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Abstract. A number of studies have demonstrated that infrared (IR)
imagery offers a promising alternative to visible imagery due to it’s in-
sensitive to variations in face appearance caused by illumination changes.
IR, however, has other limitations including that it is opaque to glass.
The emphasis in this study is on examining the sensitivity of IR imagery
to facial occlusion caused by eyeglasses. Our experiments indicate that
IR-based recognition performance degrades seriously when eyeglasses are
present in the probe image but not in the gallery image and vice versa. To
address this serious limitation of IR, we propose fusing the two modali-
ties, exploiting the fact that visible-based recognition is less sensitive to
the presence or absence of eyeglasses. Our fusion scheme is pixel-based,
operates in the wavelet domain, and employs genetic algorithms (GAs) to
decide how to combine IR with visible information. Although our fusion
approach was not able to fully discount illumination effects present in the
visible images, our experimental results show substantial improvements
recognition performance overall, and it deserves further consideration.

1 Introduction

Considerable progress has been made in face recognition research over the last
decade [1] especially with the development of powerful models of face appear-
ance (e.g., eigenspaces [2]). Despite the variety of approaches and tools studied,
however, face recognition has shown to perform satisfactorily in controlled envi-
ronments but it is not accurate or robust enough to be deployed in uncontrolled
environments. Several factors affect face recognition performance including pose
variation, facial expression changes, face occlusion, and most importantly, illu-
mination changes.

Previous studies have demonstrated that IR imagery offers a promising al-
ternative to visible imagery for handling variations in face appearance due to
illumination changes more successfully. In particular, IR imagery is nearly in-
variant to changes in ambient illumination [3], and provides a capability for iden-
tification under all lighting conditions including total darkness [4]. Thus, while
visible-based algorithms opt for pure algorithmic solutions into inherent phe-
nomenology problems, IR-based algorithms have the potential to offer simpler
and more robust solutions, improving performance in uncontrolled environments
and deliberate attempts to obscure identity [5].



Despite its advantages, IR imagery has other limitations including that it
is opaque to glass. Objects made of glass act as a temperature screen, com-
pletely hiding the face parts located behind them. In this study, we examine the
sensitivity of IR imagery to facial occlusion due to eyeglasses. To address this
serious limitation of IR, we propose fusing IR with visible information in the
wavelet domain using GAs [6]. To demonstrate the results of our fusion strat-
egy, we performed extensive recognition experiments using the popular method
of eigenfaces [2], although any other recognition method could have been used.
Our results show overall substantial improvements in recognition performance
using IR and visible imagery fusion than either modality alone.

2 Review of Face Recognition in the Infrared Spectrum

An overview of identification in the IR spectrum can be found in [7]. Below, we
review several studies comparing the performance of visible and IR based face
recognition. The effectiveness of visible versus IR was compared using several
recognition algorithms in [8]. Using a database of 101 subjects without glasses,
varying facial expression, and allowing minor lighting changes, they concluded
that there are no significant performance differences between visible and IR
recognition across all the algorithms tested. They also concluded that fusing
visible and IR decision metrics represents a viable approach for enhancing face
recognition performance. In [9, 10], several different face recognition algorithms
were tested under various lighting conditions and facial expressions. Using radio-
metrically calibrated thermal imagery, they reported superior performance for
IR-based recognition than visible-based recognition. In [11], the effect of light-
ing, facial expression, and passage of time between the gallery and probe im-
ages were examined. Although IR-based recognition outperformed visible-based
recognition assuming lighting and facial expression changes, their experiments
demonstrated that IR-based recognition degrades when there is substantial pas-
sage of time between the gallery and probe images. Using fusion strategies at the
decision level based on ranking and scoring, they were able to develop schemes
that outperformed either modality alone. IR has also been used recently in face
detection [12]. This approach employs multi-band feature extraction and capi-
talizes on the unique reflectance characteristics of the human skin in the near-IR
spectrum.

