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Abstract

Thermal infrared (IR) imagery offers a promising alternative to visible imagery for face recognition due to its relative insensitive to variations in

face appearance caused by illumination changes. Despite its advantages, however, thermal IR has several limitations including that it is opaque to

glass. The focus of this study is on the sensitivity of thermal IR imagery to facial occlusions caused by eyeglasses. Specifically, our experimental

results illustrate that recognition performance in the IR spectrum degrades seriously when eyeglasses are present in the probe image but not in the

gallery image and vice versa. To address this serious limitation of IR, we propose fusing IR with visible imagery. Since IR and visible imagery

capture intrinsically different characteristics of the observed faces, intuitively, a better face description could be found by utilizing the

complimentary information present in the two spectra. Two different fusion schemes have been investigated in this study. The first one is pixel-

based and operates in the wavelet domain, while the second one is feature-based and operates in the eigenspace domain. In both cases, we employ

a simple and general framework based on Genetic Algorithms (GAs) to find an optimum fusion strategy. We have evaluated our approaches

through extensive experiments using the Equinox face database and the eigenface recognition methodology. Our results illustrate significant

performance improvements in recognition, suggesting that IR and visible fusion is a viable approach that deserves further consideration.

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Face recognition technology has a wide range of potential

applications related to security and safety including surveil-

lance, information security, access control, and identity fraud.

Considerable progress has been made in face recognition over

the last decade especially with the development of powerful

models of face appearance (i.e. eigenfaces) [1]. Despite the

variety of approaches and tools studied, however, face

recognition is not accurate or robust enough to be deployed

in uncontrolled environments. Several factors affect face

recognition performance including pose variations, facial

expression changes, occlusions, and most importantly, illumi-

nation changes.

Recently, a number of studies have demonstrated that

thermal IR offers a promising alternative to visible imagery for

handling variations in face appearance due to illumination
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changes [2], facial expression [3,4], and face pose [4] more

successfully. In particular, thermal IR imagery is nearly

invariant to changes in ambient illumination [2,3], and

provides a capability for identification under all lighting

conditions including total darkness [5]. Thus, while visible-

based algorithms opt for pure algorithmic solutions into

inherent phenomenology problems, IR-based algorithms have

the potential to offer simpler and more robust solutions,

improving performance in uncontrolled environments and

deliberate attempts to obscure identity [6].

Despite its robustness to illumination changes, IR has

several drawbacks. First, it is sensitive to temperature changes

in the surrounding environment. Currents of cold or warm air

could influence the performance of systems using IR imagery.

As a result, IR images should be captured in a controlled

environment. Second, it is sensitive to variations in the heat

patterns of the face. Factors that could contribute to these

variations include facial expressions (e.g. open mouth),

physical conditions (e.g. lack of sleep), and psychological

conditions (e.g. fear, stress, excitement). Finally, IR is opaque

to glass. As a result, a large part of the face might be occluded

(e.g. by wearing eyeglasses). In contrast to IR, visible imagery

is more robust to the above factors but more sensitive to

illumination changes.
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The focus of this paper is on the sensitivity of thermal IR to

facial occlusions caused by eyeglasses. Objects made of glass

act as a temperature screen, completely hiding the parts located

behind them. This may affect recognition performance

seriously. Our experimental results confirm this claim, showing

that face recognition performance in the IR spectrum degrades

seriously when eyeglasses are present in the probe image but

not in the gallery image and vice versa. To address this serious

limitation of IR, we propose fusing IR with visible imagery.

Although visible imagery can suffer from highlights on the

glasses under certain illumination conditions, the problems are

considerably less severe than with IR. Therefore, effective

algorithms to fuse information from both spectra have the

potential to improve face recognition performance. It is worth

mentioning that, there exist several approaches for removing

eyeglasses in face images [7], however, it is not clear whether

these methods would be useful in the IR domain since the eyes

are occluded completely due to the fact that eyeglasses block

thermal energy (i.e. see Fig. 5).

In this study, we have investigated two different fusion

schemes, the first performing pixel-based fusion in the wavelet

domain, and the second performing feature-based fusion in the

eigenspace domain. The key objective is computing a fused

image from the IR and visible images, capturing the most

salient features from each spectrum. In both cases, we employ

GAs to find an optimum fusion strategy to combine

information from the two spectra. The proposed fusion

schemes are different from recent, decision-based, fusion

schemes (i.e. fusing the outputs of different classifiers)

proposed in the literature [3,8–10]. They are also different

from the fusion scheme reported in [10] where eyeglass regions

are replaced by an eye-template fusion is performed in the

image domain by weighted pixel averaging.

We have evaluated the proposed fusion schemes through

extensive recognition experiments using the Equinox face data

set [11] and the eigenface recognition methodology [12]. It

should be noted that, we have chosen the eigenface approach

only for the purpose of demonstrating the benefits of fusion (i.e.

any other recognition technique could have been used for the

same purpose). Our experimental results illustrate that fusion

offers substantial improvements in recognition performance.

