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Abstract Immersive virtual environments with life-like
interaction capabilities have very demanding requirements
including high-precision motion capture and high-process-
ing speed. These issues raise many challenges for computer
vision-based motion estimation algorithms. In this study, we
consider the problem of hand tracking using multiple cam-
eras and estimating its 3D global pose (i.e., position and
orientation of the palm). Our interest is in developing an
accurate and robust algorithm to be employed in an immer-
sive virtual training environment, called “Virtual GloveboX”
(VGX) (Twombly et al. in J Syst Cybern Inf 2:30–34, 2005),
which is currently under development at NASA Ames. In
this context, we present a marker-based, hand tracking and
3D global pose estimation algorithm that operates in a con-
trolled, multi-camera, environment built to track the user’s
hand inside VGX. The key idea of the proposed algorithm
is tracking the 3D position and orientation of an elliptical
marker placed on the dorsal part of the hand using model-
based tracking approaches and active camera selection. It
should be noted that, the use of markers is well justified in
the context of our application since VGX naturally allows for
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the use of gloves without disrupting the fidelity of the inter-
action. Our experimental results and comparisons illustrate
that the proposed approach is more accurate and robust than
related approaches. A byproduct of our multi-camera ellipse
tracking algorithm is that, with only minor modifications,
the same algorithm can be used to automatically re-calibrate
(i.e., fine-tune) the extrinsic parameters of a multi-camera
system leading to more accurate pose estimates.

Keywords Virtual environments · Ellipse tracking ·
Model-based tracking · Hand pose estimation

1 Introduction

Virtual environments (VEs) should provide effective human
computer interaction (HCI) for deployment in applications
involving complex interaction tasks. In these applications,
users should be supplied with sophisticated interfaces
allowing them to navigate in the VE, select objects, and
manipulate them. Implementing such interfaces raises chal-
lenging research issues including the issue of providing effec-
tive input/output. At the input level, new modalities are
necessary to allow natural interaction based on direct sensing
of the hands, eye-gaze, head or even the whole body.

Computer vision (CV) has a distinctive role as a direct
sensing method because of its non-intrusive, non-contact
nature; on the other hand, it is also facing various chal-
lenges in terms of precision, robustness and processing speed
requirements. Various solutions have been proposed to sup-
port simple applications (i.e., no intricate object manipula-
tion) based on gesture classification and rough estimates of
almost rigid hand motion. However, systems that can support
advanced VE applications with life-like interaction require-
ments have yet to come. Applications such as immersive
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2 J. Usabiaga et al.

Fig. 1 a Virtual Glove Box:
a stereoscopic display station
provides a high-resolution
immersive environment
corresponding to a glovebox
facility. The users interact with
virtual objects wearing
datagloves, b graphical model of
the Glovebox which is available
at the International Space
Station

training or surgical simulations require very accurate and
high frequency estimates of the 3D pose of the hand in a
view independent fashion (i.e., the user need not even know
where the cameras are located). Recovering the full degrees
of freedom (DOF) hand motion from images with unavoid-
able self-occlusions is a very challenging and computation-
ally intensive problem [2,3].

This study is part of an effort to improve the fidelity of
interaction in an immersive virtual environment, called “Vir-
tual GloveboX” (VGX) [1], which is currently under devel-
opment at NASA Ames (see Fig. 1a). Our objective is to
employ computer vision-based hand motion capture. VGX
is being designed to assist in training astronauts to conduct
technically challenging life-science experiments in a glove-
box aboard the International Space Station (see Fig. 1b). It
integrates high-fidelity graphics, force-feedback devices, and
real-time computer simulation engines to achieve an immer-
sive training environment.

The effectiveness of VGX as a training tool depends both
on precision of the sensed motion and ease of use. The cur-
rent interface of VGX uses off-the-shelf tracking and hap-
tic feedback devices which contain cumbersome elements
such as wired gloves, tethered magnetic trackers, and hap-
tic armatures inside the workspace. All of these hinder the
ease and naturalness with which the user can interact with
the computer controlled environment and calibration of each
measured degree of freedom is time consuming and impre-
cise. Further research is thus required to reduce the need for
encumbered interface devices and increase the value of VGX
as a training tool.

A fully generic unconstrained and precise solution to the
hand pose estimation is not available yet. Existing unadorned
hand tracking systems are mostly limited to a single camera
and implicitly or explicitly accompanied with viewing con-
straints to minimize self-occlusions [2,3]. Obviously, such
approaches are not acceptable in this and similar applica-
tions. Although some marker-based approaches are available,
precision issues are often not addressed in these studies.

