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ABSTRACT

Considerable progress has been made in face recognition research over the last decade especially with the de-
velopment of powerful models of face appearance (i.e., eigenfaces). Despite the variety of approaches and tools
studied, however, face recognition is not accurate or robust enough to be deployed in uncontrolled environments.
Recently, a number of studies have shown that infrared (IR) imagery offers a promising alternative to visible
imagery due to its relative insensitive to illumination changes. However, IR has other limitations including that
it is opaque to glass. As a result, IR imagery is very sensitive to facial occlusion caused by eyeglasses. In this
paper, we propose fusing IR with visible images, exploiting the relatively lower sensitivity of visible imagery to
occlusions caused by eyeglasses. Two different fusion schemes have been investigated in this study: (1) image-
based fusion performed in the wavelet domain and, (2) feature-based fusion performed in the eigenspace domain.
In both cases, we employ Genetic Algorithms (GAs) to find an optimum strategy to perform the fusion. To
evaluate and compare the proposed fusion schemes, we have performed extensive recognition experiments using
the Equinox face dataset and the popular method of eigenfaces. Our results show substantial improvements in
recognition performance overall, suggesting that the idea of fusing IR with visible images for face recognition
deserves further consideration.
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1. INTRODUCTION

Several factors affect face recognition performance including pose variations, facial expression changes, occlusions,
and most importantly, illumination changes. Previous studies have shown that IR imagery offers a promising
alternative to visible imagery for handling variations in face appearance due to illumination changes more suc-
cessfully1.2 As a result, face recognition in the IR spectrum has the potential to offer simpler and more robust
solutions, improving recognition performance in uncontrolled environments and deliberate attempts to obscure
identity.3

Despite its robustness to illumination changes, however, IR imagery has several drawbacks including that it
is sensitive to temperature changes in the surrounding environment, variations in the heat patterns of the face,
and it is opaque to glass. In contrast to IR imagery, visible imagery is more robust to the above factors but very
sensitive to illumination changes. This suggests that effective algorithms to fuse information from both spectra
have the potential to improve face recognition performance. In the past, IR and visible image fusion has been
successfully used for visualization purposes,4 especially in the remote sensing area. Sanjeevi et al.5 provide a
review and comparisons among existing image fusion techniques for visualization purposes.

In this paper, we concentrate on the sensitivity of IR imagery to facial occlusion due to eyeglasses. Objects
made of glass act as a temperature screen, completely hiding the parts located behind them. This can affect
recognition performance significantly. In fact, our experimental results illustrate that face recognition perfor-
mance in the IR spectrum degrades seriously when eyeglasses are present in the probe image but not in the
gallery image and vice versa. To address this serious limitation of IR, we propose fusing IR with visible imagery.
Visible imagery can suffer from highlights on the glasses under certain illumination conditions, but the problems
are considerably less severe than with IR. Since IR and visible imagery capture intrinsically different character-
istics of the observed faces, intuitively, a better face description could be found by utilizing the complimentary
information present in the two spectra.
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Two different fusion schemes have been investigated in this work. The first one is image-based, operates in
the wavelet domain, and yields a fused image capturing important information from both spectra. The second
one is feature-based, operates in the eigenspace domain, and yields a set of important eigenfeatures from both
spectra. In both cases, we employ GAs to find an optimum strategy to perform the fusion. It should be noted
that both schemes are different from fusion schemes reported in the recently literature where fusion takes place
at the decision level (i.e., fusing the outputs of different classifiers6, 7). To evaluate and compare the proposed
fusion schemes, we have performed extensive recognition experiments using the Equinox face dataset and the
popular eigenface approach.8 It should be emphasized that the eigenface approach is used only for the purpose
of testing the proposed fusion schemes (i.e., any other recognition technique could have been used for the same
purpose).

The rest of the paper is organized as follows: In Section 2, we review the problem of face recognition in the
IR spectrum. A brief review of wavelets and eigenfaces is given in Section 3. The fusion schemes in the wavelet
and eigenspace domains are described in detail in Section 4 while the use of GAs to implement them is described
in Section 5. The face dataset and experimental procedure used to evaluate and compare the proposed fusion
schemes are given in Section 6. Experimental results are presented and discussed in Section 7. Finally, Section
8 contains our conclusions and plans for future research.