Moreover, the evolutionary-based fusion methodology pro-

vides a simple and general framework that can be used to

improve recognition performance in several cases where IR

information becomes less reliable due to various environmental

(e.g. temperature changes), physical (e.g. lack of sleep) and

physiological conditions (e.g. fear, stress). An earlier version of

this work has appeared in [13].

The rest of this paper is organized as follows: In Section 2,

we review the problem of face recognition in the IR spectrum.

Section 3 reviews fusion of visible with IR imagery in general.

The proposed fusion schemes are detailed in Sections 4 and 5

correspondingly. The use of GAs to find optimum fusion

strategies is described in Section 6. The face data set and

experimental procedure used to evaluate and compare the

proposed fusion schemes are given in Sections 7 and 8. Our

experimental results and discussion of results are presented in
Sections 9 and 10. Finally, Section 11 contains our conclusions

and directions for future research.

2. Review of face recognition in the IR spectrum

Face recognition in the IR spectrum has received relatively

little attention compared to visible spectrum, mostly because of

the high cost of IR sensors and lack of IR data sets. A number

of recent studies have shown that face recognition in the IR

offers many benefits. Prokoski [14] presents an overview of

identification in the IR spectrum while results in an operational

scenario are reported in [15]. A recent review on face

recognition in the visible and IR domains can be found in [16].

The effectiveness of visible versus IR spectrum was

compared using several recognition algorithms by Wilder

et al. [8]. Using a database of 101 subjects without eyeglasses,

varying facial expression, and allowing minor lighting

changes, they concluded that there are no significant

performance differences between visible and IR recognition

across all the algorithms tested. They also concluded that

fusing visible and IR decision metrics represents a viable

approach for enhancing face recognition performance.

In [3,11,17], several appearance-based face recognition

methodologies were tested under various lighting conditions

and facial expressions. Using radiometrically calibrated

thermal imagery, they reported superior performance for IR-

based recognition than visible-based recognition. Additional

performance improvements were achieved using decision-

based fusion [3]. In a later study [18], the impact to recognition

of eye detection in the IR spectrum was investigated.

In [19], a statistical hypothesis pruning methodology was

introduced for face recognition in IR. First, each IR face image

was decomposed using Gabor filters. Then, each image was

represented by a few parameters by modelling the marginal

density of the Gabor filter coefficients using Bessel functions.

Recognition was performed in the space of parameters of the

Bessel functions. This approach has been improved by

Buddharaju et al. [20].

The effect of lighting, facial expression, and passage of time

between the gallery and probe images were examined by Chen

et al. [9] Although, IR-based recognition outperformed visible-

based recognition assuming lighting and facial expression

changes, their experiments demonstrated that IR-based

recognition degrades when there is substantial passage of

time between the gallery and probe images. Using fusion at the

decision level based on ranking and scoring, they were able to

develop schemes that outperformed either modality alone. In a

related study, IR-based recognition was shown to be less

sensitive to changes in 3D head pose and facial expression [4].

The potential of using near-IR hyperspectral imaging for face

recognition was investigated in [21]. The results of this study

showed that the local spectral properties of human tissue are

nearly invariant to face orientation and expression, improving

recognition performance.

Heo et al. [10] considered two types of visible and IR fusion,

the first at the data level and the second at the decision level.

Data fusion was implemented by applying pixel-based
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weighted averaging of registered visual and thermal images.

Decision fusion was implemented by combining the matching

scores of individual recognition modules. To deal with

occlusions caused by eyeglasses, they used ellipse fitting to

detect the eyeglass regions in the IR image and replaced them

with an eye template. Using a commercial face recognition

system (i.e. FaceIt), they demonstrated improvements in

recognition accuracy. There are two main issues with this

approach. First, choosing an optimum set of weights, both for

data-based and decision-based fusion, was not addressed

satisfactorily. Second, replacing eyeglass regions with an eye

template might not be very appropriate in the context of face

recognition since the eyes contain important information for

identification purposes. In fact, several studies have demon-

strated that face recognition is possible using eyes alone [22].

Recently, IR was also used for face detection by Dowdall

et al. [23–25] and face tracking by Eveland et al. [26]. In

[23–25], multi-band feature extraction was used by capitalizing

on the unique reflectance characteristics of the human skin in

the near-IR spectrum. In particular, it was found that human

skin exhibits an abrupt change in reflectance around 1.4 mm.

Exploiting this phenomenology, a highly accurate skin

mapping was built by taking a weighted difference of the

lower band near-IR image and the upper band near-IR image.

This allowed for simple algorithmic-based face detection

methods to perform extremely well. In [26], a method for

modelling thermal emission from human skin was used to

segment faces from IR image. Tracking was performed by

combing the segmentation model with the condensation

algorithm.

3. Fusion of IR and visible imagery

Information obtained from a given source or sensor

generally contains redundancy, which does not contribute to

the knowledge about the scene we want to analyze. On the

other hand, the information obtained by different means and

tools, can provide varying and complementary details of the

object under analysis. Finding the complimentary parts and

removing the redundancy is the ultimate goal of information

fusion approaches.