In this paper, we present a 3D global hand pose (i.e.,
position and orientation of the palm) estimation system using
an elliptical marker placed on the dorsal surface of the palm.
The system operates in a multi-camera environment built to
track the user’s hand inside the VGX. The use of markers
is well justified in the context of our application since VGX
naturally allows for the use of gloves without disrupting the
fidelity of the interaction. Moreover, users are not looking
at their hands during the simulation but at graphical hand
models displayed in the virtual environment (see Fig. 1).

Estimating the global pose of the hand has several advan-
tages. First, it reduces the dimensionality of hand pose esti-
mation by 6 DOF. Second, it is a requirement for inverse
kinematics-based methods. Finally, for some interfaces (e.g.
navigation in VE), estimating the rigid motion of the hand is
sufficient to generate control signals for the application. Our
experimental results illustrate that the proposed approach is
more accurate and robust than related approaches. A byprod-
uct of our multi-camera ellipse tracking algorithm is that,
with only minor modifications, the same algorithm can be
used to automatically re-calibrate (i.e., fine-tune) the extrin-
sic parameters of the multi-camera system. In our case, cam-
era re-calibration leads to improved hand pose estimates.

The rest of the paper is organized as follows: in the next
Section, we present a brief review of previous work on
marker-based hand pose estimation approaches. In Sect. 3,
we describe the multiple camera environment used track the
hand in the context of our application. In Sects. 5 and 6, we
provide detailed descriptions of the multiple camera ellipse
tracking algorithm and its application to camera re-calibra-
tion. Section 7 presents our experimental results and com-
parisons. Finally, Sect. 9 concludes this study.

2 Previous work

Marker-based hand tracking could be considered intrusive
but on the other hand it has considerable technical advantages
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Global hand pose estimation by multiple camera ellipse tracking 3

in terms of processing speed and robustness. Therefore, there
have been many attempts mostly using gloves painted with
point markers [4–10].

Placing a number of point markers on the palm, fingertips
and/or joints allows for simplified feature extraction meth-
ods and provides valuable information that can be used to
estimate joint angles by solving an inverse kinematics prob-
lem. Lien at al. [7,10] used multiple cameras to extract the
3D locations of seven colored markers, two of which marks
the wrist and the palm. Using colored markers greatly sim-
plifies the task of finger and palm identification. Genetic
algorithms (GAs) were employed for estimating the palm
orientation. Once the global hand pose is estimated, it
becomes possible to employ inverse kinematics solutions
based on fingertip locations to estimate the joint angles. In a
typical kinematic chain this is usually an ill-posed problem
with multiple solutions. However, in case of the hand, the
dependencies between neighboring joints helps to regularize
the problem. Lien et al. [7,10] derived closed form solu-
tions using regression techniques to map fingertip positions
to joint angles. In a much older study, Lee et al. [8] pre-
sented a model fitting algorithm that gradually updates the
joint angles based on the finger motion constraints to reach
the extracted fingertip locations. Holden el al. [6] employed
joint markers together with fingertip markers to fit the model
directly to the point features in the images through a mod-
ified version of Gauss-Newton method [11]. Chua et al. [4]
presented some closed form solutions to calculate the angles
directly from 2D marker positions assuming orthographic
projection.

The main problem with point markers is their susceptibil-
ity to occlusions and localization difficulties. Because of the
proximity and flexibility of fingers, loosing some of the mark-
ers completely or collision of the markers on the image plane
are very likely events that increase the complexity of tracking
[6]. Using the predicted marker positions in place of the miss-
ing markers [6,10] is one partial remedy to deal with occlu-
sions. However, localization problems may be more difficult
to alleviate. When the hand is allowed to move in a relatively
large area, it is not feasible to use point markers due to local-
ization errors which affect the precision of pose estimates.

In the case of fingers, it is not possible to use other than
point or line markers, which do not guarantee good precision
and robustness due to practical resolution constraints and
abundance of these features in images. The palm, however,
is large enough allowing the use of more robust markers.
Among them, conics have often proved to be good candidates
due to several following reasons [12]. First, like points or
straight lines, they are preserved under projective transforms.
Second, conics are more compact primitives which contain
global information of an object’s pose. Finally, a conic can be
represented by a symmetric matrix, which is easy to manip-
ulate. In some cases, a closed-form solution [12,13] can be
obtained, avoiding more expensive non-linear iterative tech-
niques. To the best of our knowledge, Maggioni et al. [14]
is the only study using conics, (i.e., two coplanar elliptical
markers) for estimating global hand pose in 3D. Viewing the
two ellipses from a single camera is sufficient to obtain the
orientation and position of the palm.