2. REVIEW OF FACE RECOGNITION IN THE IR SPECTRUM

Prokoski9 presents an overview of identification in the IR spectrum. Below, we review several studies comparing
the performance of visible and IR based face recognition. The effectiveness of visible versus IR was compared
using several recognition algorithms by Wilder et al.6 Using a database of 101 subjects without glasses, varying
facial expression, and allowing minor lighting changes, they concluded that there are no significant performance
differences between visible and IR recognition across all the algorithms tested. They also concluded that fusing
visible and IR decision metrics represents a viable approach for enhancing face recognition performance. In
Selinger et al.10 and Socolinsky et al.,11 several different face recognition algorithms were tested under vari-
ous lighting conditions and facial expressions. Using radiometrically calibrated thermal imagery, they reported
superior performance for IR-based recognition than visible-based recognition. The effect of lighting, facial ex-
pression, and passage of time between the gallery and probe images were examined by Chen et al.7 Although
IR-based recognition outperformed visible-based recognition assuming lighting and facial expression changes,
their experiments demonstrated that IR-based recognition degrades when there is substantial passage of time
between the gallery and probe images. Using fusion strategies at the decision level based on ranking and scoring,
they were able to develop schemes that outperformed either modality alone. IR has also been used recently in
face detection by Dowdall et al.12 This approach employs multi-band feature extraction and capitalizes on the
unique reflectance characteristics of the human skin in the near-IR spectrum. Human skin exhibits an abrupt
change in reflectance around 1.4 µm. This phenomenology allows for a highly accurate skin mapping by taking a
weighted difference of the lower band near-IR image and the upper band near-IR image. This allowed for simple
algorithmic-based face detection methods to perform extremely well.

3. BACKGROUND

3.1. Wavelets Review
Wavelets are a type of multi-resolution function approximation that allow for the hierarchical decomposition
of a signal or an image.13 In particular, they decompose a given signal onto a family of functions with finite
support. This family of functions is constructed by the translations and dilations of a single function called
mother wavelet. The finite support of the mother wavelet gives exact time localization while the scaling allows
extraction of different frequency components. The basic requirement of multi-resolution analysis is formulated
by requiring a nesting of the spanned spaces as:

· · ·V−1 ⊂ V0 ⊂ V1 · · · ⊂ L2 (1)

In space Vj+1, we can describe finer details than in space Vj . In order to construct a multi-resolution analysis,
a scaling function φ is necessary, together with a dilated and translated version of it:



φj
i (x) = 2

j
2 φ(2jx− i). i = 0, · · · , 2j − 1. (2)

The important features of a signal can be better described or parameterized, not by using φj
i (x) and increasing

j to increase the size of the subspace spanned by the scaling function, but by defining a slightly different set of
function ψj

i (x) that span the difference between the spaces spanned by various scales of the scale function. These
functions are the wavelets, which span the wavelet space Wj such that Vj+1 = Vj

⊕
Wj , and can be described

as:

ψj
i (x) = 2

j
2 ψ(2jx− i). i = 0, · · · , 2j − 1. (3)

Different scaling functions φj
i (x) and wavelets ψj

i (x) determine various wavelet transforms. In this paper, we
use the Haar wavelet which is the simplest to implement and computationally the least demanding. Furthermore,
since Haar basis forms an orthogonal basis, the transform provides a non-redundant representation of the input
images. The Haar scaling function is given by:

φ(x) =
{

1 for 0 ≤ x < 1
0 otherwise

(4)

The Haar wavelet is defined as:

ψ(x) =





1 for 0 ≤ x < 1
2

−1 for 1
2 ≤ x < 1

0 otherwise
(5)

Wavelets capture visually plausible features of the shape and interior structure of objects. Features at different
scales capture different levels of detail. Coarse scale features encode large regions while fine scale features describe
smaller, local regions. All these features together disclose the structure of an object in different resolutions.