In the past, IR and visible image fusion has been

successfully used for visualization purposes [27], especially

in the remote sensing area. In this case, aerial imaging sensors

capture information in several spectral ranges. Developing

algorithms to visualize this information is thus very important.

Sanjeevi et al. [28] provide a review and comparisons among

existing image fusion techniques for visualization purposes.

Fusing data from IR and visible sensors has also led to

improved target recognition rates [29].

Choosing an appropriate fusion scheme is both application

and data dependent. In the context of our application, infrared

cameras measure the heat energy emitted by the face while

optical cameras capture the light reflectance of the face surface.

As the surface of the face and its temperature do not have

anything in common, the information in the IR and visible

images is independent and complimentary. In general, pixel by
pixel fusion does not preserve the spatial information in the

image. In contrast, fusion at multiple-resolution levels allows

features with different spatial extend to be fused at the

resolution at which they are most salient. In this case, important

features appearing at lower resolutions can be preserved in the

fusion process.

The basic idea behind multi-resolution fusion is performing

a multiscale transform on each source image then constructing

a composite multiscale representation from these according to

some specific fusion rules. The fused image is obtained by

taking an inverse multiscale transform [30]. Multiscale face

representations have been used in several systems [31]. Some

of the most popular multiscale techniques include the

Laplacian pyramid [32], Fourier transform, and wavelets

[33]. High frequencies are relatively independent of global

changes in the illumination, while the low frequencies take into

account the spatial relationships among the pixels and are less

sensitive to noise and small changes (e.g. facial expression).

Next, we describe the fusion schemes studied in this work.

The slow heat transfer through the human body causes natural

low resolution IR images of human face. Therefore, our first

fusion strategy operates in the wavelet domain, taking into

consideration the differences in the resolution of the IR and

visible-light images and exploiting the benefits of multi-

resolution representations. Our second fusion strategy operates

in the eigenspace domain and fuses together global image

features. In each case, we assume that faces are represented by

a pair of images, one in the IR spectrum and one in the visible

spectrum. Also, it is assumed that both images have been

normalized prior to fusion to ensure similar ranges of values

(Section 7).
4. Pixel-based fusion in the wavelet domain

Wavelets are a type of multi-resolution function approxi-

mation that allow for the hierarchical decomposition of a signal

or an image [33]. In particular, they decompose a given signal

onto a family of functions with finite support. This family of

functions is constructed by the translations and dilations of a

single function called mother wavelet. The finite support of the

mother wavelet gives exact time localization while the scaling

allows extraction of different frequency components. The basic

requirement of multi-resolution analysis is formulated by

requiring a nesting of the spanned spaces as:

/VK13V03V1/3L2 (1)

In space VjC1, we can describe finer details than in space Vj.

In order to construct a multi-resolution analysis, a scaling

function f is necessary, together with a dilated and translated

version of it:

f
j
iðxÞZ 2j=2fð2jxKiÞ iZ 0;.;2jK1: (2)

The important features of a signal can be better described or

parameterized, not by using f
j
iðxÞ and increasing j to increase

the size of the subspace spanned by the scaling function, but by

defining a slightly different set of function j
j
iðxÞ that span the



G. Bebis et al. / Image and Vision Computing 24 (2006) 727–742730
difference between the spaces spanned by various scales of the

scale function. These functions are the wavelets, which span

the wavelet space Wj such that VjC1ZVj4Wj, and can be

described as:

j
j
iðxÞZ 2j=2jð2jxKiÞ iZ 0;.;2jK1: (3)

Different scaling functions f
j
iðxÞ and wavelets j

j
iðxÞ

determine various wavelet transforms. In this study, we have

employed the Haar wavelet, which is the simplest to implement

and computationally the least demanding. Furthermore, since

Haar basis forms an orthogonal basis, the transform provides a

non-redundant representation of the input images. The Haar

scaling function is given by:

fðxÞZ
1 for 0%x!1

0 otherwise

(
(4)

The Haar wavelet is defined as:

jðxÞZ

1 for 0%x!
1

2

K1 for
1

2
%x!1

0 otherwise

8>>>>>><
>>>>>>:

(5)

Wavelets capture visually plausible features of the shape

and interior structure of objects. Features at different scales

capture different levels of detail. Coarse scale features encode

large regions while fine scale features describe smaller, local

regions. All these features together disclose the structure of an

object in different resolutions.
Fig. 1. Fusion scheme in the wavelet domain.
4.1. Methodology

Fusion in the wavelet domain involves combining the

wavelet coefficients of the visible and IR images. First, we

compute a multi-resolution representation for each of the

images using Haar wavelets [33]. To fuse the visible and IR

images, we select a subset of coefficients from the IR image

and the rest from the visible image. The fused image is

obtained by applying the inverse wavelet transform on the

selected coefficients. The key question in implementing this

idea is which wavelet coefficients to choose from each

spectrum.