3 Fusion of Infrared and Visible Imagery

Despite its robustness to illumination changes, IR imagery has several draw-
backs. First, it is sensitive to temperature changes in the surrounding environ-
ment. Currents of cold or warm air could influence the performance of systems
using IR imagery. As a result, IR images should be captured in a controlled
environment. Second, it is sensitive to variations in the heat patterns of the face.
Factors that could contribute to these variations include facial expressions (e.g.
open mouth), physical conditions (e.g. lack of sleep), and psychological condi-
tions (e.g. fear, stress, excitement). Finally, IR is opaque to glass. As a result, a
large part of the face might be occluded (e.g. by wearing eyeglasses).



In contrast to IR imagery, visible imagery is more robust to the above factors.
This suggests that effective algorithms to fuse information from both spectra
have the potential to improve the state of the art in face recognition. In the
past, fusion of visible and IR images has been successfully used for visualization
purposes [13].

In this study, we consider the influence of eyeglasses to IR-based face recog-
nition. Our experiments demonstrate that eyeglasses pose a serious problem to
recognition performance in the IR spectrum. To remedy this problem, we pro-
pose fusing IR with visible imagery. Visible imagery can suffer from highlights on
the glasses under certain illumination conditions, but the problems are consider-
ably less severe than with IR. Since IR and visible imagery capture intrinsically
different characteristics of the observed faces, intuitively, a better face descrip-
tion could be found by utilizing the complimentary information present in the
two spectra.

3.1 Fusion at Multiple Resolutions

Pixel by pixel fusion does not preserve the spatial information in the image. In
contrast, fusion at multiple resolution levels allows features with different spatial
extend to be fused at the resolution at which they are most salient. In this way,
important features appearing at lower resolutions can be preserved in the fusion
process.

Multiple resolution features have been used in several face recognition sys-
tems in the past (e.g. [14]). The advantages of using different frequencies is that
high frequencies are relatively independent of global changes in the illumination,
while the low frequencies take into account the spatial relationships among the
pixels and are less sensitive to noise and small changes, such as facial expression.

The slow heat transfer through the human body causes natural low resolution
of IR images of human face. Thus, we decided to implement our fusion strategy
in the wavelet domain, taking into consideration the benefits of multi-resolution
representations and the differences in resolution between the IR and visible-light
images. Our fusion strategy is thus different from fusion strategies implemented
at the decision level, reported earlier in the literature (i.e., [8, 11]).

3.2 Method Overview

The proposed method contains two major steps: (a) fusion of IR and visible
images and (b) recognition based on the fused images. Fusion is performed by
combining the coefficients of Haar wavelet [15] decompositions of a pair of IR and
visible images having equal size. The fusion strategy is found during a training
phase using GAs [6]. The coefficients selected from each spectrum are put to-
gether and the fused face image is reconstructed using the inverse wavelet trans-
form. To demonstrate the effectiveness of the fusion solutions found by GAs,
we perform recognition using the popular method of eigenfaces [2] although any
other recognition technique could have been used.



4 Mathematical Tools and Background Information

4.1 Eigenfaces
The eigenface approach uses Principal Components Analysis (PCA), a classi-
cal multivariate statistics method, to linearly project face images in a low-
dimensional space. This space is spanned by the principal components (i.e.,
eigenvectors corresponding to the largest eigenvalues) of the distribution of the
training images. After a face image has been projected in the eigenspace, a
feature vector containing the coefficients of the projection is used to represent
the face image. Representing each image I(x, y) as a N × N vector Γi, first
the average face Ψ is computed: Ψ = 1

R

∑R
i=1 Γi where R is the number of

faces in the training set. Next, the difference Φ of each face from the average
face is computed: Φi = Γi − Ψ . Then the covariance matrix is estimated by:
C = 1

R

∑R
i=1 ΦiΦ

T
i = AAT , where, A = [Φ1Φ2 . . . ΦR]. The eigenspace can then

be defined by computing the eigenvectors µi of C. Usually, we need to keep
a smaller number of eigenvectors Rk corresponding to the largest eigenvalues.
Each image Γ is transformed by first subtracting the mean image (Φ = Γ − Ψ),
and then projecting in the eigenspace wi = µT

i Γ .