3.2. Eigenfaces Review

The eigenface approach uses Principal Components Analysis (PCA), a classical multivariate statistics method,
to linearly project face images in a low-dimensional space.8 This space is spanned by the principal components
(i.e., eigenvectors corresponding to the largest eigenvalues) of the distribution of the training images. Specifically,
representing each image I(x, y) as a N ×N vector Γi, first the average face Ψ is computed:

Ψ =
1
R

R∑

i=1

Γi (6)

where R is the number of faces in the training set. Next, the difference Φ of each face from the average face is
computed: Φi = Γi −Ψ. Then the covariance matrix is estimated by:

C =
1
R

R∑

i=1

ΦiΦT
i = AAT , (7)

where, A = [Φ1Φ2 . . . ΦR]. The eigenspace can then be defined by computing the eigenvectors µi of C. Since
C is very large (N × N), computing its eigenvector will be very expensive. Instead, we can compute νi, the
eigenvectors of AT A, an R×R matrix. Then µi can be computed from νi as follows8:

µi =
R∑

j=1

νijΦj , j = 1 . . . R. (8)



Usually, we only need to keep a smaller number of eigenvectors Rk corresponding to the largest eigenvalues.
Given a new image, Γ, we subtract the mean (Φ = Γ−Ψ) and compute the projection:

Φ̃ =
Rk∑

i=1

wiµi. (9)

where wi = µT
i Γ are the coefficients of the projection. We refer to {wi} as eigenfeatures.

In the eigenface approach, each image is represented as low-dimensional feature vector, containing the coeffi-
cients of the projection of the image in the eigenspace. Recognition is then performed by matching the coefficients
of an unknown face image (i.e., probe) to the coefficients of a set of known images (i.e., gallery).8

4. FUSION SCHEMES

We describe below in detail the two fusion schemes considered in this work. We assume that each face is
represented by a pair of images, one in the IR spectrum and one in the visible spectrum. Both images have been
normalized prior to fusion to ensure similar ranges of values (see Section 6).
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Figure 1. Fusion in the wavelet domain.

4.1. Image-based Fusion in the Wavelet Domain

The goal in this scheme is to compute a fused image from the IR and visible images, hopefully capturing the most
important information from each spectrum. Since IR images have much lower resolution compared to visible
images, we have considered fusing multi-resolution representations of the IR and visible images. Specifically,
the slow heat transfer through the human body causes natural low resolution IR images of human face. Using
pixel by pixel fusion between IR and visible images would not preserve spatial information. In contrast, fusing



multi-resolution image representations would allow features with different spatial extends to be fused at the
resolution that they are most salient.

The first step in this scheme is to compute a multi-resolution representation for the IR and visible images.
This is done using Haar wavelets.13 The result is a set of wavelet coefficients for each image. To fuse the
two images, we mix the wavelet coefficients by selecting a subset of coefficients from the IR image and the rest
from the visible image. The key question is how to combine the coefficients from each image. Obviously, using
un-weighted averages is not appropriate since it assumes that the two spectra are equally important and, even
further, that they have the same resolution. Several experiments fusing images in the wavelet domain have
been reported in.14 Perhaps, the most intuitive approach is picking the coefficients with maximum absolute
value.15 The higher the absolute value of a coefficient is, the higher is the probability that it encodes salient
image features. Our experiments using this approach showed poor performance.

Here, we employ GAs to decide which wavelet coefficients to select from each spectrum. The fused images
are then computed by applying the inverse Haar wavelet transform on the selected wavelet coefficients. Fig. 1
illustrates the main steps of this fusion scheme. Recognition is performed by applying the eigenface approach on
the fused images. In this case, the eigenspace is computed from the fused images and each face is represented
by projecting its fused image(s) in this space.

