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Abstract

We investigate the application of genetic algorithms for
recognizing 3D objects from two-dimensional intensity
images, assuming orthographic projection. The recogni-
tion strategy is based on the recently proposed theory of
algebraic functions of views. According to this theory, the
variety of 2D views depicting a 3D object under the case of
orthographic projection can be expressed as a linear com-
bination of a small number of 2D views of the object. This
suggests a powerful strategy for performing object recog-
nition: novel 2D views of a 3D object can be recognized by
simply matching them to linear combinations of known
(reference) 2D views of the object. The main advantage of
this strategy is that 3D models are not required. Given an
unknown view of an object, the goal of the recognition pro-
cedure is to find the coefficients of the linear combination
scheme. In this paper, we propose using genetic algorithms
for searching the space of coefficients efficiently. Interval
arithmetic is used to restrict genetic search in the most fea-
sible regions of the coefficients’ space only.
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genetic algorithms, interval arithmetic

1. Introduction
Object recognition has been intensely studied during

the past three decades, yet even the best systems today
remain capable of recognizing only simple objects under
carefully controlled conditions [1]. The main difficulty
arises from the fact that the appearance of a 3D object’s
shape varies significantly as the viewpoint changes. As a
result, different views of the same object can give rise to
widely different images. Accommodating variations due to
viewpoint changes is a central problem in the design of any
object recognition system.

Typical strategies for coping with the variable
appearance of objects due to viewpoint changes include the
use of invariants, explicit models and multiple views.
According to the first strategy, inv ariant properties (i.e.,
properties that vary little or remain invariant as viewing
conditions change) are employed during recognition. The
problem with this strategy is that there are no general case
invariants for 3D objects. The second strategy employs
explicit 3D models. During recognition, a model of the

image formation process is applied to the 3D model
objects in order to predict the objects’ appearance and
determine whether something of similar appearance can be
found in the image. Approaches based on this idea are not
very practical since 3D models are not always available.
The last strategy models an object by a collection of views
showing how the object appears from various viewpoints.
Systems based on this strategy store all of these views, and
recognize the object in an image when they are able to
match one of the reference views to some part of the
image. This strategy is not very efficient since many views
must be stored for each model object.

The recently proposed theory of algebraic functions
of views provides a powerful mathematical foundation for
tackling variations in the appearance of a 3D object’s
shape due to viewpoint changes [2]-[4]. According to this
theory, the variety of 2D views depicting a 3D object can
be expressed as a combination of a small number of 2D
views of the object. In the case of orthographic projection,
the combination of views is linear [2] while in the case of
perspective projection, a nonlinear combination must be
employed [3][4]. Only the case of orthographic projection
is considered in this paper. The above result suggests a
powerful strategy for performing object recognition: novel
2D views of a 3D object, obtained under the assumption of
orthographic projection, can be recognized by simply
matching them to linear combinations of known (refer-
ence) 2D views of the object. A new approach for object
recognition based on algebraic functions of views and
indexing can be found in [5][6].

One difficulty with this idea arises from the fact that
the coefficients of the linear combination scheme are in
general unknown (see [5][6] for other difficulties). Search-
ing the space of coefficients can be very computationally
expensive. In this paper, we propose using Genetic Algo-
rithms (GAs) [7] for searching this space efficiently. This
work is an extension of our previous work on applying
GAs for recognizing real, flat objects, assuming that the
viewpoint is arbitrary [8]. GAs are search procedures
which have been shown to perform quite well when the
space to be searched is very large [7]. This makes genetic
search suitable for searching the coefficients’ space. Inter-
val arithmetic [9] is used to restrict genetic search to the
most feasible regions of the coefficients’ space.
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The paper is organized as follows: In Section 2, we
review the theory of algebraic functions of views. In Sec-
tion 3, we present the genetic object recognition approach.
Specifically, we describe the encoding mechanism, the
selection scheme, genetic operators, and fitness function
used. Section 4 includes our experiments while our conclu-
sions, limitations, and extensions of the current work are
given in Section 5.

