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Abstract

Direct use of the hand as an input device is an attractive method for providing natural human–computer interaction (HCI). Currently,
the only technology that satisfies the advanced requirements of hand-based input for HCI is glove-based sensing. This technology, how-
ever, has several drawbacks including that it hinders the ease and naturalness with which the user can interact with the computer-con-
trolled environment, and it requires long calibration and setup procedures. Computer vision (CV) has the potential to provide more
natural, non-contact solutions. As a result, there have been considerable research efforts to use the hand as an input device for HCI.
In particular, two types of research directions have emerged. One is based on gesture classification and aims to extract high-level abstract
information corresponding to motion patterns or postures of the hand. The second is based on pose estimation systems and aims to cap-
ture the real 3D motion of the hand. This paper presents a literature review on the latter research direction, which is a very challenging
problem in the context of HCI.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

There has been a great emphasis lately in HCI research
to create easier to use interfaces by directly employing nat-
ural communication and manipulation skills of humans.
Adopting direct sensing in HCI will allow the deployment
of a wide range of applications in more sophisticated com-
puting environments such as Virtual Environments (VEs)
or Augmented Reality (AR) systems. The development of
these systems involves addressing challenging research
problems including effective input/output techniques, inter-
action styles and evaluation methods. In the input domain,
the direct sensing approach requires capturing and inter-
preting the motion of head, eye gaze, face, hand, arms or
even the whole body.
1077-3142/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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Among different body parts, the hand is the most effec-
tive, general-purpose interaction tool due to its dexterous
functionality in communication and manipulation. Various
interaction styles tend to import both modalities to allow
intuitive, natural interaction (see Appendix A). Gesture
languages made up of hand postures (i.e., static gestures)
or motion patterns (i.e., dynamic gestures) have been
employed to implement command and control interfaces
[1–4]. Gesticulations, which are spontaneous movements
of the hand and arms that accompany speech, have shown
to be very effective tools in Multimodal User Interfaces [5–
9]. Object manipulation interfaces [10–12] utilize the hand
for navigation, selection, and manipulation tasks in VEs.
In many applications such as complex machinery or
manipulator control, computer-based puppetry or musical
performance [13], the hand serves as an efficient, high
degree of freedom (DOF) control device. Finally, some
immersive VE applications, such as surgical simulations
[14] and training systems [15], have intricate object
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manipulation in their definitions. Broad deployment of
hand gesture-based HCI requires the development of gen-
eral purpose-hand motion capture and interpretation
systems.

Currently, the most effective tools for capturing hand
motion are electro-mechanical or magnetic sensing devices
(data gloves) [16,17]. These devices are worn on the hand to
measure the location of the hand and the finger joint
angles. They deliver the most complete, application-inde-
pendent set of real-time measurements that allow import-
ing all the functionality of the hand in HCI. However,
they have several drawbacks in terms of casual use as they
are very expensive, hinder the naturalness of hand motion,
and require complex calibration and setup procedures to be
able to obtain precise measurements.

CV represents a promising alternative to data gloves
because of its potential potential to provide more natural,
unencumbered, non-contact interaction. However, several
challenges including accuracy, processing speed, and gener-
ality have to be overcome for the widespread use of this
technology. Recovering the full DOF hand motion from
images with unavoidable self-occlusions is a very challeng-
ing and computationally intensive problem. As a result,
current implementations of CV-based systems do not have
much in common with glove-based ones. Dating back to
late 70s [18], the dominant method pursued in the imple-
mentation of CV-based interaction has been appearance-

based modeling of hand motion [19,20]. These models have
been successfully applied to build gesture classification
engines for detecting elements of a gesture vocabulary.
However, 3D motion information delivered by these sys-
tems is limited to rough estimates of fingertip positions, fin-
ger orientations and/or palm frame obtained using
appearance-specific features that affect the generality of
the approach.

In this study, we review a more general problem, which
aims to recover the full kinematic structure of the hand by
bridging the gap between CV-based and glove-based sens-
ing. This is a very challenging, high dimensional problem.
Since the hand is a very flexible object, its projection leads
to a large variety of shapes with many self-occlusions. Nev-
ertheless, there are several good reasons for tackling this
problem. First, there are various types of interaction styles
and applications that explicitly rely on 3D hand pose infor-
mation. Second, 3D hand pose forms an effective feature to
be used in gesture classification, as it is view independent
and directly related to hand motion. Finally, in contrast
to appearance-based methods, full DOF hand pose estima-
tion can provide general, principled methods that can be
easily adapted to process simple, lower DOF tasks such
as pointing, resizing, navigation etc. [21–23].