4.2. Feature-based Fusion in the Eigenspace Domain

This scheme considers an alternative strategy where instead of fusing the IR and visible images explicitly, we
fuse the eigenfeatures computed separately from those images. Specifically, first we compute two eigenspaces,
one using the IR face images and one using the visible face images. Then, each face is represented by two sets of
eigenfeatures, the first computed by projecting the IR face image in the IR-eigenspace, and the second computed
by projecting the visible face image in the visible-eigenspace. The goal of fusion in this case is to combine
important information from each eigenspace by selecting a subset of eigenfeatures from the IR-eigenspace and
the rest from the IR-eigenspace. GAs are used again to decide which eigenfeatures to select and from which
eigenspace. Fig. 2 illustrates the main steps of this fusion scheme.
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Figure 2. Fusion in the eigenspace domain.

5. EVOLUTIONARY IR AND VISIBLE FUSION

Deciding which wavelet coefficients or eigenfeatures to select from each spectrum is essentially a search problem.
We use GAs to address this issue. GAs are a class of randomized, parallel search optimization procedures inspired
by the mechanisms of natural selection, the process of evolution.16 They were designed to efficiently search
large, non-linear, poorly-understood search spaces. In the past, GAs have been used in target recognition,17

object recognition,18 face detection/verification,19, 20 and feature selection.21, 22



GAs operate iteratively on a population of structures, each of which represents a candidate solution to the
problem, encoded as a string of symbols (i.e., chromosome). A randomly generated set of such strings forms the
initial population from which the GA starts its search. Three basic genetic operators guide this search: selection,
crossover and mutation. Evaluation of each string is based on a fitness function which is problem-dependent.
The fitness function determines which of the candidate solutions are better. Selection probabilistically filters
out poor solutions and keeps high performance solutions for further investigation. Mutation is a very low
probability operator that plays the role of restoring lost genetic material. Crossover in contrast is applied with
high probability. It is a randomized yet structured operator that allows information exchange between the stings.

Our decision to use GAs for fusion was based on several reasons. First, the search spaces for the fusion tasks
under consideration are very large. In the past, GAs have demonstrated good performance when searching large
spaces. Much work in the genetic and evolutionary computing communities has led to growing understanding of
why they work well and plenty of empirical evidence to support this claim.23, 24 Second, the problem of fusion
appears to have many suboptimal solutions. Although GAs do not guarantee to find a global optimum solution,
they have the ability to search through very large search spaces and come to nearly optimal solutions fast. Their
ability for fast convergence is explained by the schema theorem (i.e., short-length bit patterns in the chromosomes
with above average fitness, get exponentially growing number of trials in subsequent generations16). Third, they
suitable for parallelization and linear speedups are the norm, not the exception.25 Finally, we have applied GAs
in related problems in the past with good success.21, 22

Below, we describe in more detail the encoding schemes, fitness evaluation functions, and genetic operators
used for fusing IR with visible information in the wavelet and eigenspace domains.

Encoding: In the case of fusion in the wavelet domain, the chromosome is a bit string whose length is
determined by the number of wavelet coefficients in the image decomposition. Each bit in the chromosome is
associated with a wavelet coefficient at a specific location. The value of a bit in the chromosome determines
whether the corresponding wavelet coefficient is selected from the IR (e.g., 0) or from the visible spectrum (e.g.,
1) (see Fig. 1). In the case of fusion in the eigenspace domain, the chromosome is also a bit string whose length
is determined by the number of eigenvectors. Here, we use the first 100 eigenvectors from each space (see Section
6), thus, the chromosome has length 100. Each bit in the chromosome is associated with an eigenfeature at a
specific location. The value of a bit in the chromosome determines whether a particular eigenfeature is selected
from the visible image (i.e., 1) or the IR image (i.e., 0) (see Fig. 2).

Fitness Evaluation: Each individual in a generation represents a possible way to fuse IR with visible
information. To evaluate its effectiveness, we perform the fusion based on the information encoded by this
individual and perform recognition using the eigenface approach. Recognition accuracy is computed using a
validation dataset (see Section 6) and is used to provide a measure of fitness. Upon convergence, the best
chromosome found is kept and used to evaluate performance on a test set.