2. Algebraic Functions of Views
Algebraic functions of views were first introduced,

in the case of orthographic projection by Ullman and Basri
[2]. They showed that if we let an object undergo 3D rigid
transformations, namely, rotations and translations in
space, and we assume that the images of the object are
obtained by orthographic projection followed by a uniform
scaling, then any novel view of the object can be expressed
as a linear combination of three other views of the object.
Specifically, let us consider three reference views of the
same object

V1, V2, and V3, which have been obtained by applying dif-
ferent rigid transformations, and three points p′ = (x′, y′),
p′′ = (x′′, y′′), and p′′′ = (x′′′, y′′′), one from each view,
which are in correspondence. If V is a novel view of the
same object, obtained by applying a different rigid trans-
formation, and p = (x, y) is a point which is in correspon-
dence with p′, p′′, and p′′′, then the coordinates of p can
be expressed in terms of the coordinates of p′, p′′, and p′′′
as follows:

x = a1 x′ + a2 x′′ + a3 x′′′ + a4 (1)

y = b1 y′ + b2 y′′ + b3 y′′′ + b4 (2)

where the parameters a j , b j , j = 1, . . . ,  4, are the same for
all the points which are in correspondence across the four
views. The above result can be simplified if we generalize
the orthographic projection by removing the orthonormal-
ity constraint associated with the rotation matrix. In this
case, the object undergoes a 3D linear transformation in
space and only two reference views are required. The cor-
responding algebraic functions are shown below:

x = a1 x′ + a2 y′ + a3 x′′ + a4 (3)

y = b1 x′ + b2 y′ + b3 x′′ + b4 (4)

where the parameters a j , b j , j = 1, . . . ,  4, are the same for
all the points which are in correspondence across the three
views. These results have been generalized to the case of
perspective projection where the algebraic functions of
views are nonlinear [3][4].

The main idea in this paper is to apply genetic
search in the coefficients’ space in order to determine lin-
ear combinations of reference views which might predict
the appearance of an object in an unknown view. Merely
letting the GA search every region of this space inefficient
since the space is extremely large. Recently, we hav e pro-

posed a methodology for estimating the ranges of values of
the coefficients of the linear combination [5][6]. The idea
is to rewrite (3) and (4) as follows:
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reference views V1 and V2 respectively, and (x1, y1), (x2,
y2), . . . (xN , yN ) are the coordinates of the points of the
novel view V . The above system of equations can be
expressed in terms of two subsystems: Pc1 = px and
Pc2 = py. Both of these subsystems are over-determined
and a least squares approach, such as Singular Value
Decomposition (SVD) [10], is needed for solving them.
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Figure 1. Tw o reference views of a model object.

Using SVD, we can factorize the matrix P as
P = UPWPV T

P where both UP and VP are orthonormal
matrices, while WP is a rectangular matrix whose diagonal
elements wP

ii are always non-negative and are called the
singular values of P. The solution of the above two sys-
tems is c1 = P+ px and c2 = P+ py where P+ is the pseu-
doinverse of P. Assuming that P has been factorized, its
pseudoinverse is P+ = VPW +

PUT
P where W +

P is also a diago-
nal matrix with elements 1/wP

ii if wP
ii greater than zero (or a

very small threshold in practice) and zero otherwise.
Hence, the solutions of (6) and (7) are given by the follow-
ing equations [10]:

c1 =
k

i=1
Σ(

uP
i px

wP
ii

)vP
i (8)

c2 =
k

i=1
Σ(

uP
i py

wP
ii

)vP
i (9)

where uP
i denotes the i-th column of matrix UP , vP

i

denotes the i-th column of matrix VP and k = 4.

In [5][6], a methodology based on (8), (9) and Inter-
val Arithmetic (IA) [9] was employed to determine interval
solutions for c1 and c2, assuming px and py are restricted
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within some interval (for example, the input image can be
scaled such that px and py belong to [0,1]). As an exam-
ple, consider the 3D object shown in Figure 1. Two differ-
ent reference views have been used to represent it (second
row corresponds to the points extracted to represent the
views). Table 1 shows the range of values computed for c1

after the reference views have been preconditioned (i.e., an
appropriate transformation has been applied on the original
views in order to optimize the computed interval solutions,
see [5][6]). Values for c2 are exactly the same to those
computed for c1.

Table 1. The interval solutions.

Ranges of values

range of a1 range of a2 range of a3 range of a4

[-0.4193 0.4193] [-0.3623 0.3623] [-0.4292 0.4292] [0 1]

3. Methodology
For testing, we used three scenes, Scene1, Scene2,

and Scene3, with the object to be recognized being com-
pletely visible in Scene1 and Scene2 and partially
occluded in Scene3 (see Figure 2). Our selection strategy
was cross generational. Assuming a population of size N ,
the offspring doubles the size of the population and we
select the best N individuals from the combined parent-
offspring population for further processing [11]. We also
linearly scale fitnesses to try to maintain a constant selec-
tion pressure.

Figure 2. The test scenes used in our experiments.