3 Operational environment

The glovebox environment has some features that can be eas-
ily exploited by vision-based algorithms for hand tracking.
First, the users are expected to wear gloves, which enables the
use of markers naturally. Second, hand motion is restricted
to a relatively small area inside the glovebox. This justifies
the use of multiple cameras to deal with occlusions and con-
trolled lighting along with uniform background to enable
segmentation of the hands. Taking these facts into consid-
eration, we have built a mock-up of VGX to perform our
experiments as shown in Fig. 2.

Specifically, the VGX mock-up contains eight hardware-
synchronized cameras located at the corners of the box,
several fluorescent lights, and a white background to help
segment the hands The intrinsic parameters of the cameras
and radial distortion parameters were calibrated using
Matlab’s Calibration Toolbox [15]. To estimate the extrin-
sic camera parameters, Svoboda’s [16] multiple camera self-
calibration procedure that only needs a point light source as
the calibration object was used.

Fig. 2 The VGX mockup:
a upside view showing eight
cameras dedicated to capturing
the motion of one hand b an
image captured using one of the
cameras
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Fig. 3 Pose can be recovered
from one image of two coplanar
ellipses. A1 and A2 are the
projections of the two coplanar
ellipses Q1 and Q2. The
transformation M between the
image plane and the common
plane of Q1 and Q2 determines
the position and orientation of
the common plane

During simulation, users wear a colored glove (see Fig. 2)
with an elliptical marker placed on the dorsal part of the palm.
To avoid perspective distortions due to bending, the elliptical
marker was placed on a piece of cardboard which was then
attached to the hand. In the future, we expect the colored
fingers to help us divide the finger pose estimation problem
into smaller pieces corresponding to each finger. The ellipse
serves for estimating the global pose of the hand. In prin-
ciple, it is possible to estimate the ellipse pose using two
coplanar ellipses and single camera [12], however, resolu-
tion limitations combined with un-constrained hand motion
makes it difficult to locate each ellipse separately. There-
fore, we decided to use a single ellipse, which would need to
be visible from at least two cameras for estimating its pose
[13]. Camera placement in the VGX mock-up satisfies this
visibility constraint.

4 Ellipse tracking and pose estimation

Ellipse tracking and pose estimation is a well studied topic.
In this section, we provide a brief review of two well-known
algorithms, the first based on a single camera and two co-pla-
nar ellipses [12] and the second based on a pair of cameras
and a single ellipse [13]. Both algorithms reviewed in this
section were used in our experimental comparisons while
Quan’s algorithm [13] was also used to initialize our multi-
camera ellipse tracking and pose estimation system.

4.1 Pose estimation from two ellipses and a single camera

This algorithm, proposed by Ma [12], employs a single cam-
era and two coplanar ellipses . In particular, Ma has shown

that when only one camera is available, then two co-planar
ellipses provide sufficient information for recovering the
position and orientation of the common plane containing the
ellipses (i.e., the problem becomes ill-posed when consider-
ing one ellipse only) . Using an invariant property between
the two ellipses, Ma’s solution is given in closed-form, mak-
ing this approach very fast.

Given two coplanar conics Q1, and Q2, and their respec-
tive projections A1, and A2, the following relationship is
satisfied:

MT A1 M = Q1

MT A2 M = Q2

(1)

where M is the transformation between the camera and the
conic plane that contains the pose information we are inter-
ested in recovering (see Fig. 3).

Q1 and Q2 are invertible in general, so Eq. 1 can be trans-
formed into

MT A1 M Q−1
1 = MT A2 M Q−1

2 (2)

and by multiplying by M−T

A1 M Q−1
1 = A2 M Q−1

2 (3)

Let us denote:

Pa = A−1
2 A1 (4)

Pq = Q−1
2 Q1 (5)

Combining together the last three equations, we have:

M−1 Pa M = Pq (6)
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Fig. 4 One ellipse from two viewpoints problem. The original 3D
ellipse projects onto C1 and C2. Q1 and Q2 are the cones that go from
the center of projection of the cameras, O1 and O2, through C1 and C2
and the original ellipse

The trace of Pa is one of the invariants of a pair of conics
if all the matrices are normalized such that their determi-
nants are equal to 1. If Pa and Pq correspond to the same
pair of conics, then they will have the same value. Therefore,
Eqs. 4 and 5 can be employed to establish the correspondence
between a pair of coplanar conics and their projections. From
Eq. 6 we can recover M as shown in [12].