Initial Population: In general, the initial population is generated randomly, (e.g., each bit in an individual
is set by flipping a coin). In this way, however, we will end up with a population where each individual contains
the same number of 1’s and 0’s on average. To explore subsets of different numbers of wavelet coefficients or
eigenfeatures chosen from each domain, the number of 1’s for each individual is generated randomly. Then,
the 1’s are randomly scattered in the chromosome. We used population sizes between 100 and 200 and 100
generations.

Selection: Our selection strategy was cross generational. Assuming a population of size N, the offspring
double the size of the population and we select the best N individuals from the combined parent-offspring
population.26

Crossover: In general, we do not know how different wavelet coefficients depend on each other. If dependent
coefficients are far apart in the chromosome, it is more probable that traditional 1-point crossover, will destroy
the schemata. To avoid this problem, uniform crossover is used here. The crossover probability used in our
experiments was 0.96.

Mutation: Mutation is a very low probability operator which flips the values of randomly chosen bit. The
mutation probability used here was 0.02.



Figure 3. Examples of visible and IR image pairs (first row) and preprocessed images (second row).

6. FACE DATASET AND EXPERIMENTAL PROCEDURE

In our experiments, we used the face database collected by Equinox Corporation under DARPA’s HumanID
program.27 Specifically, we used the long-wave infrared (LWIR) (i.e., 8µ-12µ) and the corresponding visible
spectrum images from this database. The data was collected during a two-day period. Each pair of LWIR and
visible light images was taken simultaneously and co-registered with 1/3 pixel accuracy (see Fig. 1). The LWIR
images were radiometrically calibrated and stored as grayscale images with 12 bits per pixels. The visible images
are also grayscale images represented with 8 bits per pixel. The size of the images in the database is 320×240
pixels.

The database contains frontal faces under the following scenarios: (1) three different light direction - frontal
and lateral (right and left); (2) three facial expression - ”frown”, ”surprise” and ”smile”; (3) vocals pronunciation
expressions - subjects were asked to pronounce several vocals from which three representative frames were chosen;
and (4) presence of glasses - for subjects wearing glasses, all of the above scenarios were repeated with and
without glasses. Both IR and visible face images were preprocessed prior to experimentation by following a
procedure similar to that described in.10, 11 The goal of preprocessing was to align and scale the faces, remove
background, and account for some illumination variations (see Fig. 1). For comparison purposes, we have
attempted to evaluate our fusion schemes using a similar experimental protocol to that given in.10, 11 Our
evaluation methodology employs a training set (i.e., used to compute the eigenfaces), a gallery set (i.e., set of
persons enrolled in the system), a validation set (i.e., used in the fitness evaluation of the GA), and a test set
(i.e., probe image set containing the images to be identified).

For training, we used 200 images, randomly chosen from the entire Equinox database. For recognition, we
used the Euclidean distance and the first 100 principal components as in Selinger et al.10 and Socolinsky et al..11

Recognition performance was measured by finding the percentage of the images in the test set, for which the top
match is an image of the same person from the gallery. To mitigate for the relatively small number of images in
the database, the average error was recorded using a three-fold cross-validation procedure. In particular, we split
each dataset used for testing randomly three times by keeping only 75% of the images for testing purposes and
the rest 25% for validation purposes. To account for performance variations due to random GA initialization,
we averaged the results over three different GA runs for each test, choosing a different random seed each time.
Thus, we performed a total of 9 runs for each gallery/test set experiment.

Following the terminology of Selinger et al.10 and Socolinsky et al.,11 we created the following test sets: EA
(expression frames, all illuminations), EL (expression frames, lateral illuminations), and EF (expression frames,
frontal illumination). The inclusion relation among these sets is as follows: EA = EL ∪ EF. Measuring the effect
of eyeglasses was done by using the EA test set. There are 90 subjects with a total of 1266 pairs of images in
the EA dataset. From them, 43 subjects wear glasses making a total of 822 images. For experimentation, we
created the following test sets: EG (expression frames with glasses, all illuminations), EnG (expression frames
without glasses, all illuminations), EFG (expression frames with glasses, frontal illumination), ELG (expression



Table 1. Averages and standard deviations for the eyeglasses experiments using fusion in the wavelet domain. The
columns represent the gallery set and the rows represent the test set. The first entry in each cell shows the average
performance and standard deviation from the visible images, the second entry is from the IR images, and the third entry
is from the fused images. The bottom entry shows the minimum and maximum recognition performances from the three
cross-validation runs achieved when using the fused images. Test scenarios for which the test and the gallery sets had
common subsets were not performed.