Using un-weighted averages is not appropriate since it

assumes that the two spectra are equally important and, even

further, that they have the same resolution. Several image

fusion experiments in the wavelet domain have been reported

in [34]. The most intuitive fusion approach in the wavelet

domain is choosing the coefficients with maximum absolute

value [35]. The higher the absolute value of a coefficient is, the

higher is the probability that it encodes salient image features.

Our experiments using this approach showed poor

performance.

In this study, we employ GAs to decide which wavelet

coefficients to select from each spectrum. Fig. 1 illustrates the

main idea of this approach, which is further explained in
Section 6. Recognition is performed using the eigenface

approach on the fused images.
5. Feature-based fusion in the eigenspace domain

The eigenface approach uses Principal Components

Analysis (PCA), a classical multivariate statistics method, to

linearly project face images in a low-dimensional space [12].

This space is spanned by the principal components (i.e.

eigenvectors corresponding to the largest eigenvalues) of the

distribution of the training images. Specifically, representing

each image I(x,y) as a N!N vector Gi, first the average faceJ
is computed:

JZ
1

R

XR
iZ1

Gi (6)

where R is the number of faces in the training set. Next, the

difference F of each face from the average face is computed:

FiZGiKJ. Then the covariance matrix is estimated by

C Z
1

R

XR
iZ1

FiF
T
i ZAAT; (7)

where, AZ[F1F2.FR]. The eigenspace can then be defined

by computing the eigenvectors mi of C. Since C is very large

(N!N), computing its eigenvector will be very expensive.

Instead, we can compute ni, the eigenvectors of A
TA, an R!R

matrix. Then mi can be computed from ni as follows [12]:

mi Z
XR
jZ1

nijFj; jZ 1.R: (8)
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Usually, we only need to keep a much smaller number of

eigenvectors Rk corresponding to the largest eigenvalues.

Given a new image, G, we subtract the mean (FZGKJ) and

compute the projection:

~FZ
XRk

iZ1

wimi: (9)

where wiZmT
i G are the coefficients of the projection. We refer

to {wi} as eigenfeatures.
5.1. Methodology

Fusion in the eigenspace domain involves combining the

eigenfeatures from the visible and IR images. Specifically, first

we compute two eigenspaces, one using the visible face images

and the other using the IR face images. Then, each face is

represented by two sets of eigenfeatures, the first computed by

projecting the IR face image in the IR-eigenspace, and the

second by projecting the visible face image in the visible-

eigenspace. Fusion is performed by selecting some eigenfea-

tures from the IR-eigenspace and some from the visible-

eigenspace. GAs are employed again to decide which

eigenfeatures to select from each eigenspace. Fig. 2 illustrates

the main steps of this approach. Recognition is performed in

the fused eigenspace.
6. Fusion using GAs

Deciding which wavelet coefficients or eigenfeatures to

select from each spectrum is essentially a search problem. In

this work, we propose using GAs to address this issue. GAs

are a class of randomized, parallel search optimization

procedures inspired by the mechanisms of natural selection,

the process of evolution [36]. They were designed to

efficiently search large, non-linear, poorly understood search

spaces. In the past, GAs have been used in target recognition

[37], object recognition [38], face detection/verification

[39,40], and feature selection [41–44]. Goldberg [45]

provides a nice introduction to GAs and the reader is

referred to this source for further information.
Fig. 2. Fusion scheme in th
Several different methods have been reported in the

literature for finding an optimum fusion strategy, some quite

simple based on pixel averaging and some more powerful

based on probabilistic schemes [46,47]. Our decision to use

GAs was based on several reasons. First, the problem of fusion

involves searching very large spaces. GAs have demonstrated

good performance in searching large spaces in various

application domains including object recognition [38] and

feature selection [43]. Second, the problem of fusion appears to

have many suboptimal solutions. Although GAs do not

guarantee to find a global optimum solution, they have the

ability to search through very large search spaces and come to

nearly optimal solutions fast. Their ability for fast convergence

is explained by the schema theorem (i.e. short-length bit

patterns in the chromosomes with above average fitness, get

exponentially growing number of trials in subsequent

generations [36]). Third, much work in the genetic and

evolutionary computing communities has led to growing

understanding of why they work well and plenty of empirical

evidence to support this claim [48,49]. Fourth, they suitable for

parallelization and linear speedups are the norm, not the

exception [50]. Finally, we have had considerable success in

the past applying GAs in related problems [38,41–44].

GAs operate iteratively on a population of structures, each

of which represents a candidate solution to the problem,

encoded as a string of symbols (i.e. chromosome). A randomly

generated set of such strings forms the initial population from

which the GA starts its search. Three basic genetic operators

guide this search: selection, crossover and mutation. The

genetic search process is iterative: evaluating, selecting, and

recombining strings in the population during each iteration

(generation) until reaching some termination condition (Fig. 3).

Evaluation of each string is based on a fitness function that

is problem-dependent. It determines which of the candidate

solutions are better. This corresponds to the environmental

determination of survivability in natural selection. Selection of

a string, which represents a point in the search space, depends

on the string’s fitness relative to those of other strings in the

population. It probabilistically removes, from the population,

those points that have relatively low fitness. Mutation, as in

natural systems, is a very low probability operator and just flips
e eigenspace domain.
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a specific bit. Mutation plays the role of restoring lost genetic

material. Crossover in contrast is applied with high probability.