4.2 Wavelet Transform(WT)
Wavelets are a type of multi-resolution function approximation that allow for the
hierarchical decomposition of a signal or image. In particular, they decomposes
a given signal onto a family of functions with finite support. This family of func-
tions is constructed by the translations and dilations of a single function called
mother wavelet. The finite support of the mother wavelet gives exact time local-
ization while the scaling allows extraction of different frequency components. The
discrete wavelet transform (DWT) is defined in terms of discrete dilations and
translations of the mother wavelet function: ψjk(t) = 2−j/2ψ(2−jt − k) , where
the scaling factor j and the translation factor k are integers: j, k ∈ Z. The wavelet
decomposition of a function f(t) ∈ L2(R) is given by: f(t) =

∑
j

∑
k hj,kψjk(t) ,

where the coefficients hj,k are the inner products of f(t) and ψjk(t).

4.3 Genetic Algorithms (GAs)
GAs are a class of randomized, parallel search optimization procedures inspired
by the mechanisms of natural selection, the process of evolution [6]. They were
designed to efficiently search large, non-linear, poorly-understood search spaces.
In the past, GAs have been used in target recognition [16], object recognition
[17], face detection/verification [18, 19], and feature selection [20, 21].

GAs operate iteratively on a population of structures, each of which repre-
sents a candidate solution to the problem, encoded as a string of symbols (i.e.,
chromosome). A randomly generated set of such strings forms the initial popula-
tion from which the GA starts its search. Three basic genetic operators guide this
search: selection, crossover and mutation. Evaluation of each string is based on
a fitness function which is problem-dependent. The fitness function determines
which of the candidate solutions are better. Selection probabilistically filters out
poor solutions and keeps high performance solutions for further investigation.
Mutation is a very low probability operator that plays the role of restoring lost



genetic material. Crossover in contrast is applied with high probability. It is a
randomized yet structured operator that allows information exchange between
the stings.

5 Evolutionary IR and Visible Image Fusion

Our fusion strategy operates in the wavelet domain. The goal is to find an
appropriate way to combine the wavelet coefficients from the IR and visible
images. The key question is which wavelet coefficients to choose and how to
combine them. Obviously, using un-weighted averages is not appropriate since it
assumes that the two spectra are equally important and, even further, that they
have the same resolution which is not true. Several experiments for fusing the
wavelet coefficients of two images have been reported in [22]. Perhaps, the most
intuitive approach is picking the coefficients with maximum absolute value [23].
The higher the absolute value of a coefficient is, the higher is the probability that
it encodes salient image features. Our experiments using this approach showed
poor performance.

In this paper, we propose using GAs to fuse the wavelet coefficients from the
two spectra. Our decision to use GAs for fusion was based on several factors.
First, the search space for the image fusion task at hand is very large. In the
past, GAs have demonstrated good performance when searching large solution
spaces. Much work in the genetic and evolutionary computing communities has
led to growing understanding of why they work well and plenty of empirical
evidence to support this claim [24, 25]. Second, the problem at hand appears
to have many suboptimal solutions. Although, GAs cannot guarantee finding a
global optimum, they have shown to be successful in finding good local optima.
Third, they suitable for parallelization and linear speedups are the norm, not
the exception [26]. Finally, we have applied GAs in the past for feature selection,
a problem very much related to fusion, with good success [20, 21].

Encoding: In our encoding scheme, the chromosome is a bit string whose
length is determined by the number of wavelet coefficients in the image decom-
position. Each bit in the chromosome is associated with a wavelet coefficient
at a specific location. The value of a bit in this array determines whether the
corresponding wavelet coefficient is selected from the IR (e.g., 0) or from the
visible spectrum (e.g., 1).