1.1. Related literature

There exist several reviews on hand modeling, pose esti-
mation, and gesture recognition [24–27,19,28], the latest of
which covers studies up to 2000. However, none of these
surveys addresses the pose estimation problem in detail
as they mainly concentrate on the gesture classification
problem. In this study, we provide a detailed review on
pose estimation together with recent contributions in the
hand modeling domain including new shape and motion
models and the kinematic fitting problem.

It should be mentioned that hand pose estimation has a
close relationship to human body or articulated object pose
estimation. Human body pose estimation is a more inten-
sive research field. Many algorithms used in hand tracking
have their roots in methods proposed previously in human
body tracking. However, there are also many differences in
operation environments, related applications and the fea-
tures being used [29]. For example, clothing on human
body introduces extra difficulties in segmentation but it
also makes color or texture features more reliable for track-
ing compared to the weakly textured, uniformly colored
surface of the hand. Another example is the possibility of
estimating human body pose part-by-part or hierarchically
(first head, then torso and so on), to break the problem into
smaller dimensional ones. In the case of the hand hierarchi-
cal processing is limited to two stages for palm, and fingers.
It would be difficult, if not impossible, to go any further
because of the lack of texture, the proximity of the limbs
and the mostly concave shape of the hand that produces
severe occlusions. Therefore, we have limited the content
of this paper to studies directly addressing the problem of
hand pose estimation. Some reviews covering human body
pose estimation can be found in [30–35].

1.2. Outline

In Section 2, we define the problem of hand pose estima-
tion, discuss the challenges involved, and provide a catego-
rization of the methods that have appeared in the
literature. Hand modeling is an important issue to be con-
sidered for any model-based method and it is reviewed in
Section 3. Sections 4–6 provide a detailed review of the
methods mentioned in Section 2. In Section 7, we summa-
rize the systems reviewed and discuss their strengths and
weaknesses. In Section 8, we discuss potential problems
for future research. Finally, our conclusions are provided
in Section 9.

2. CV-based pose estimation

The dominant motion observed in hand image
sequences is articulated motion. There is also some elastic
motion but recovering it does not have any major practical
use in most applications. Therefore, hand pose estimation
corresponds to estimating all (or a subset of) the kinematic
parameters of the skeleton of the hand (see Fig. 2). Using
visual data for this purpose, however, involves solving
challenging image analysis problems in real-time.

In this section, we first discuss some major difficulties
associated with the hand pose estimation problem and
the restrictions applied on the user or the environment to
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Fig. 1. Different approaches to hand pose estimation.
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alleviate some of them. Then we provide a taxonomy of
existing methods based on their technical characteristics.

2.1. Difficulties

The main difficulties encountered in the design of hand
pose estimation systems include:

• High-dimensional problem: The hand is an articulated
object with more than 20 DOF. Although natural hand
motion does not have 20 DOF due to the interdepen-
dences between fingers, studies have shown that it is
not possible to use less than six dimensions (see Section
3). Together with the location and orientation of the
hand itself, there still exist a large number of parameters
to be estimated.

• Self-occlusions: Since the hand is an articulated object,
its projection results in a large variety of shapes with
many self-occlusions, making it difficult to segment dif-
ferent parts of the hand and extract high level features.

• Processing speed: Even for a single image sequence, a
real-time CV system needs to process a huge amount
of data. On the other hand, the latency requirements
in some applications are quite demanding in terms of
computational power. With the current hardware tech-
nology, some existing algorithms require expensive, ded-
icated hardware, and possibly parallel processing
capabilities to operate in real-time.

• Uncontrolled environments: For widespread use, many
HCI systems would be expected to operate under non-
restricted backgrounds and a wide range of lighting con-
ditions. On the other hand, even locating a rigid object
in an arbitrary background is almost always a challeng-
ing issue in computer vision.