EG ELG EFG EnG ELnG EFnG

EG × × × (84.8, 1.4)
(15.1, 1.0)
(92.5, 1.3)
91.0 − 93.6

(84.8, 1.4)
(13.1, 1.0)
(88.9, 1.4)
88.0 − 90.5

(64.3, 1.7)
(21.7, 1.0)
(82.1, 3.1)
79.2 − 85.4

ELG × × (71.4, 1.0)
(99.6, 0.3)
(93.2, 3.0)
90.2 − 94.2

(85.8, 0.7)
(16.2, 0.3)
(92.3, 2.0)
90.2 − 94.2

(85.8, 0.7)
(14.2, 0.4)
(92.7, 0.6)
92.0 − 93.0

(56.0, 1.2)
(22.4, 0.4)
(83.9, 1.3)
82.5 − 84.8

EFG × (78.3, 1.1)
(100, 0)

(97.9, 0.6)
97.4 − 98.5

× (83.7, 3.9)
(14.5, 0.6)
(91.7, 1.3)
90.9 − 93.1

(50.7, 1.7)
(13.0, 0)

(77.1, 3.1)
74.3 − 80.4

(82.6, 4.0)
(22.1, 0.6)
(92.2, 2.0)
90.2 − 94.2

EnG

(79.4, 1.1)
(2.6, 0.2)
(84.9, 0.8)
84.3 − 85.8

(72.0, 2.2)
(2.4, 0.2)
(81.6, 0.3)
81.2 − 81.8

(60.2, 2.0)
(17.4, 0.5)
(98.0, 0.1)
97.9 − 98.1

× × ×
ELnG

(82.0, 1.7)
(2.7, 0.5)
(84.2, 1.9)
82.1 − 85.7

(82.0, 1.7)
(2.5, 0.3)
(84.1, 1.4)
82.5 − 85.2

(52.6, 0.8)
(17.7, 0.6)
(96.7, 1.4)
95.1 − 97.8

× × (73.0, 1.9)
(98.4, 0.6)
(96.9, 0.6)
96.2 − 97.5

EFnG

(78.6, 1.6)
(2.1, 0)

(85.6, 3.2)
83.2 − 89.2

(56.8, 1.1)
(2.1, 0)

(80.7, 2.9)
78.3 − 83.9

(78.6, 1.6)
(18.6, 1.2)
(87.0, 2.1)
85.2 − 89.3

× (71.9, 1.2)
(100, 0)

(97.8, 1.0)
97.2 − 99.0

×
number of

images 398 260 138 424 281 143

frames with glasses, lateral illumination), EFnG (expression frames without glasses, frontal illumination), ELnG
(expression frames without glasses, lateral illumination). The inclusion relations among these sets are as follows:
EG = ELG ∪ EFG, EnG = ELnG ∪ EFnG and EG ∩ EnG = ∅.

7. EXPERIMENTAL RESULTS

Our experimental results illustrate clearly that IR is robust to illumination changes but performs poorly when
glasses are present in the gallery set but not in the test set and vice versa. Considerable improvements in
recognition performance were achieved in this case by fusing IR with visible images both in the wavelet (see
Table 1) and eigenspace (see Table 2) domains. The improvements were even greater when, in addition to
eyeglasses, the test and the gallery set contained images taken under different illuminations. For example, in
the EFG/ELnG test case using fusion in the wavelet domain, recognition performance was improved by 46%
compared to recognition using visible images and by 82% compared to recognition using IR images (see Table
1). Between the two fusion schemes tested, fusion in the wavelet domain yielded higher recognition performance
overall.