Fitness Evaluation: Each individual in a generation represents a possible
way to fuse IR with visible images. To evaluate its effectiveness, we perform
the fusion based on the information encoded by this individual and apply the
eigenface approach. Recognition accuracy is computed using a validation dataset
(see Section 7) and is used to provide a measure of fitness.

Initial Population: In general, the initial population is generated randomly,
(e.g., each bit in an individual is set by flipping a coin). In this way, however, we
will end up with a population where each individual contains the same number
of 1’s and 0’s on average. To explore subsets of different numbers of wavelet
coefficients chosen from each domain, the number of 1’s for each individual is
generated randomly. Then, the 1’s are randomly scattered in the chromosome.



Selection: Our selection strategy was cross generational. Assuming a pop-
ulation of size N, the offspring double the size of the population and we select
the best N individuals from the combined parent-offspring population

Crossover: In general, we do not know how different wavelet coefficients
depend on each other. If dependent coefficients are far apart in the chromosome,
it is more probable that traditional 1-point crossover, will destroy the schemata.
To avoid this problem, uniform crossover is used here. The crossover probability
used in our experiments was 0.96.

Mutation: Mutation is a very low probability operator which flips the values
of randomly chosen bit. The mutation probability used here was 0.02.

6 Face Dataset
In our experiments, we used the face database collected by Equinox Corporation
under DARPA’s HumanID program [27]. Specifically, we used the long-wave
infrared (LWIR) (i.e., 8µ-12µ) and the corresponding visible spectrum images
from this database. The data was collected during a two-day period. Each pair
of LWIR and visible light images was taken simultaneously and co-registered
with 1/3 pixel accuracy (see Fig. 1). The LWIR images were radiometrically
calibrated and stored as grayscale images with 12 bits per pixels. The visible
images are also grayscale images represented with 8 bits per pixel. The size of
the images in the database is 320×240 pixels.

The database contains frontal faces under the following scenarios: (1) three
different light direction - frontal and lateral (right and left); (2) three facial ex-
pression - ”frown”, ”surprise” and ”smile”; (3) vocals pronunciation expressions
- subjects were asked to pronounce several vocals from which three representa-
tive frames are chosen; and (4) presence of glasses - for subjects wearing glasses,
all of the above scenarios were repeated with and without glasses. Both IR and
visible face images were preprocessed prior to experimentation by following a
procedure similar to that described in [9, 10]. The goal of preprocessing was to
align and scale the faces, remove background, and account for some illumination
variations (see Fig. 1).

Fig. 1. Examples of visible and IR image pairs and preprocessed images

7 Experimental Procedure

In this study, we attempted to test the effect on recognition performance of
each factor available in the Equinox database. In addition, we have performed
experiments focusing on the effect of eyeglasses. For comparison purposes, we
have attempted to evaluate our fusion strategy using a similar experimental
protocol to that given in [9, 10]. Our evaluation methodology employs a training



set (i.e., used to compute the eigenfaces), a gallery set (i.e., set of persons enrolled
in the system), a validation set (i.e., used in the fitness evaluation of the GA),
and a test set (i.e., probe image set containing the images to be identified).
Our training set contains 200 images, randomly chosen from the entire Equinox
database.

For recognition, we used the Euclidean distance and the first 100 principal
components as in [9, 10]. Recognition performance was measured by finding the
percentage of the images in the test set, for which the top match is an image of
the same person from the gallery. To mitigate for the relatively small number
of images in the database, the average error was recorded using a three-fold
cross-validation procedure. In particular, we split each dataset used for testing
randomly three times by keeping only 75% of the images for testing purposes
and the rest 25% for validation purposes. To account for performance variations
due to random GA initialization, we averaged the results over three different
GA runs for each test, choosing a different random seed each time. Thus, we
performed a total of 9 runs for each gallery/test set experiment.