It is a randomized yet structured operator that allows

information exchange between points. Its goal is to preserve

the fittest individuals without introducing any new value.

In summary, selection probabilistically filters out solutions

that perform poorly, choosing high performance solutions to

concentrate on or exploit. Crossover and mutation, through

string operations, generate new solutions for exploration.

Given an initial population of elements, GAs use the feedback

from the evaluation process to select fitter solutions, eventually

converging to a population of high performance solutions. GAs

do not guarantee a global optimum solution. However, they

have the ability to search through very large search spaces and

come to nearly optimal solutions fast. Their ability for fast

convergence is explained by the schema theorem (i.e. short-

length bit patterns in the chromosomes with above average

fitness, get exponentially growing number of trials in

subsequent generations [45]).
6.1. Implementation details

We describe below in more detail the encoding schemes,

fitness evaluation functions, and genetic operators used for

fusing IR with visible information in the wavelet and

eigenspace domains.
6.1.1. Encoding

In the case of fusion in the wavelet domain, the chromosome

is a bit string whose length is determined by the number of

wavelet coefficients in the image decomposition. Each bit in the

chromosome is associatedwith awavelet coefficient at a specific

location. The value of a bit in the chromosome determines

whether the corresponding wavelet coefficient is selected from

the IR (e.g. 0) or from the visible spectrum (e.g. 1) (Fig. 1). In the
case of fusion in the eigenspace domain, the chromosome is also

a bit string whose length is determined by the number of

eigenvectors. Here, we use the first 100 eigenvectors from each

space (Section 7), thus the chromosome has length 100. Each bit

in the chromosome is associated with an eigenfeature at a

specific location. The value of a bit in the chromosome

determines whether a particular eigenfeature is selected from

the visible image (i.e. 1) or the IR image (i.e. 0) (Fig. 2).
6.1.2. Fitness evaluation

Each individual in a generation represents a possible way to

fuse IR with visible information. To evaluate its effectiveness,

we perform the fusion based on the information encoded by

this individual and perform recognition using the eigenface

approach. Recognition accuracy is computed using a validation

dataset (Section 7) and is used to provide a measure of fitness.

Upon convergence, the best chromosome found is kept and

used to evaluate performance on a test set. Fig. 4 illustrates the

evolutionary-based fusion approach in the wavelet domain.
6.1.3. Initial population

In general, the initial population is generated randomly,

(e.g. each bit in an individual is set by flipping a coin). In this

way, however, we will end up with a population where each

individual contains the same number of 1’s and 0’s on average.

To explore subsets of different numbers of wavelet coefficients

or eigenfeatures chosen from each domain, the number of 1’s

for each individual is generated randomly. Then, the 1’s are

randomly scattered in the chromosome.
6.1.4. Selection

Our selection strategy was cross generational. Assuming a

population of size N, the offspring double the size of the

population and we select the best N individuals from the

combined parent-offspring population [51] (Fig. 4).
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6.1.5. Crossover

In general, we do not know how different wavelet

coefficients depend on each other. If dependent coefficients

are far apart in the chromosome, it is more probable that

traditional 1-point crossover, will destroy the schemata. To

avoid this problem, uniform crossover is used here. The

crossover probability used in our experiments was 0.95.
6.1.6. Mutation

Mutation is a very low probability operator, which flips the

values of randomly chosen bit. The mutation probability used

here was 0.03.
Fig. 5. Examples of visible and IR image pairs (first row) and preprocessed

images (second row).
7. Face dataset

In our experiments, we used the face database collected by

Equinox Corporation under DARPA’s HumanID program [52].

Specifically, we used the long-wave infrared (LWIR) (i.e.

8–12 mm) and the corresponding visible spectrum images from

this database. The data was collected during a 2-day period.

Each pair of LWIR and visible light images was taken

simultaneously and co-registered with 1/3 pixel accuracy

(Fig. 5). The LWIR images were radiometrically calibrated and

stored as gray-scale images with 12 bits per pixels. The visible

images are also gray-scale images represented with 8 bits per

pixel. The size of the images in the database is 320!240

pixels.
The database contains frontal faces under the following

scenarios: (1) three different light direction—frontal and lateral

(right and left); (2) three facial expression—‘frown’, ‘surprise’

and ‘smile’; (3) vocals pronunciation expressions—subjects

were asked to pronounce several vocals from which three

representative frames were chosen; and (4) presence of

glasses—for subjects wearing glasses, all of the above

scenarios were repeated with and without glasses. Both IR

and visible face images were preprocessed prior to experimen-

tation by following a procedure similar to that described in

[11,17]. The goal of preprocessing was to align and scale the

faces, remove background, and account for some illumination

variations (Fig. 1). For comparison purposes, we have
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attempted to evaluate our fusion schemes using a similar