3.1. Encoding
A simple binary encoding scheme was also used to

represent solutions in the space of coefficients. Each chro-
mosome contains eight fields with each field corresponding
to one of the eight coefficients of the algebraic functions of
views. Since we have a methodology to estimate the mini-
mum and maximum value of each parameter, only the
range (difference between the maximum and minimum
values) needs to be represented. For example, a11 assumes
values in the interval [-0.4193 0.4193]. Thus, its range is
r = 0. 4193 − (−0. 4193) = 0. 8386. Assuming that up to
two decimal points are important in the estimation of the
affine transformation, 84 possible values
(0. 8386x100 + 1) must be encoded. This means that 7
bits are enough to encode a1’s range. However, 7 bits can
be used to represent values from 0 to 127 while we only
need to represent values from 0 to 83. As a result, it is pos-
sible for the genetic algorithm to find solutions which are
not within the desired range (i.e., [0, 83]). To deal with this
problem, a simple transformation is used to map values in

[0, 127] to values in [0, 81]. Two-point crossover and point
mutation were used.

3.2. Fitness ev aluation
We evaluate fitness of individuals by computing the

back-projection error (BE) between the model and scene.
After the coefficients have been obtained by decoding the
chromosome corresponding to the best solution in the pop-
ulation, we apply the linear combination scheme (Eqs. (3)
and (4)) in order to predict the appearance of the model
into the scene (i.e., the model is back-projected onto the
scene). Then, we compute the error, BE, between the back-
projected model and the scene. This is performed by find-
ing for every model point the closest scene point and by
computing the distance dj between these two points. The
sum of errors is the back-projection error:

BE =
M

i=1
Σ d j

2.

Since we need to maximize fitness but minimize the error,
our fitness function is

Fitness = 10000 − BE

and changes the minimization problem to a maximization
problem for the GA.

4. Simulations and results
We used a crossover probability of 0. 95, a mutation

probability of 0. 05, and a scaling factor of 1. 2. The popu-
lation sizes were set to 200 for Scene1 and to 400 for
Scene2, and Scene3. Approximately 100 generations were
required for each one of the scenes. For each scene, we ran
each approach 10 times with different random seeds. Per-
formance plots indicate that the GA very quickly gets close
to the correct mapping and then spends most of its time
making little progress. Scene1 was chosen to be exactly the
same as our model, (i.e., the goal of the genetic algorithm
was to find the identity mapping). Figure 3 (top) shows the
best (left) and worst (right) solutions found. Results for
Scene2 and Scene3 are shown in the second and third line
of Figure 3 respectively.

Although there are many problems for which genetic
algorithms can find a good solution in reasonable time,
there are also problems for which they are inappropriate.
These are mainly problems for which it is important to find
the exact global optimum. It is well known that genetic
algorithms do not perform well in these cases. In our prob-
lem, the best solutions found by the GA are very good.
Observing the worst solutions found, we see that the GA
has at least been able to perform a rough alignment of the
model with the scene. Although near-exact matches might
not solve the recognition problem completely, they are use-
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ful in the sense that they can actually reduce the search
space to a limited domain. Then, a local optimization tech-
nique can be used for finding an exact match. The prelimi-
nary stage of rough alignment may help preventing such
methods from reaching a local minimum instead of the
global one.

Figure 3. Best and worst solutions found.

Table 2 provides a summary of our results. The first
column specifies the scene while the second column
describes the size of the test problems. The number of val-
ues we use to represent a1’s range is 84 (see our discussion
in Section 3.1). For a2, we need 73 values, for a3 we need
86 values, while in the case of a4, we need 101 values. The
values for b1, b2, b3, and b4 are the same (same interval
solutions - see our discussion in Section 2). The total num-
ber of possible transformations is therefore
842 x732 x862 x1012= 2, 836, 899, 445, 552, 704. The last
column of Table 3, indicates the number of matches the
GA approach searched through.

Table 2. Summary of results.

Results

Scene Number of Transforms GAmatches

Scene1 2,836,899,445,552,704 19,600

Scene2 2,836,899,445,552,704 37,600

Scene3 2,836,899,445,552,704 37,600

5. Conclusions
In this paper, we used genetic algorithms to recog-

nize real, 3D objects from intensity images, assuming
orthographic projection. A recognition strategy based on
the theory of algebraic functions of views was employed.

Genetic search was applied in the space of parameters of
the algebraic functions of views. Our experimental results
demonstrate that genetic algorithms are a viable tool for
searching this space efficiently. One limitation of our cur-
rent work is that we consider only one model object in our
experiments. For future research, we plan to consider
more model objects as well as to extend the proposed
approach to the case of perspective projection.
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