• Rapid hand motion: The hand has very fast motion capa-
bilities with a speed reaching up to 5 m/s for translation
and 300�/s for wrist rotation. Currently, off-the-shelf
cameras can support 30–60 Hz frame rates. Besides, it
is quite difficult for many algorithms to achieve even a
30 Hz tracking speed. In fact, the combination of high
speed hand motion and low sampling rates introduces
extra difficulties for tracking algorithms (i.e., images at
consecutive frames become more and more uncorrelated
with increasing speed of hand motion).

Since it is hard to satisfy all the issues listed above simul-
taneously, some studies on hand pose estimation apply
restrictions on the user or the environment. For example, it
is usually assumed that the background is uniform or static
and that the hand is the only skin-colored object. However,
such restrictions may not be applicable in many real-life
systems. Although, it is usually acceptable to ask the users
to avoid rapid hand motions, there are some applications
that can not tolerate low tracking speed. For example,
Sturman [13] recommends at least 100 Hz tracking speed
to allow effective interaction, based on his practical
experience with high DOF control and manipulation tasks.
The alleviation of the first two challenges listed above
requires restricting the motion of the hand, which is more
difficult to justify. One purpose of restricting the pose is
to minimize occlusions. The most common restriction is
to assure that the palm is parallel to the image plane.
The purpose is to avoid out of plane rotations that cause
fingers to occlude each other. In single camera systems,
such a restriction leads to posed interaction. Quek [1] has
justified this type of interaction for communicative ges-
tures. During communicative gesturing, the user inherently
makes sure that salient features of the gesture are visible to
the observer. The use of multiple cameras located at critical
view points is necessary to enable non-posed interaction.

Pose restrictions can be also applied to reduce the
dimension of the problem by exploiting interaction styles
that combine low DOF motion primitives to perform com-
plex tasks (see Appendix A). In this case, it becomes possi-
ble to attack the pose estimation problem with dedicated,
goal-oriented, appearance-based algorithms described in
Section 4. Full DOF pose estimation algorithms can be
adapted to these interfaces by simply fixing some of the
DOF thereby achieving a faster processing speed. How-
ever, the existence of many applications and interaction
styles that rely on unrestricted hand motion should also
be considered.

2.2. Taxonomy

There are two main approaches in hand pose estimation
as illustrated in Fig. 1. The first one consists of ‘‘partial
pose estimation’’ methods that can be viewed as extensions
of appearance-based systems that capture the 3D motion of
specific parts of the hand such as the fingertip(s) or the
palm. These systems rely on appearance-specific 2D image
analysis to enable simple, low DOF tasks such as pointing
or navigation. Because of their dedicated, goal-oriented
nature, these algorithms do not have any straightforward
extensions for estimating other kinematic parameters that
fall out of the scope of the task. The second approach is
the full DOF hand pose estimation that targets all the kine-
matic parameters (i.e., joint angles, hand position or orien-
tation) of the skeleton of the hand, leading to a full
reconstruction of hand motion.
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Solutions to the full DOF hand pose estimation problem
can be classified in two main categories: (1) Model-based

tracking, and (2) Single frame pose estimation. The former
refers to a top-down tracking method based on parametric
models of the 3D hand shape and its kinematic structure.
Model-based tracking is common in many studies for
tracking various types of objects in 2D and 3D [36–39]
(see Section 5 for details). It corresponds to a search exe-
cuted at each frame of an image sequence to find the pose
of the shape model that best matches the features extracted
from the image(s). The search is initiated using a prediction
based on the object’s motion history and dynamics. Some
systems rely on a local search around the prediction to pro-
duce a single best estimate at each frame. However, imper-
fections due to occlusions and complexity of hand motion
do not allow this type of tracker to work well over long
sequences. The alternative approach is keeping multiple
hypotheses at each frame to improve the robustness of
tracking.

The second solution (i.e., single frame pose estimation)
is a more recent one that attacks the problem without mak-
ing any assumptions on time coherence, resulting in a more
difficult problem. This approach can lead to algorithms for
initialization or re-initialization in tracking-based systems.
Another motivation for this approach is the rapid motion
of the hand and fingers. Images of consecutive frames
can be very different, making time coherence assumptions
useless.