experimental protocol to that given in [11,17]. Our evaluation

methodology employs a training set (i.e. used to compute the

eigenfaces), a gallery set (i.e. set of persons enrolled in the

system), a validation set (i.e. used in the fitness evaluation of

the GA), and a test set (i.e. probe image set containing the

images to be identified).
Fig. 6. Eyeglasses data.
8. Experimental procedure

For training, we used 200 images, randomly chosen from the

entire Equinox database. For recognition, we used the

Euclidean distance and the first 100 principal components as

in [11,17]. In the eigenface approach, an image is represented

as a low-dimensional feature vector, containing the coefficients

of the projection of the image in the eigenspace. Recognition is

performed by matching the coefficients of an unknown face

image (i.e. probe) to the coefficients of a set of known images

(i.e., gallery) [12]. Recognition performance was measured by

finding the percentage of the images in the test set, for which

the top match is an image of the same person from the gallery.

If N is the number of images in the test set, the recognition ratio

r is computed as follows

r Z
1

N

XN
iZ1

xi; (10)

where xiZ1 if the top match from the gallery set belongs to the

same subject and xiZ0 otherwise. To mitigate for the relatively

small number of images in the database, the average error was

recorded using a three-fold cross-validation procedure. In

particular, we split each data set used for testing randomly

three times by keeping only 75% of the images for testing

purposes and the rest 25% for validation purposes. To account

for performance variations due to random GA initialization, we

averaged the results over three different GA runs for each test,

choosing a different random seed each time. Thus, we

performed a total of nine runs for each gallery/test set

experiment. We used population sizes between 100 and 200

and 100 generations. For convergence, we used the ratio

between the best fitness and the average fitness in each

generation.
Fig. 7. Facial expression data.
8.1. Eyeglasses experiments

Measuring the effect of eyeglasses is done by using the

expression frames. There are 43 subjects wearing glasses in

the EA set making a total of 822 images. Following the

terminology in [11,17] we created the following test

sets (Fig. 6): EG (expression frames with glasses, all

illuminations), EnG (expression frames without glasses,

all illuminations), EFG (expression frames with glasses,

frontal illumination), ELG (expression frames with

glasses, lateral illumination), EFnG (expression frames

without glasses, frontal illumination), ELnG (expression

frames without glasses, lateral illumination). The inclusion
relations among these sets are as follows:

EGZELGgEFG; EnGZELnGgEFnG and

EGhEnGZ:
(11)
8.2. Facial expression experiments

The test sets for the facial expression experiments include

the images containing the three expression frames and three

vocal pronunciation frames. There are 90 subjects with a total

of 1266 pairs of images for the expression frames and 1299 for

the vocal frames. Some of the subjects in these tests sets wear

glasses while others not. Following the terminology in [11,17]

we have created the following test sets (Fig. 7): EA (expression

frames, all illuminations), EL (expression frames, lateral

illuminations), EF (expression frames, frontal illumination),

VA (vocal frames, all illumination), VL (vocal frames, lateral

illumination), VF (vocal frames, frontal illumination). The

inclusion relations among these sets are as follows:

EAZELgEF; VAZVLgVF and

VAhEAZ:
(12)



Table 1

Averages and standard deviations for the eyeglasses experiments using fusion in the wavelet domain

The columns represent the gallery set and the rows represent the test set. The first entry in each cell shows the average performance and standard deviation from the visible images, the

second entry is from the IR images, and the third entry is from the fused images. The bottom entry shows the minimum and maximum recognition performances from the three cross-

validation runs achieved when using the fused images. Test scenarios for which the test and the gallery sets had common subsets were not performed.
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9. Experimental results

9.1. Eyeglasses

Our experimental results illustrate clearly that IR is

robust to illumination changes but performs poorly when

glasses are present in the gallery set but not in the test set

and vice versa. Considerable improvements in recognition

performance were achieved in this case by fusing IR with

visible images both in the wavelet (Table 1 and Fig. 8) and

eigenspace (Table 2 and Fig. 9) domains. The improvements

were even greater when, in addition to eyeglasses, the test

and the gallery set contained images taken under different

illuminations. For example, in the EFG/ELnG test case

using fusion in the wavelet domain, recognition perform-

ance was improved by 46% compared to recognition using

visible images and by 82% compared to recognition using

IR images (Table 1). Between the two fusion schemes

tested, fusion in the wavelet domain yielded higher

recognition performance overall. Note that we did not

perform experiments when the intersection between gallery

and test sets is not empty.
9.2. Facial expression

The facial expression tests had varying success as shown in

Tables 3 and 4 and Figs. 10 and 11. In general, fusion led to

improved recognition performance compared to recognition in

the visible spectrum. Comparing IR with fusion, sometimes IR

performed better than fusion and vice versa. However, the

observed differences were not statistically significant and are

mainly accounted to the presence of undesired illumination

effects in the fused images (Section 10). As before, we did not

perform experiments when the intersection between gallery

and test sets is not empty.
10. Discussion

The horizontal and vertical double lines divide each of

Tables 1 and 2 into four quadrants (i.e. I to IV, starting from the

upper-right corner and moving counterclockwise). Each

quadrant represents experiments testing some specific differ-

ence between the gallery and the test sets: (1) experiments in

quadrant I evaluate the effect of eyeglasses being present in the

probe but not in the gallery; (2) experiments in quadrant III



Table 2

averages and standard deviations for the eyeglasses experiments with fusion in the eigenspace domain