Let us take a closer look of the results shown in Tables 1 and 2. The horizontal and vertical double lines
through the center of each table divide it into four quadrants (i.e., I to IV , starting from the upper-right corner
and moving counterclockwise). Each quadrant represents experiments testing some specific difference between
the gallery and the test sets: (1) experiments in quadrant I evaluate the effect of eyeglasses being present in
the probe but not in the gallery; (2) experiments in quadrant III evaluate the effect of eyeglasses being present
in the gallery but not in the probe; (3) experiments along the off-diagonals within each of these two quadrants
represent tests where the illumination conditions between the gallery and probe sets are the same; (4) experiments
in quadrants II and IV evaluate the effect illumination changes only.

By considering the above four cases, several interesting conclusions can be made. As expected, face recognition
success based on IR images is not influenced by lighting conditions. However, IR yielded very low success when
eyeglasses were present in the gallery but not in the probe and vice-versa (cases (1) and (2)). The success of
visible-based face recognition was relatively insensitive to subjects’ wearing glasses (cases (1) and (2)). Lighting
conditions had big influence on the success of face recognition in the visible domain (case (3)). The success



Table 2. Averages and standard deviations for the eyeglasses experiments with fusion in the eigenspace domain. Our
notation is similar to that used in Table 2

EG ELG EFG EnG ELnG EFnG

EG × × × (84.8, 1.4)
(15.1, 1.0)
(94.4, 1.37)
92.9 − 95.5

(84.8, 1.4)
(13.1, 1.0)
(88.4, 0.8)
87.6 − 89.2

(64.3, 1.7)
(21.7, 1.0)
(70.3, 2.2)
68.6 − 72.7

ELG × × (71.4, 1.0)
(99.6, 0.3)
(97.3, 0.6)
96.7 − 97.8

(85.8, 0.7)
(16.2, 0.3)
(91.1, 1.3)
89.8 − 92.4

(85.8, 0.7)
(14.2, 0.4)
(92.9, 0.8)
92.0 − 93.4

(56.0, 1.2)
(22.4, 0.4)
(61.4, 0.0)
61.4 − 61.4

EFG × (78.3, 1.1)
(100, 0)

(100.0, 0.0)
100.0 − 100.0

× (83.7, 3.9)
(14.5, 0.6)
(93.1, 2.1)
90.9 − 95.0

(50.7, 1.7)
(13.0, 0)

(73.1, 1.4)
72.1 − 74.6

(82.6, 4.0)
(22.1, 0.6)
(90.4, 2.4)
87.7 − 92.0

EnG

(79.4, 1.1)
(2.6, 0.2)
(85.8, 0.7)
85.3 − 86.7

(72.0, 2.2)
(2.4, 0.2)
(77.0, 0.2)
76.9 − 77.2

(60.2, 2.0)
(17.4, 0.5)
(67.8, 0.0)
67.8 − 67.8

× × ×
ELnG

(82.0, 1.7)
(2.7, 0.5)
(84.1, 3.1)
80.5 − 86.1

(82.0, 1.7)
(2.5, 0.3)
(84.6, 1.8)
82.6 − 86.3

(52.6, 0.8)
(17.7, 0.6)
(58.0, 1.0)
57.0 − 59.1

× × (73.0, 1.9)
(98.4, 0.6)
(98.0, 0.3)
97.8 − 98.4

EFnG

(78.6, 1.6)
(2.1, 0)

(85.5, 3.0)
82.1 − 88.0

(56.8, 1.1)
(2.1, 0)

(69.0, 3.4)
65.2 − 71.5

(78.6, 1.6)
(18.6, 1.2)
(87.0, 1.8)
85.3 − 88.8

× (71.9, 1.2)
(100, 0)

(98.2, 1.4)
96.8 − 99.6

×
number of

images 398 260 138 424 281 143

of face recognition based on fused images was similar in all four quadrants. This implies that we were able to
achieve relative insensitivity to both eyeglasses and variable illumination.