3. Hand modeling

In this section, we provide a review on hand modeling in
the context of model-based vision. First, we describe the
kinematic model that forms the basis of all types of hand
models. A kinematic hand model represents the motion
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Fig. 2. Skeletal hand model: (a) Hand
of hand skeleton, but is also a redundant model in the sense
that it does not capture the correlation between joints.
After a review on modeling the natural hand motion, we
present some hand shape models that allow generating
appearances of the hand in arbitrary configurations.
Finally, the kinematic fitting problem, which involves the
calibration of the user specific parameters of the hand
model, is discussed.

3.1. Kinematic hand model

The human hand consists of 27 bones, 8 of which are
located in the wrist. The other 19 constitute the palm and
fingers as shown in Fig. 2a. The bones in the skeleton form
a system of rigid bodies connected together by joints with
one or more degrees of freedom for rotation. Joints
between the bones are named according to their location
on the hand as metacarpophalangeal (MCP) (i.e., joining
fingers to the palm), interphalangeal (IP) (i.e., joining fin-
ger segments) and carpometacarpal (CMC) (i.e., connect-
ing the metacarpal bones to the wrist). The nine IP joints
can be accurately described as having only one DOF, flex-
ion-extension. All five MCP joints, however, are described
in the literature as saddle joints with two DOF: abduction/
adduction (i.e., spreading fingers apart) in the plane defined
by the palm, and flexion/extension. The CMC of the index
and middle fingers are static while the CMC of the pinky
and the ring finger have limited motion capability reflecting
palm folding or curving, which is often discarded yielding a
rigid palm. The CMC of the thumb, which is also called
trapeziometacarpal (TM), is the most difficult to model.
Biomechanical studies [40] have shown that the TM joint
has two non-orthogonal and non-intersecting rotation
axes. The two DOF saddle joint is a restrictive model but
it has been used in many studies. Extending it to a three
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DOF spherical joint overcomes the restrictions [41,42].
Another solution is to have a twist around the bone axis
as a linear function of abduction and flexion angles [43].
The angular DOF of fingers, which is often called the local

configuration, and the six DOF of a frame attached to the
wrist, which is often called the global configuration, form
a configuration vector representing the pose of the hand.

A 27 DOF model that was introduced in [44] and has
been used in many studies is shown in Fig. 2b. The CMC
joints are assumed to be fixed, which quite unrealistically
models the palm as a rigid body. The fingers are modeled
as planar serial kinematic chains attached to the palm at
anchor points located at MCP joints. The planarity
assumption does not hold in general. Standard robotics
techniques provide efficient representations and fast algo-
rithms for various calculations related to the kinematics
or dynamics of the model. Adding an extra twist motion
to MCP joints [45,46], introducing one flexion/extension
DOF to CMC joints [47] or using a spherical joint for
TM [42] are some examples of the variations of the kine-
matic model.

The kinematic hand model described above is the most
natural choice for parameterizing the 3D hand state but
there exist a few exceptions using other types of representa-
tions. Sudderth et al. [48] used independent rigid bodies for
each component of the hand, leading to a highly redundant
model. The kinematic relations between these rigid bodies
were enforced using a prior model in their belief propaga-
tion network. Heap et al. [49] dropped the kinematic model
and modeled the entire surface of the hand using PCA
applied on MRI data. Such a representation requires fur-
ther processing to extract useful higher-level information,
such as pointing direction; however, it was shown to be
very effective to reliably locate and track the hand in
images.

Full DOF hand pose estimation systems extensively rely
on a-priori information on the motion and shape of the
hand; therefore, the kinematic model is augmented with
shape information to generate appearances of the hand in
arbitrary configurations, and hand pose or motion con-
straints to reduce the search space for pose estimation.
Although the same motion models could be assumed for
arbitrary users, the same assumption cannot hold true for
shape models. If precision is a requirement for the applica-
tion, these models need to go through a calibration proce-
dure to estimate user-specific measurements.