4.2 Pose estimation from a single ellipse and two cameras

This algorithm, proposed by Quan [13], deals with the prob-
lem of conic correspondences and reconstruction in 3D from
two views using projective properties of quadric surfaces.
A closed-form solution for both projective and Euclidean
reconstruction of conics as well as a mechanism to select the
correct corresponding ellipses in two views are described.

Given a corresponding pair of conics Ci from two views
i = 1, 2 (see Fig. 4) the equation of the ellipses on the image
coordinate systems ui are given by

Ci ≡ uT
i C i ui = 0 for i = 1, 2 (7)

A conic in space is represented by the intersection of a
quadric surface and a plane, so finding this plane is equiva-
lent to reconstructing the conic in 3D because the intersection
of one of the two cones associated with the 2D conics and the
plane gives the reconstruction. Given the projection matrices
P i the cameras, which satisfies λui = P i x, then the cones
Qi corresponding to the pair of 2D conics C i in the two

views are given by

Qi ≡ xT Ai x = xT PT
i C i P i x for i = 1, 2 (8)

in P3.
Quan considers the pencil of quadric surfaces Q1+λQ2 =

0, that represents a quadric surface which passes through all
the common points of Q1 and Q2. He shows that the recon-
struction of a conic in space from two views is equivalent to
finding a λ such that the matrix B(λ) = A1 + λA2 has rank
2. Then Ai are proper cones and the plane we need can be
recovered from B.

5 Multiple-camera ellipse tracking and pose estimation

In our initial experiments, we found Quan’s algorithm [13]
to be very efficient, fast, and accurate. However, the use
of multiple cameras was deemed necessary in our applica-
tion to allow hand tracking independent of viewpoint. In our
system, the marker could be visible from up to four cam-
eras. Although not all of the cameras would contain reliable
information for pose estimation (i.e., see Section 5.2), it
would be possible in general to use information from more
than two cameras to improve pose estimation and robustness.
Therefore, we have developed a model-based ellipse track-
ing approach that integrates information from any number of
cameras.

A block diagram of a generic model-based tracking sys-
tem, which is common in many studies for tracking various
types of objects in 2D or 3D [11,17–19], is shown in Fig. 5.
The approach requires a parametric model of the object to be
constructed first. The main function of the model is to define
a mapping from the parameter space (i.e., the pose of the
object) to the feature space. At each frame of the input image
sequence(s), a search initiated by a prediction is executed
to find the pose of the model that best matches the features
extracted from the input. Basically, a matching error, which
is a measure of similarity between groups of model features
and groups of features extracted from the input images, is
minimized. The synthesis of features using the model on the
image plane also enables a selective analysis that focuses on
regions or a subset of features instead of the whole input
image. When multiple cameras are used, the matching error
on all the cameras can be combined without solving any cor-
respondence problem between the images [18]. In the first
frame, a prediction is not available, therefore, a separate ini-
tialization procedure is needed.

In our case, the model to track is an ellipse, which is rep-
resented as a set of uniformly sampled points on its bound-
ary. We use Quan’s ellipse pose estimation algorithm [13]
for initialization purposes. The prediction is taken to be the
pose estimate at the previous frame. Employing higher order
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Fig. 5 Model-based tracking
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dynamic models did not provide any improvement on the
performance of the system. There are many different ways
to conduct the search or equivalently minimize the match-
ing error. Here, we present an algorithm based on Lowe’s
model-based pose estimation algorithm [11]. Specifically,
our system includes the following four processing steps:

(1) Initialization, where the pose of the ellipse in the first
frame is estimated.

(2) Active camera selection, where the best cameras for
pose estimation are determined.

(3) Matching error computation, where the similarity
between the images and the projection of the ellipse
at a given pose is computed.

(4) Pose estimation, where the pose parameters that mini-
mizes the matching error between the projected model
ellipse and the image features are computed.