Fig. 8. Eyeglasses results in the wavelet domain: (a) same illumination conditions—eyeglasses are not present both in the gallery and probe sets; (b) eyeglasses are

present both in the gallery and probe sets—illumination conditions are different; (c) eyeglasses are not present both in the gallery and probe sets—illumination

conditions are different; (d) similar to (c) except that the gallery and probe sets contain multiple illuminations.
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Fig. 9. Eyeglasses results in the eigenspace domain: (a) same illumination conditions—eyeglasses are not present both in the gallery and probe sets; (b) eyeglasses

are present both in the gallery and probe sets—illumination conditions are different; (c) eyeglasses are not present both in the gallery and probe sets—illumination

conditions are different; (d) similar to (c) except that the gallery and probe sets contain multiple illuminations.

Table 3

Averages and standard deviations for the facial expression experiments with fusion in the wavelet domain
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Table 4

Averages and standard deviations for the facial expression experiments with fusion in the eigenspace domain

Fig. 10. Facial expression results in the wavelet domain.

Fig. 11. Facial expression results in the eigenspace domain.
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evaluate the effect of eyeglasses being present in the gallery but

not in the probe; (3) experiments along the off-diagonals within

each of these two quadrants represent tests where the

illumination conditions between the gallery and probe sets

are the same; (4) experiments in quadrants II and IV evaluate

the effect illumination changes only.

Several interesting conclusions can be drawn by considering

these results. As expected, face recognition in the IR is not

influenced by illumination changes. However, IR yielded very

low success when eyeglasses were present in the gallery but not

in the probe and vice-versa (cases (1) and (2)). The success of

visible-based face recognition was less sensitive to this factor

(cases (1) and (2)). Illumination changes had an important

influence on the success of face recognition in the visible

domain (case (3)). The success of face recognition using fused

images was similar in all four quadrants. This implies that

fusion was able to become less sensitive both to eyeglasses and

illumination changes.

To better illustrate the performance of the fusion approach,

we have interpolated the results in Table 1 and used a simple

visualization scheme to remove small differences and

emphasize major trends in recognition performance (Fig. 12).

Our visualization scheme assigns a grayscale value to each

average from Table 1) with black implying 0% recognition and

white 100% recognition. The empty cells from Table 1 are also

shown in black. As it can be observed, Fig. 12(d) is closer to

Fig. 12(a) than Fig. 12(b) and (c).



Fig. 12. The average performance values from Table 1, visualized as a grayscale image. See text for details. (a) Ideal case (b) visible images (c) IR images, (d) fused

images.

Fig. 13. Fusion in the wavelet domain: (a) visible and (b) IR images, (c) fused

images using ELnG as gallery (d) fused images using EG as gallery.
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Using fusion in the wavelet domain led to higher

recognition performance compared to using visible images

only, however, this was not always the case in the IR,

especially when recognition in the IR was high (i.e. greater

than 97%). Although the observed performance differences

were not statistically significant, we noticed that all the cases

where IR performed better than fusion were cases where the

illumination direction in the gallery set was different from that

in the test set and vice versa, assuming no eyeglasses

differences (e.g. ELG/EFG, EFG/ELG, ELnG/EFnG, and

EFnG/ELnG). This is accounted mainly to the fact that fusion

was not able to completely disregard undesired illumination

effects present in the visible images.

This assumption was confirmed by observing the recon-

structed fused images shown in Fig. 13, as well as their first

eigenfaces shown in Fig. 14. The reconstructed images show a

blocky structure. Depending on the length of the basis

functions the blocks may turn to spots with mire round shapes

and lower contrast but cannot disappear completely. However,

the visual quality of the reconstructed images is not important

for our application. Overall, the fused images have higher

resolution compared to the IR images, however, they are also

affected by undesired illumination artifacts present in the

visible images. Clearly, the first few eigenfaces of the fused

images still encode illumination direction. Fig. 14(c) shows

some fused images using ELnG as gallery while Fig. 14(d)

shows some fused images using EG as gallery. Quite

interestingly, the reconstructed regions around the eyes are

darker in the last case (i.e. to account for the IR blocking effect

in the gallery due to eyeglasses).

Fusion in the eigenspace domain always yielded higher

recognition performance compared to recognition both in the

visible and IR domains with only one exception (i.e.

EFG/ELG). This exception could be explained again by the

difference in illumination direction between the gallery and test

sets. For comparison purposes, we reconstructed several visible

and IR images from the ELnG set using only the subset of

eigenvectors selected from each spectrum (Fig. 15). The

reconstructed visible images reveal clearly that they contain

information about illumination direction.