3.2. Modeling natural hand motion

Although active motion of the hand (i.e., motion with-
out external forces) is highly constrained, this is not
reflected in the kinematic model. An attempt to capture
natural hand motion constraints is by complementing the
kinematic model with static constraints that reflect the
range of each parameter and dynamic constraints that
reflect the joint angle dependencies. Based on the studies
in biomechanics, certain closed-form constraints can be
derived [44,42,19]. An important constraint is the relation
hDIP ¼ 2

3
hPIP between the PIP and DIP angles that helps

decrease the dimension of the problem by 4. There exist
many other constraints that are more complex to be uti-
lized in a pose estimation algorithm. For example, the flex-
ion angle of an MCP joint has an effect on the abduction
capability of that joint and neighboring MCP joints.

The very intricate structure of the hand does not allow
expressing all the constraints in a closed form. Moreover,
the natural motion of the hand may follow more subtle
constraints which have nothing to do with structural limi-
tations [50]. These problems have motivated learning-based
approaches, which use ground truth data collected using
data gloves. The feasible configurations of the hand are
expected to lie on a lower dimensional manifold due to bio-
mechanics constraints. Lin et al. [50] applied PCA on a
large amount of joint angle data to construct a seven-
dimensional space. The data was approximated in the
reduced dimensional space as the union of linear mani-
folds. It is also possible to use the data directly without
any further modeling as in [51] to guide the search in the
configuration space. Another way to use the glove data is
to generate synthetic hand images to build a template data-
base that models the appearance of the hand under all pos-
sible poses [52–55].

In addition to modeling the feasible hand configura-
tions, learning the dynamics of hand motion can help
tracking algorithms. Zhou et al. [56] presented an EDA
(eigen-dynamic analysis) method for modeling the non-lin-
ear hand dynamics. First, PCA was used to reduce the
dimension of the problem. Then hand motion was modeled
in the reduced space, while moving only one of the fingers,
using low order linear systems. The resulting five linear
models were combined to obtain a high order stochastic
linear dynamic system for arbitrary finger motion.

Thayananthan et al. [57] represented the configuration
space as a tree, which was constructed using hierarchical
clustering techniques or regular partitioning of the eigen-
space at multiple resolutions. Each node of the tree corre-
sponds to a cluster of natural hand configurations collected
using a data-glove. The tree structure enables fast hierar-
chical search through Bayesian Filtering. The dynamic
model of the system, which is assumed to be a first order
Markov process, was built by histogramming state transi-
tions between clusters using large amount of training data.

3.3. Modeling the shape of the hand

Hand shape has both articulated and elastic compo-
nents; however, computational efficiency reasons do not
allow the use of very complex shape models for pose esti-
mation. In many studies, the hand model needs to be pro-
jected many times on the input image(s) to obtain features
that can be matched against the observed features. Visibil-
ity calculations to handle occlusions add extra complexity
to the projection calculations. These problems have moti-
vated the use of rough shape models, composed of simple



Fig. 3. Hand shape models with different complexity: (a) Quadrics-based
hand model taken from [22], (b) cardboard model taken from [58], (c) a
realistic hand model taken from [45].
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geometric primitives such as cylinders, spheres, ellipsoids
attached to each link or joint of the hand skeleton. Figs.
3a and b show two examples having different complexity.
Stenger et al. [22] used quadrics as shape primitives, as
shown in 3a. Using projective geometry properties of quad-
rics, fast algorithms were provided for projecting quadrics
and calculating their visibility. Wu et al. [58] used an even
more economical, view-dependent model called ‘‘card-
board model’’, shown in Fig. 3b. When viewed from a
direction orthogonal to the palm, the hand is modeled as
the union of rectangles attached to each link and the palm.
A visibility map was used to handle visibility calculations.

Although these rough hand models can be processed
efficiently, one may also anticipate systems with better per-
formance using more complex models. Therefore, some
studies have employed more realistic models. Kuch et al.
[42] used a B-spline surface whose control points were
attached to the links in the model. In [45] and [59], a
deformable skin model was implemented using a skinning
technique. Fig. 3c shows the model used by Bray et al.
[45]. However, both of these studies make use of 3D fea-
tures obtained from depth sensors or stereo vision, elimi-
nating complex projection operations.

3.4. Kinematic fitting

User-specific shape parameters of the hand such as the
length and width of the links can vary over a wide range,
affecting the accuracy of model-based pose estimates.
Therefore, there is a need for user-specific calibration of
the hand model. This problem is usually solved manually
in the literature. One can imagine using 3D sensors [45]
or 3D reconstruction from multiple views [42] to capture
the shape of the hand in detail; however, kinematic fitting
that involves estimating the link lengths or equivalently
the locations of each joint is a difficult task.