5.1 Initialization

We employed Quan’s algorithm [13], which deals with the
problem of conic correspondences and reconstruction of
conics in space from two views. In the initialization module,
we assume that the ellipse is visible from two designated
cameras. These images are first processed to extract edges
using Canny’s edge detector [20] (See Fig. 6a), then con-
tours are extracted and finally an ellipse is fit to each contour
using Direct Least Squares Ellipse Fitting algorithm pro-
vided in [21] (see Fig. 6b,c). As its is demonstrated in Fig. 6,
various imperfections in edge extraction process do not allow
to extract a single ellipse contour from the image. However
the correspondence constraints allow us to detect the correct
pair of ellipses by evaluating all possible pairs of correspon-
dence hypotheses. Once the correct pair is found, closed form

solutions provided by Quan are applied to determine the pose
of the ellipse in 3D.

For comparison purposes, we extended this initialization
algorithm for processing an image sequence through active
camera selection algorithm presented in Section 5.2. At each
frame, two best views seeing the ellipse are first selected
based on the predicted pose of the ellipse. Then the process-
ing steps described above are applied to estimate the ellipse
pose. Because of prediction it becomes possible to reduce
the amount of image processing computations and number of
correspondence hypotheses by determining a region of inter-
est in the images based on the expected size of the ellipse
(see Fig. 9).

5.2 Active camera selection

We use a number of criteria to select the “best” cameras for
pose estimation. First, we select only those cameras that pro-
vide us with images of the ellipse at a satisfactory resolution.
If the ellipse is too far away, large changes in its pose will only
cause small image displacements. The criterion used to test
this constraint is the area covered by the ellipse in the image.
Second, we try to avoid selecting cameras that that does not
see the ellipse at a vertical angle. The angle between the nor-
mal to the ellipse and the vector that goes from the center of
the camera to the center of the ellipse is used to determine
such cases. Finally, we do not consider cameras that provide
images where the ellipse is completely or partially occluded.
The cameras that passes the above tests contributes to the
tracking.

5.3 Matching error computation

The matching error on the images is computed using point
to contour distance measure (See Fig. 7). For each active
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Global hand pose estimation by multiple camera ellipse tracking 7

Fig. 6 a Canny edge detector
output on one view, b detected
ellipses on the same view, c
detected ellipses on a different
view, d final detected ellipse
using the true correspondence

Fig. 7 Point-to-contour
distance calculation: a m0 is a
sample point on the projection
of the model, n0 is the normal to
the contour for that point, and d
is the error distance, b the
normals of the projected contour
(12 sample points are used)
overlaid on an input image

m0

n0

Closest Edge 
along n0 

d

(a) (b)

camera i , an error vector ei is computed by first projecting the
uniformly sampled m points onto the camera’s image plane
using the current pose of the ellipse, and then searching for
the closest edge (i.e., the closest gradient local maximum)
along the normal to the projected contour at the sampled
points.

The errors of all the points are concatenated to form a
vector:

ei =
[
ei

1, . . . ei
m

]T
(9)

where i denotes camera i . It should be noted that, a
large number of sample points m would provide a better
estimate; however, it would also slow down the system sig-
nificantly.

Finally a total error vector e is obtained by weighting and
concatenating the error vectors (see Eq. 9) of the active cam-
eras given by:

e =
[
w1e1, . . . , wn en

]T
(10)
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where the weights wi are calculated as a combination of
(1) calibration error (i.e., the larger the calibration error the
smaller the weight), and (2) area (i.e., the larger the area
covered by the ellipse on this camera’s image the larger the
weight). Weighting mainly helps to reduce the number of iter-
ations required by the optimization algorithm to converge.
We did not observe any improvement in estimation accuracy
compared to the non-weighted version of the total error vec-
tor.

5.4 Pose estimation

Pose estimation corresponds to finding the pose parameters
T (i.e., position and orientation of the ellipse) that minimize
the matching error given by the magnitude of the total error
vector in Eq. 10. Many studies [11,19] employ Newton’s
method, which subtracts a vector of corrections, x from the
current estimate pose T at each iteration. If T k is the param-
eter vector corresponding to iteration k, then,

T k+1 = T k − x (11)

By linearizing the system at the current estimate, the cor-
rection vector is calculated by solving an over-determined
system of equations

e = J x (12)

where J = [Ji j ] = [ ∂ei
∂x j

] is the Jacobian.
One important issue in a general problem is the singular-

ities of the Jacobian, where the change in some pose param-
eters do not produce a change in object’s appearance. Lowe
[11] introduces a technique to provide stability in the pres-
ence of singularities. Another method to eliminate singular-
ities is the use of multiple views [19]. In our case, due to the
availability of multiple views, we do not employ any stabil-
ization mechanism.