Fusion in the wavelet domain led to higher recognition performance compared to recognition in the visible
spectrum, however, this was not always the case with recognition performed using IR images, especially when
recognition performance using IR was higher than 97%. The main reason that fusion was not always better than
IR is because illumination effects present in the visible images were not completely disregarded from the fused
images. We have noticed that in all the cases where IR performed better than fusion, the illumination direction
in the gallery set was different from that in the test set, assuming that glasses were both present or absent from
the gallery and test sets (e.g., ELG/EFG, EFG/ELG, ELnG/EFnG, and EFnG/ELnG). This can be confirmed
by observing the reconstructed fused images shown in Fig. 4, as well as their first eigenfaces shown in Fig. 5.
The fused images have higher resolution compared to IR images, however, they are also affected by illumination
present in the visible images. The first few eigenfaces of the fused images show that they still encode illumination
direction.

(a) (b) (c) (d)

Figure 4. Fusion in the wavelet domain. (a) Visible and (b) IR images, (c) fused images in the case of lateral illumination
without glasses, (d) fused images in the case of lateral illumination with glasses.

Fusion in the eigenspace domain always led to higher recognition performance compared to both recognition
in the visible and IR domains with only one exception (i.e., EFG/ELG test case). This exception could be
explained again by the difference in illumination directions between the gallery and test sets. For comparison



Figure 5. Fusion in the wavelet domain – the first few eigenfaces of several fused images. The second and third eigenfaces
show clear influence of right and left lateral illumination.

purposes, we reconstructed several visible and IR images from the ELnG set using only the subset of eigenvectors
selected from each spectrum (see Fig. 6). The reconstructed visible images reveal clearly that they they contain
information about illumination direction.

Although fusion in the eigenspace domain improved recognition performance more consistently compared to
fusion in the wavelet domain, the overall recognition performance using wavelet-based fusion is lower. Significant
differences in recognition performance can be noticed in the following cases: EFG/EnG (recognition rate is
30% higher using wavelet-based fusion), EFG/ELnG ( 38% higher), EFnG/ELG (23% higher), EFnG/EG (12%
higher), and ELG/EFnG (11% higher). We attribute the higher recognition accuracy using fusion in the wavelet
domain to the more powerful eigenfeatures computed using the fused images.

(a) (b) (c) (d)

Figure 6. Fusion in the eigenspace domain. (a) Visible and (b) IR images assuming lateral illumination; (c) reconstructed
visible images and (d) reconstructed IR images using the eigenvectors selected from each domain only

8. CONCLUSIONS AND FUTURE WORK

We presented and compared two different fusion schemes for combining IR and visible light images for the
purposes of face recognition. The first scheme is image-based, operates in the wavelet domain, and yields a fused
image capturing important information from both spectra. The second scheme is feature-based, operates in the
eigenspace domain, and yields a vector containing important eigenfeatures from both spectra. Both schemes
aim at improved and robust recognition performance across variable lighting and presence/absence of eyeglasses.
Between the two schemes, fusion in the wavelet domain demonstrated significant improvements in recognition
performance overall.

Future work includes considering more effective fusion schemes (e.g., weighted averages of wavelet coefficients
or eigenfeatures) and more powerful fitness functions (i.e., add extra terms to control the number of coefficients
selected from different bands of each spectrum or different ranges of eigenvectors). These might help to overcome
some of the problems mentioned in the previous section (e.g., illumination effects carried over to the fused images)
and improve fusion overall.

Further consideration should also be given to the existence of many optimal solutions found by the GA.
Although optimal in the training phase, these solutions showed different recognition performances when used
for testing. In investigating these solutions, we were not able to distinguish any pattern in the content of the
chromosomes that might have revealed why some chromosomes were better than others. On the average, half
of the wavelet coefficients or eigenfeatures were selected from the visible spectrum and the other half from the



IR spectrum. The use of larger validation sets and more selective fitness functions might help to address these
issues more effectively.

Additional issues for future research include considering fitness approximation schemes28 to reduce the com-
putational requirements of fitness evaluation, and investigating the effect of environmental (e.g., temperature
changes), physical (e.g., lack of sleep) and physiological conditions (e.g., fear, stress) to IR performance.
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