The kinematic fitting problem is addressed in the area of
modeling the human body, or—more general—articulated
objects. One method is to estimate the full 3D motion of
each component and then process the data to extract the
topology and/or joint locations. O’Brien et al. [60] and
Taycher et al. [61] used magnetic sensors and multiple rigid
motion estimation algorithms, respectively, to calibrate
human body models. Another approach is using active or
passive point markers as demonstrated in [62]. Using pas-
sive markers introduces some difficulties in establishing
marker correspondences across frames, compared to active
markers. Kakadiaris et al. [63] proposed a complex proce-
dure where the subject performs a set of movements
according to a protocol that reveals the structure of the
human body. Images from multiple views were then ana-
lyzed to build the full human body model.

In the case of the hand, there are only a few studies in
literature. In most cases manual calibration is performed.
Anthropometric data that establish statistical relations
between external measurements and joint locations
[64,65] can be valuable for manual calibration. In [42], a
semi-automatic hand calibration procedure is described.
Several landmarks on the hand are marked manually in
images taken from different views and a spline-based model
is fit to the landmark points. In [66] and [67], some of the
calibration parameters are estimated together with pose
parameters. In [68], the image of an open hand and anthro-
pological ratios between finger segments were utilized. In
[69], 3D locations of fingertips acquired using a stereo cam-
era and color LED markers were used to calibrate a data
glove and a hand model. Very recently, Lien et al. [70]
introduced a marker-based calibration method using scal-
able inverse kinematic solutions that they developed. Each
finger in the base model was scaled separately using a
grasping motion sequence by the user.

4. Partial hand pose estimation

In this section, we provide a review on estimating partial
hand pose, which corresponds to rough models of the hand
motion, mainly consisting of position of the fingertips, ori-
entation of the fingers or position and orientation of the
palm. Partial hand pose estimation algorithms are used
to complement appearance-based systems to provide con-
tinuous motion data for manipulation, navigation or point-
ing tasks. First, we describe the architecture of these
systems followed by implementation details.

There are many real-time gesture-based HCI prototype
systems implemented using computer vision techniques.
Most of these systems employ appearance-based modeling.
The application scenarios in these prototypes include 2D
VEs or AR applications to manipulate electronic docu-
ments, presentations or other applications projected on
desks, walls etc. [71–77], and 3D VEs mostly targeting gra-
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phic design applications with 3D object manipulation tasks
[78–86]. The user interface consists of a small gesture
vocabulary of static or dynamic gestures. In most cases,
static postures are employed in the vocabulary. The use
of dynamic gestures is limited to a few studies
[72,78,1,87]. In some gestures, hand pose estimation is per-
formed to implement primitive object manipulation tasks,
while other gestures have only symbolic interpretations
corresponding to commands.

Fig. 4 shows a block-diagram of a generic system. The
input images are processed to localize the hand, then some
features are extracted to be utilized for pose estimation
and/or gesture recognition. The gesture recognition engine
is essentially a pattern classification engine that extracts the
symbolic content of hand motion. Pose estimation is acti-
vated whenever hand shape matches a certain gesture, for
example, a pointing gesture. The assumption that the hand
has a limited range of appearances enables posture and
view-dependent image analysis for estimating the pose.