5.5 Algorithm overview

The main steps of the multi-camera ellipse tracking algorithm
can be summarized as follows:

(1) Predict 3D pose of the ellipse for current frame.
(2) Choose the active cameras.
(3) Compute error distance vectors and Jacobian matrices

for all n active cameras.
(4) Run a nonlinear minimization algorithm to recover the

ellipse’s pose that best minimizes the residual error of
Eq. 12.

(5) Update current pose estimation.

6 Extrinsic parameters re-calibration

Multiple camera calibration assuming an arbitrary camera
configuration is a difficult problem. Svoboda’s [16] approach
provides a relatively practical solution. Instead of a complex
calibration pattern, it uses a colored light source (e.g., a small
LED in our case), which is visible by many cameras simulta-
neously. Calibration is performed by moving the light source
arbitrarily inside the area covered by the cameras. The trajec-
tory of the light source as perceived from different cameras
provides the necessary information for calibration purposes.
However, this process is rather slow, it requires some user
interaction, and it does not always guarantee good results
since it depends on how well the trajectory of the light source
covers the area enclosed by the cameras. Another practical
reason for the re-calibation was to compensate for the acci-
dental motion of the cameras, which is quite likely due to the
moving hand inside the box.

To update and further optimize the extrinsic camera param-
eters, we have employed our ellipse tracking algorithm. Given
a training sequence of ellipse motion, we first estimate the
pose of the ellipse at each frame using our tracking algo-
rithm,which basically minimizes the matching error on all
the active cameras. In the second step, we use the pose esti-
mates as the ground truth and find the best extrinsic param-
eters that minimizes matching error. Repetitive application
of these two steps results in a more extrinsic parameters that
yields smaller matching error and more accurate estimates.
More specifically, the re-calibration algorithm works as fol-
lows:

(1) For all frames, run the tracking algorithm and record
(i) the pose of the ellipse and (ii) which cameras are
active for each frame (see Table 1, top)

(2) For each camera,

(a) Load the poses, images, and frames where this
camera was active; we will be referring to these
frames as active frames (see Table 1 bottom).

(b) Minimize the total projection error on all active
frames corresponding to the camera. The total
projection error is given by given by

ei =
p∑

k=1

m∑
j=1

| ei
k j (xi ) | (13)

where p denotes the number of active frames and
m denotes number of points in the ellipse model.
ei

k j is the point to contour distance at frame k for
point j as explained in Sect. 5.3 and is a function
of extrinsic camera parameters xi . We employ
Nelder–Mead’s Simplex algorithm [22] to find
the extrinsic parameters that minimizes ei .
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Global hand pose estimation by multiple camera ellipse tracking 9

Table 1 Sample re-calibration for a sequence with 999 frames

1- Run ellipse tracking for whole training sequence

Frame Camera Ellipse pose

⇓ 0 1 . . . 7 Orientation Position

1 I I . . . A → 1 1

2 I I . . . A → 2 2

...
... →

...
...

997 A A . . . I → 997 997

998 A A . . . I → 998 998

999 A A . . . I → 999 999

Total 300 351 . . . 415

2- Run re-calibration for all cameras

Camera Frame Extrinsic Parameters

⇓ 0 1 .. . 999 Rotation Translation

0 I I A → 0 0

1 I I A → 1 1

2 I I I → 2 2

3 I I .. . I → 3 3

4 A A I → 4 4

5 I I A → 5 5

6 I I A → 6 6

7 A A I → 7 7

Top: Recover the ellipse pose for all frames. Bottom: Run re-calibration
for all cameras A = Active camera/frame, I = Inactive camera/frame

(3) If the error for all the cameras is less than a threshold
or a maximum number of iterations has been reached
exit, otherwise go to step 1.

7 Experimental results

In this section, we present quantitative and visual experi-
mental results to evaluate the pose estimation and re-calibra-
tion algorithms. In all the experiments, we assumed that the
ellipse was placed flat on the dorsal part of the hand (see
Fig. 11).

7.1 Accuracy

To evaluate the accuracy of pose estimation, first we com-
pared our algorithm with Ma’s algorithm [12]. Specifically,
using two co-planar ellipses, we recovered the pose of the
largest ellipse using one camera. To make the comparison
fair, we used our active camera selection algorithm to choose
the best camera to reconstruct the pose of the largest ellipse.

To evaluate the accuracy of this method, we re-projected the
ellipse not only on the camera used to recover its pose but
also several other cameras, each having a different viewpoint.
Figure 8 shows the re-projection results where the low-right
image corresponds to the camera used to recover the pose of
the ellipse. Obviously, Ma’s method does not produce very
accurate pose estimation results, therefore, it was excluded
from further comparisons.

