that some of the group points (i.e., yellow lines)
are not shown clearly in Fig. 21(e) due to shrinking the figure
for printing purposes.

The groups extracted from the test images in Figs. 19–21
[except the case shown in Fig. 21(e)] have all passed the ge-
ometrical appearance verification and predication by our initial
system. However, further verification using empirical appear-
ance yields different results, as shown in Table VIII. In this table,

Fig. 21. Prediction results assuming the wrong models have been used to gen-
erate the predictions: (a)–(c) input images, (b)–(f) prediction results. As it can
be observed, although an input object and a model might have similar geometric
appearances, the predictions of intensity appearance would be quite different if
the objects are different.

TABLE VIII
VERIFICATION RESULTS USING GEOMETRICAL AND EMPIRICAL APPEARANCE

the second column shows the PSNR values, and the third column
shows the verification results based on empirical appearance.
The last column indicates ground truth information.

VII. CONCLUSION

We have presented an improved approach for 3-D object
recognition using AFoVs. Compared to our earlier work, the
new approach has been strengthened in several ways by (1)
eliminating unrealistic views using rigidity constraints, (2)
representing the space of views that an object can produce
more compactly and efficiently using a two-stage scheme based
on indexing and learning, and (3) improving verification by
employing hypothesis ranking. We have also presented prelim-
inary results illustrating how to extend the AFoVs framework
in order to predict both the geometric and intensity empirical
appearance of an object. In this context, we have have built a
hybrid system that exploits geometric information to hypothe-
size the location of objects in the scene and both geometrical
and intensity information to verify hypothetical matches.

The number of objects used in our experiments is compa-
rable to the number of objects used in other, geometric-based,
object recognition studies (e.g., [35], [38], [39], and [41]). How-
ever, compared to the size of the datasets used in recent, in-
tensity-based, studies (e.g., [62], [70], and [72]), our dataset
is very small. In general, geometric-based methods have dif-
ficulties dealing with large numbers of objects since they use
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much simpler features compared to the powerful descriptors
used in intensity-based methods. On the other hand, geometric
methods can handle viewpoint changes explicitly whether in-
tensity-based methods consider viewpoint changes as another
factor or variability that must be “learned.” Moreover, inten-
sity-based methods are not applicable for objects lacking tex-
ture. One way to demonstrate geometry-based methods on large
datasets is by using more powerful features. However, we view
geometry- and intensity-based methods as methods that com-
plement each other rather than methods that compete with each
other.

For future research, we plan to extend the proposed recog-
nition framework in several ways. First of all, we plan to use
more robust feature extraction methods as well as more pow-
erful features for matching. One possibility is using more pow-
erful perceptual grouping strategies such as the Iterative Mul-
tiscale Tensor Voting (IMTSV) scheme [85], [86] which has
shown to tolerate significant amounts of noise and clutter. Alter-
natively, we plan to investigate state of art “interest” operators
and local descriptors [6], [7], [71]. Using more powerful feature
detectors would enable us to deal with more challenging scenes,
both in terms of occlusion and clutter. Moreover, since AFoVs
can handle viewpoint changes very efficiently, it would be more
promising to handle viewpoint changes explicitly using AFoVs
instead of treating them as an additional source of in-class vari-
ability. Related systems cannot handle a wide range of view-
point changes [75]. Moreover, it might be possible to build sim-
pler generative models by using AFoVs to “explain” viewpoint
changes instead of modeling both intensity and geometric vari-
ations using a single model.

Second, we plan to investigate the issue of how to select a
set of reference views that would allow recognition from any
aspect. In the current implementation, although our system can
handle novel views that are very different from the reference
views, both novel and reference views must have been obtained
from the same aspect. Therefore, the key question is how to se-
lect a small but sufficient number of reference views to allow
recognizing novel views from any aspect. Past work on aspect
graphs [49], [50] would be useful in this context although the ob-
jective of aspect graph theory is to represent an object in terms
of its “characteristic” views. This might not be necessarily the
same to finding the smallest number of views that would allow
recognition from any aspect which is the objective of the AFoVs
theory. They key issue is that some of the characteristic views
of an object might be redundant. This is because the only re-
quirement for recognizing a novel view is not how similar it is
to the reference views but how much information the novel view
has in common with the reference views. Therefore, it might be
possible to choose a subset of an object’s characteristic views
for recognition purposes. In any case, methods to construct the
aspect graph of an object [50] or view clustering and selection
methods [87]–[89] would be useful in selecting a set of refer-
ence views covering all aspects.

Third, we plan to investigate more efficient ways to sample
the space of views that an object can produce. In the current im-
plementation, we sample the space of views uniformly which
is quite inefficient. However, it would be more efficient to use
an adaptive sampling step by taking into consideration that the

appearance of an object might more or less stable from certain
viewpoints. The idea is using a higher sampling rate in areas
where object appearance changes fast and a lower sampling rate
in areas where object appearance changes slowly. Past work on
aspect graph theory [49], [50] would be very useful again in ad-
dressing this issue. For example, a typical approach for com-
puting the aspect graph of an object involves tessellating the
unit sphere and computing a view corresponding to each tes-
sellation grid. Then, view clustering can be applied to group to-
gether similar views and identify viewpoints that produce topo-
logical similar views. The size of each cluster would provide
some good indication about choosing the sampling step. In our
case, the views corresponding to different viewpoint directions
can be computed off-line using the estimated AFoVs parame-
ters.

Fourth, we plan to employ more robust photometric features,
such as the photometric moment invariants [73] to deal more ef-
fectively with illumination differences between novel views and
the reference views. In our current implementation, we assume
that novel views have been obtained under similar illumination
conditions as the reference views which is not very realistic. Fi-
nally, we plan to extend the proposed recognition framework
using AFoVs to category-based object recognition. Past work
on recognizing object prototypes using AFoVs [78] would be
useful in this context.
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