7.1 Facial Expression Tests
The test sets for the facial expression experiments include the images containing
the three expression frames and three vocal pronunciation frames. There are 90
subjects with a total of 1266 pairs of images for the expression frames and 1299
for the vocal frames. Some of the subjects in these tests sets wear glasses while
others not. Following the terminology in [9, 10] we have created the following test
sets: EA (expression frames, all illuminations), EL (expression frames, lateral il-
luminations), EF (expression frames, frontal illumination), VA (vocal frames, all
illumination), VL (vocal frames, lateral illumination), VF (vocal frames, frontal
illumination). The inclusion relations among these sets are as follows: EA = EL
∪ EF, VA = VL ∪ VF, and VA ∩ EA = ∅.
7.2 Eyeglasses Tests
Measuring the effect of eyeglasses is done by using the expression frames. There
are 43 subjects wearing glasses in the EA set making a total of 822 images.
Following the terminology in [9, 10] we created the following test sets: EG (ex-
pression frames with glasses, all illuminations), EnG (expression frames without
glasses, all illuminations), EFG (expression frames with glasses, frontal illumi-
nation), ELG (expression frames with glasses, lateral illumination), EFnG (ex-
pression frames without glasses, frontal illumination), ELnG (expression frames
without glasses, lateral illumination). The inclusion relations among these sets
are as follows: EG = ELG ∪ EFG, EnG = ELnG ∪ EFnG and EG ∩ EnG = ∅.
8 Experimental Results

8.1 Eyeglasses
The results shown in Table 1 illustrate that IR-based recognition is robust to
illumination changes but performs poorly when glasses are present in the gallery
set but not in the test set and vice versa. Considerable improvements in recog-
nition performance have been achieved in this case by fusing IR with visible



images. The improvement was even greater when, in addition to eyeglasses, the
test and the gallery set contained images taken under different illuminations. For
example, in the EFG/ELnG test case the fusion approach improved recognition
performance by 46% compared to recognition using visible-light images and by
82% compared to recognition using LWIR images.

Recognition using LWIR images outperformed recognition using fused images
when the only difference between the images in the test and gallery sets was the
direction of illumination. This is accounted to the inability of our fusion scheme
to fully discount illumination effects contributed by the visible-light images.
Recognition performance using visible-light images was always worse than using
fused images.

Table 1. Averages and standard deviations for the eyeglasses experiments. The
columns represent the gallery set and the rows represent the test set. The first en-
try in each cell shows the performance measured from the visible-light images, the
second entry is from the LWIR images, and the third entry is from the fused images.
The bottom entry shows the minimum and maximum recognition performances from
the three cross-validation runs achieved when using the fused images. Test scenarios
for which the test and the gallery sets had common subsets were not performed.

EG ELG EFG EnG ELnG EFnG

EG × × × (84.8, 1.4)
(15.1, 1.0)
(92.5, 1.3)
91.0 − 93.6

(84.8, 1.4)
(13.1, 1.0)
(88.9, 1.4)
88.0 − 90.5

(64.3, 1.7)
(21.7, 1.0)
(82.1, 3.1)
79.2 − 85.4

ELG × × (71.4, 1.0)
(99.6, 0.3)
(93.2, 3.0)
90.2 − 94.2

(85.8, 0.7)
(16.2, 0.3)
(92.3, 2.0)
90.2 − 94.2

(85.8, 0.7)
(14.2, 0.4)
(92.7, 0.6)
92.0 − 93.0

(56.0, 1.2)
(22.4, 0.4)
(83.9, 1.3)
82.5 − 84.8

EFG × (78.3, 1.1)
(100, 0)

(97.9, 0.6)
97.4 − 98.5

× (83.7, 3.9)
(14.5, 0.6)
(91.7, 1.3)
90.9 − 93.1

(50.7, 1.7)
(13.0, 0)