Although, fusion in the eigenspace domain improved

recognition performance more consistently compared to fusion

in the wavelet domain, the overall recognition performance

using wavelet-based fusion was better (Fig. 16(a)) although

more computationally intensive. Significant differences in

recognition performance can be noticed in the following cases:
EFG/EnG (30% higher recognition), EFG/ELnG (38% higher

recognition), EFnG/ELG (23% higher recognition), EFnG/EG

(12% higher recognition), and ELG/EFnG (11% higher

recognition). We attribute the higher recognition performance

using fusion in the wavelet domain to the more powerful

eigenfeatures computed using fused images.

In the case of facial expressions (Tables 3 and 4 and Figs.

10 and 11), IR performed quite well as it has been reported in

other studies [3,4]. Recognition in the visible spectrum was not

satisfactory while recognition using fused images had

comparable performance to that in the IR. In particular, we

observed some performance differences between fusion and IR

with IR being better that fusion in certain cases and vice versa.

The differences are not statistically significant and are

accounted again to different illumination direction between

the gallery and probe sets and the preservation of undesired

illumination effects in the fused images. Fig. 16(b) shows the

overall accuracy achieved in these experiments.

We have also attempted to analyze the GA solutions in order

to understand what parts of the face are encoded by IR features

and what parts are encoded by visible features. Our analysis

indicated that almost half of the features (i.e. wavelet

coefficients or eigenfeatures) came from the IR spectrum

while the other half came from the visible spectrum. However,

the eye regions were encoded mostly using features from the

visible spectrum. We did not observe any other major trends in



Fig. 14. Fusion in the wavelet domain—the first few eigenfaces of several fused images. The second and third eigenfaces show clear influence of right and left lateral

illumination.
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encoding other facial features. We also examined whether

information from certain resolution levels (i.e. in the wavelet

domain) or eigenvector ranges (i.e. in the eigenspace domain)

were represented more heavily in the fused images. The

solutions obtained indicated that the eye regions were

represented mostly using wavelet coefficients from higher

resolution levels and eigenfeatures corresponding to smaller

eigenvectors. This results indicates a tendency to improve the

resolution of the eye regions.
Fig. 15. Overall recognition accuracy: (a) case of eyeglasses; (b) case of facial

expressions.

Fig. 16. Fusion in the eigenspace domain: (a) visible and (b) IR images

assuming lateral illumination; (c) reconstructed visible images and (d)

reconstructed IR images using the eigenvectors selected from each domain

only.
11. Conclusions and future work

We presented and compared two different fusion schemes

for combining IR and visible imagery for the purpose of face

recognition. The first scheme was pixel-based, operating in the

wavelet domain. The second scheme was feature-based,

operating in the eigenspace domain. Both schemes aimed at

improved and robust recognition performance across variable

lighting and presence/absence of eyeglasses. Between the two

schemes, fusion in the wavelet domain demonstrated better

recognition performance overall (Fig. 16) although being more

computationally intensive. Fast, Haar-like transforms [53], are

worth considering to reduce time requirements.

Further consideration should also be given to the existence

of many optimal solutions found by the GA. Although optimal

in the training phase (i.e. low validation error), these solutions

showed different recognition performances when considered

for testing. In investigating these solutions, we were not able to

distinguish any pattern in the content of the chromosomes that

might have revealed why some chromosomes were better than

others. The use of larger validation sets and more selective

fitness functions might help to eliminate these issues.

Future work includes considering more effective fusion

schemes. We have performed preliminary experiments in the

case of eigenspace-based fusion with chromosomes of length

200, using a 0/1 encoding as before. In this case, the first 100

locations of the chromosome correspond to visible eigenfea-

tures while the last 100 locations correspond to IR

eigenfeatures. In this scheme, instead of selecting a single

eigenfeature (i.e. visible or IR) at particular location, we can

select or reject both eigenfeatures. Repeating the eyeglasses

experiments in this case, we noticed a 3% overall improvement

in recognition accuracy. A generalization of this scheme would

be using non-binary encoding based on a weighted averaging.

In this case, each feature from the visible and IR domains is

assigned a weight instead of simply selecting/not-selecting it.

We also plan to consider more powerful fitness functions,

for example, by adding extra terms to control the number of

wavelet coefficients selected from different resolution levels

(e.g. we can favor high or low resolution levels) or

eigenfeatures from different eigenvector ranges (e.g. we can

favor large or small eigenvectors). We also plan to consider

fitness approximation schemes [54] to reduce the compu-

tational requirements of fitness evaluation,

Additional issues for future research include investigating

the effect of environmental (e.g. temperature changes),

physical (e.g. lack of sleep) and physiological conditions

(e.g. fear, stress) to IR performance. For example, Chen et al.



G. Bebis et al. / Image and Vision Computing 24 (2006) 727–742 741
[9] demonstrated that IR-based recognition degrades when

there is substantial passage of time between the gallery and

probe images. The proposed evolutionary-based fusion

methodology is general enough and can be applied in these

cases as well to improve recognition performance when IR

information is not very reliable.
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