Then we compared our algorithm with Quan’s algorithm,
which is among the best available algorithms for a two camera
system. We used the extension of the initialization module
with camera selection described in Section 5.1 to employ
Quan’s algorithm over an image sequence. We ran both of
the algorithms over the same sequence.

(1) Re-projection error: The re-projection error is a mea-
sure of the image displacement between the projection of the
estimated pose and the actual ellipse in the image. We use the
matching error vector given in Eq. 10 without the weights as
the re-projection error.

The two camera algorithm always uses the best two cam-
eras to recover the pose (see Fig. 9), while the multiple-
camera algorithm uses all active cameras. We compute the
re-projection for both methods on all active cameras.

Figure 10 shows the re-projection error (i.e., matching
error given in Sect. 5.3) for both algorithms. The square
wave shaped curve on the top portion of the graph indicates
the number of active cameras at each frame. Two interesting
observations can be made:

(1) When only two cameras are active in the case of the
multiple-camera algorithm, both algorithms give very
close results. However, when more than two cameras
are active, the performance of the multiple-camera
algorithm is significantly better.

(2) Although the re-projection error is smaller in the
multiple-camera case, it increases with the number of
cameras. The reason is that there are more calibration
errors involved as the number of cameras increases.

(2) Difference in position estimates: Figure 11a shows the
differences in the position estimates of the two algorithms.
Interestingly enough, these differences resemble the differ-
ences in the re-projection error shown in Fig. 10. Overall,
we can conclude that when both algorithms use the same two
cameras, the results are very similar, however, when more
cameras are available, the multiple-camera approach yields
more accurate position estimates which implies lower re-
projection error. Similar observations can be made for the
orientation estimates of the ellipse. Figure 11b shows some
examples to demonstrate the multiple-camera algorithm in
the case of three active cameras. The re-projection on the in-
active bottom left camera demonstrates the accuracy of the
estimates.
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Fig. 8 Illustration of Ma’s
algorithm. The position and
orientation of the big ellipse was
recovered using the lower-right
image. The figures on the top
and lower-left show the
re-projection of the ellipse in
three other cameras. Obviously,
Ma’s algorithm produces large
re-projection errors

Fig. 9 Illustration of Quan’s
algorithm. All four cameras are
active. Cameras on the right
hand side containing green
ellipse are the best two views.
The red rectangle shows the
region of interest, in which we
search the ellipse. Blue ellipses
on the left two images are
re-projections of the final result

(3) Difference in orientation estimates: As with the
position (Fig. 12), we plot the difference in orientation esti-
mates. Unlike the position, the differences in the orientation
do not exhibit an obvious relationship with the re-projection
error or the number of active cameras.

8 Robustness

The multiple-camera algorithm has the upper-hand over the
two camera algorithm when it comes to robustness. This is
due to the fact that, as explained before, the two camera
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Fig. 10 a Re-projection error of Quan’s algorithm and our algorithm, b number of active cameras for our multiple-camera approach
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algorithm takes as input the 2D image equation of the best
two ellipses, which requires going through edge detection
and ellipse fitting procedures. Thus, in the cases when we
do not have two good input images at our disposal, it is
very likely that the system will break down in one of these
steps.

Figure 13 shows an example frame when occlusion pre-
vents the two cameras closest to the ellipse from being used.
The two camera algorithm has to resort to the other two cam-
eras shown, which do not provide enough resolution of the
ellipse to provide a correct 2D ellipse fit. The multiple-cam-
era algorithm, on the other hand, only needs an image error
computed from the gradient in the image, being consequently
more robust in these cases and thus able to endure poor qual-
ity input until the ellipse moves back into a better region of
the box.

The need for low-level image processing steps also brings
another weakness. Edge detection and contour extraction
need several thresholds, which are highly dependent on
the lighting. Unfortunately, this requires the fine-tuning
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Fig. 12 Sum of squares differences of orientation coordinates between
two and multiple-camera algorithms

of several parameters depending on a given setup. The
multiple-camera algorithm is free of these restrictions, which
makes it more portable.