(77.1, 3.1)
74.3 − 80.4

(82.6, 4.0)
(22.1, 0.6)
(92.2, 2.0)
90.2 − 94.2

EnG

(79.4, 1.1)
(2.6, 0.2)
(84.9, 0.8)
84.3 − 85.8

(72.0, 2.2)
(2.4, 0.2)
(81.6, 0.3)
81.2 − 81.8

(60.2, 2.0)
(17.4, 0.5)
(98.0, 0.1)
97.9 − 98.1

× × ×
ELnG

(82.0, 1.7)
(2.7, 0.5)
(84.2, 1.9)
82.1 − 85.7

(82.0, 1.7)
(2.5, 0.3)
(84.1, 1.4)
82.5 − 85.2

(52.6, 0.8)
(17.7, 0.6)
(96.7, 1.4)
95.1 − 97.8

× × (73.0, 1.9)
(98.4, 0.6)
(96.9, 0.6)
96.2 − 97.5

EFnG

(78.6, 1.6)
(2.1, 0)

(85.6, 3.2)
83.2 − 89.2

(56.8, 1.1)
(2.1, 0)

(80.7, 2.9)
78.3 − 83.9

(78.6, 1.6)
(18.6, 1.2)
(87.0, 2.1)
85.2 − 89.3

× (71.9, 1.2)
(100, 0)

(97.8, 1.0)
97.2 − 99.0

×
number of

images 398 260 138 424 281 143

8.2 Facial Expression

The facial expression tests had varying success as shown in Table 2. In general,
fusion led to improved recognition compared to recognition using visible-light
images. In several cases, however, the accuracy using LWIR images was higher
than using fused images. These were cases again where the illumination dierc-
tions between the gallery and the test sets were different. This result is consistent
with that of the eyeglasses tests and was caused by the inability of our fusion
scheme to fully discount the illumination effects in the visible images. Note that
we did not performed experiments when the intersection between gallery and
test sets is not empty.



Table 2. Recognition results for the facial expression tests.

VA EA VF EF VL EL

VA × (65.0, 1.0)
(92.3, 0.7)
(93.6, 0.7)
92.8 − 94.2

× × × ×
EA

(65.2, 1.2)
(93.7, 0.4)
(93.1, 0.4)
92.7 − 93.4

× × × × ×
VF × × × (65.3, 1.8)

(90.5, 0.4)
(93.3, 0.9)
92.5 − 94.2

(62.4, 0.4)
(99.3, 0)

(98.1, 0.5)
97.7 − 98.6

(36.4, 0.7)
(87.9, 0.6)
(91.4, 1.4)
89.8 − 92.3

EF × × (59.2, 0.9)
(91.3, 0.7)
(91.2, 1.3)
90.3 − 92.8

× (30.4, 0.7)
(91.2, 0.4)
(90.0, 1.4)
88.6 − 91.5

(68.5, 1.1)
(99.5, 0.4)
(98.2, 0.4)
97.7 − 98.4

VL × × (60.5, 0.7)
(98.4, 0.2)
(97.6, 0.8)
97.0 − 98.4

(28.0, 1.2)
(90.4, 0.1)
(86.9, 0.8)
85.9 − 87.4

× (66.4, 0.4)
(91.3, 0.4)
(94.5, 1.5)
92.9 − 95.7

EL × × (31.6, 1.1)
(85.8, 0.7)
(84.4, 0.3)
84.2 − 84.7

(63.0, 0.9)
(98.6, 0.2)
(96.4, 0.7)
95.8 − 97.2

(68.9, 1.0)
(91.7, 0.2)
(93.7, 0.4)
93.3 − 94.1

×
number of

images 1299 1266 435 429 864 837

9 Discussion
The presence/absence of eyeglasses proved to be a big obstacle for IR-based
recognition. To better understand this, let’s take a closer look of the results
shown in Table 1. The horizontal and vertical double lines through the center
of the table divide the table into four quadrants (i.e., I to IV , starting from
the upper-right corner and moving counterclockwise). Each quadrant represents
a set of experiments testing some specific difference between the gallery and
the test sets: (1) Experiments in quadrant I evaluate the effect of eyeglasses
being present in the probe but not in the gallery; (2) Experiments in quadrant
III evaluate the effect of eyeglasses being present in the gallery but not in
the probe; (3) Experiments along the off-diagonals within each of these two
quadrants represent tests where the illumination conditions between the gallery
and probe sets are the same; (4) Experiments in quadrants II and IV evaluate
the effect illumination changes only.

To illustrate the performance of our fusion approach, we have interpolated
the results from Table 1 and used a simple visualization scheme to remove small
differences and emphasize major trends in recognition performance (see Fig. 2).
Our visualization scheme assigns a grayscale value to each average from Table
1) with black implying 0% recognition and white 100% recognition. The empty
cells from Table 1 are also shown in black.

By observing Fig. 2, several interesting conclusions can be made. As expected,
face recognition success based on IR images (see Fig. 2.(b))is not influenced by
lighting conditions. This is supported by the prevailing white color in quadrants
II and IV (case (3)) and by the high recognition rates in quadrants II and IV
(case (4)). However, IR yielded very low success when eyeglasses were present in
the gallery but not in the probe and vice-versa (cases (1) and (2)). The success
of visible-based face recognition was relatively insensitive to subjects’ wearing



glasses (see Fig. 2.(c)). This follows from the relatively uniform color in quadrants
I and III (cases (1) and (2)). Lighting conditions had big influence on the success
of face recognition in the visible domain. There are distinguishable bright lines
along the main diagonals in quadrants I and II (case (3)). The success of face
recognition based on fused images was similar in all four quadrants of the image
(see Fig. 2.(d)). This implies that we were able to achieve relative insensitivity
to both eyeglasses and variable illumination.

(a) (b) (c) (d)

Fig. 2. The average performance values from Table 1, visualized as a grayscale image.
See text for details. (a) ideal case (b) visible images (c) IR images, (d) fused images.

(a) (b) (c) (d)

Fig. 3. The original (a) visible and (b) IR images followed by two different fused image
results – (c) trained on a data set with lateral illumination and without glasses and
(d) trained on a data set with glasses.

The image fusion approach led to higher recognition performance compared
to recognition in the visible spectrum but was not able to completely compensate
for the effects of illumination direction in the visible images. We have noticed
that in all the cases where LWIR performed better than fusion, the illumination
direction in the gallery set was different from that in the test set (assuming no
difference in glasses). The presence of illumination effects in the fused images
can be visually confirmed by observing the reconstructed fused images shown in
Fig. 3, and their first eigenfaces shown in i.e., Fig. 4. Fused images had higher
resolution compared to LWIR images, however, they were also affected by illu-
mination effects present in the visible images. Obviously, the first eigenfaces of
the fused images still encode the effects of illumination direction, present in the
visible images. More effective fusion schemes (e.g., weighted averages of wavelet



coefficients) and more powerful fitness functions (i.e., add extra terms to control
the number of coefficients selected from different bands of each spectrum) might
help to overcome these problems and improve fusion overall.

Also, further consideration should be given to the existence of many opti-
mal solutions found by the GA. Although optimal in the training phase, these
solutions showed different recognition performances when used for testing. In
investigating these solutions, we were not able to distinguish any pattern in the
content of the chromosomes that might have revealed why some chromosomes
were better than others. On the average, half of the coefficients were selected
from the visible spectrum and the other half from the IR spectrum. The use of
larger validation sets and more selective fitness functions might help to address
these issues more effectively.

Fig. 4. The first few eigenfaces of a fused image data set. The second and third eigen-
faces show clear influence of the right and left lateral illumination.

10 Conclusions and Future Work

We presented a fusion method for combining IR and visible light images for the
purposes of face recognition. The algorithm aims at improved and robust recog-
nition performance across variable lighting, facial expression, and presences of
eyeglasses. Future work includes addressing the issues mentioned in the previous
section, considering fitness approximation schemes [28] to reduce the computa-
tional requirements of fitness evaluation, and investigating the effect of environ-
mental (e.g., temperature changes), physical (e.g., lack of sleep) and physiological
conditions (e.g., fear, stress) to IR performance.
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