123



12 J. Usabiaga et al.

Fig. 13 An example frame
where occlusion prevents from
using the two views with largest
projected ellipses (i.e., highest
resolution). The
multiple-camera algorithm is
able to continue tracking by
using the two images on the
right. The red ellipse shows the
prediction for that frame; the
green one shows the recovered
pose from the cameras used

8.1 Processing speed

A disadvantage of the multiple camera tracking system is the
higher computational requirements due to its iterative nature.
Quan’s algorithm processes each frame in about 4 ms. The
multiple camera algorithm deals with more cameras and com-
putational cost depends linearly on the number of sampled
points of the ellipse used for re-projection. Using a rather con-
servative number of samples (100) and un-optimized code,
the processing speed was about 150 ms per frame. The most
expensive part of the algorithm is the matching error
calculation step, which is repeated a few times at each
frame.

8.2 Effects of re-calibration

The results of the multiple-camera algorithm on a sequence
taken in the VGX were used to re-calibrate the extrinsic
camera parameters. To asses the effects of re-calibration, the
modified extrinsic parameters were used to estimate the pose
parameters on a test sequence. Figure 14 shows the re-projec-
tion errors obtained with and without re-calibration assuming
different number of iterations. As it can be observed, lack of
re-calibration increases the re-projection error as number of
active cameras increases. However, re-calibration reduces the
dependency of the re-projection error on the number of active
cameras with each iteration, to the point where it is almost
constant.

9 Conclusion and future work

We have presented a multiple camera, model-based ellipse
tracking algorithm for global hand-pose estimation in an
immersive training environment. We have also shown how to
employ the proposed algorithm for re-calibrating the extrin-
sic parameters of a multi-camera system. Our experimental
results and comparisons illustrate the effectiveness of the
proposed approach both in terms of pose estimation and re-
calibration. Our algorithm was compared with two well know
algorithms, Ma’s algorithm which is based on tracking a pair
of co-planar ellipses using one camera [12], and Quan’s algo-
rithm which is based on tracking a single ellipse using a pair
of cameras [13]. Both algorithms were successfully ported
in our, eight camera, environment by employing an efficient
camera selection scheme.

Ma’s algorithm has several desirable properties since it
only requires that the ellipse is visible from one camera, it
offers a way to solve the correspondence problem and it pro-
vides a closed-form solution. However, the recovered pose is
quite biased towards the camera used, and it is not accurate
in a global sense. This makes transitions from one camera to
another less robust, and the accuracy is not high enough for
our application.

Quan’s algorithm is is much more accurate than Ma’s algo-
rithm while having the same advantages as Ma’s algorithm
(i.e., it offers a way to solve the correspondence problem and
it provides a closed-form solution). However, this algorithm
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Fig. 14 The re-projection error on a testing sequence with and with-
out re-calibration: a average re-projection error per frame for the testing
sequence computed with the extrinsic parameters iterations 0, 4 and 9

(note that the number of active cameras is plotted in the same graph with
the re-projection error to better illustrate how re-calibration improves
results); b average error of the whole sequence per camera

is highly dependent on the image processing steps required
to recover the 2D equation of the projected ellipse (i.e., edge
detection, contour extraction and ellipse fitting). This makes
it less robust in cases where there is not a good quality pair
images (e.g., due to partial occlusions). Moreover, it requires
fine-tuning several thresholds which dependent on the given
environment.

Our multiple-camera algorithm was shown to be the most
accurate of all. It can cope better with calibration errors since
it utilizes more cameras. It is also more robust to illumination
changes and lower quality images due to partial occlusions. It
does not require using as many thresholds as in Quan’s algo-
rithm, since there are no image processing steps involved
(i.e., the error is computed directly from the intensity gra-
dient). However, like with Quan’s, our algorithm requires at
least two images. Although it is slower than Quan’s algo-
rithm, with appropriate optimizations it would be able to run
in real-time.

For future work, we plan to improve the processing speed
of our algorithm. As indicated in the previous section, using a
rather conservative number of ellipse point samples (100) and
un-optimized code, the processing speed achieved was about
150 ms per frame. However, higher speeds would be neces-
sary in order to successfully deploy the proposed approach
in the VGX environment which is aimed for real-time use.
There are several ways to improve speed. First, optimizing
our code would certainly improve processing speed. Second,
computing an approximation of the matching error, which is
the most expensive part of our algorithm, instead of comput-
ing it exactly would offer significant savings. Finally, running
the algorithm on a faster machine or even on a multi-proces-
sor machine (e.g., dual or quad processor) would offer sig-
nificant speed-ups. In addition to improving the speed of the
system, we plan to extend the it by estimating the full DOF

of the hand. Recovering the global pose of the hand is an
important step in this process.
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