4.1. Hand localization

Skin color segmentation is a common method for locat-
ing the hand because of its fast implementation using
lookup tables [74,88–90,82,91,83]. Static background sub-
traction [80,71], and the use of adaptive background mod-
els [75,73] are other common methods. Shadows can be a
problem in background subtraction algorithms [73]. A
few studies utilize IR cameras that are tuned to human
temperature [77,72] to provide fast solutions by simple
thresholding operations. Various assumptions are used,
such as the hand being the only skin-colored object, uni-
form ambient lighting, or stationary background. Tracking
parametrized deformable templates of the hand or fingers
[14,92–94] is a more elaborate and precise method that
can handle complex backgrounds. In particular, particle fil-
ter-based tracking [14,92] has been shown to be a robust
approach. Depending on the algorithm and the users’
clothing (e.g., sleeves rolled up), hand-arm segmentation
may also be necessary as an extra processing step [77,79]
in hand localization.
Another approach to locate the hand involves classifi-
cation-based object detection methods. In these systems,
a large list of hypotheses in the form of subregions in
the image are processed by a classifier to decide the pres-
ence of the object. Using conventional classifiers for ver-
ification however, would not allow an exhaustive list of
subregions to be processed in reasonable time. Employ-
ing boosted cascades of classifiers improve processing
speed drastically [95]. A very fast classifier on top of
the hierarchy eliminates a large number of false hypoth-
eses to allow for the use of more accurate but computa-
tionally more expensive classifiers at the lower levels of
the hierarchy. Training these classifiers requires collecting
a large number of hand posture images, possibly from
different views. Kolsch et al. [96] introduced a class sep-
arability estimation method based on frequency spectrum
analysis to reduce the load of training these classifiers.
Ong et al. [97] employed clustering methods to cluster
the training data into similar shapes and build a tree
of classifiers for detection. As one goes down to the
branches of the tree, the classifiers are trained to detect
more and more specific clusters consisting of similar
shapes. It is possible to use such classifiers to recognize
gestures as well. However, labeling a large number of
samples is a time consuming process. Wu et al. [98]
provided a training algorithm that only needs a small
portion of the database to be labeled and built a view-
independent gesture recognition system by using samples
of postures captured from a large number of views. A
color segmentation algorithm [99] was employed to
reduce the number of hypotheses.

4.2. Gesture classification

Appearance-based gesture classification is an intensive
research field involving many machine learning tech-
niques (neural networks, HMM etc.) and a wide range
of feature extraction methods (moments, Fourier descrip-
tors, optical flow etc.). In this study, we concentrate only
on gestures that are accompanied by pose estimation.
Such gestures are limited to a small set of hand postures
shown in Fig. 5. Fig. 5a shows an open hand whose rigid
motion can provide signals for a navigation task. An
open hand also represents a generic model that is used
to generate different commands by changing the visibility
of fingers [75,79,85,72]. The number of visible fingers and
their attributes, such as orientation and fingertip loca-
tion, are sufficient to differentiate between these com-
mands. The pointing gestures shown in Fig. 5b and c
can be seen as states with one and two visible fingers,
respectively. The pointing (or selection) operation and
the corresponding gesture is common to almost all inter-
faces. Fig. 5d shows an object manipulation gesture,
which has different characteristics and is used in only a
few studies. The motion of the index and thumb fingers
can provide signals for grabbing [80], resizing [82], trans-
lating or rotating [71] objects.
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Fig. 5. Gestures used in pose estimation. (a) An open hand (e.g., used for
navigation) [78], (b) pointing gesture, (c) another pointing gesture [78], (d)
object manipulation gesture [78].
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4.3. Feature extraction

Pose estimation based on the gestures described above
mainly involves extracting the position and orientation of
the hand, fingertip locations, and finger orientation from
the images. The hand position is taken to be a unique sta-
ble landmark point on its silhouette. By silhouette, we
mean the outline of the hand provided by segmentation
algorithms, or equivalently the partitioning of the input
image into object and background pixels. The center of
gravity (or centroid) of the silhouette [83,100] is one choice,
but it may not be very stable relative to the silhouette shape
due to its dependence on the finger positions. The point
having the maximum distance to the closest boundary edge
[79,86,77,74] has been argued to be more stable under
changes in silhouette shape. Fingertip detection can be
handled by correlation techniques using a circular mask
[77,72,73], which provides rotation invariance, or fingertip
templates extracted from real images [101,76]. Using curva-
ture local maxima on the boundary of the silhouette is
another common method to detect the fingertips and the
palm-finger intersections [80,71,82]. Sensitivity to noise
can be an issue for curvature-based methods in case of
noisy silhouette contours. In [100,74], a more reliable algo-
rithm based on the distance of the contour points to the
hand position is utilized. The local maxima of the distance
between the hand position and farthest boundary point at
each direction gives the fingertip locations. Finger or 2D
hand orientation can be estimated by calculating the direc-
tion of the principal axes of the silhouettes [87,86,80]. All
these features can be tracked across frames to increase
computation speed and robustness using Kalman filters
[74,88] or heuristics that determine search windows in the
image [82,85] based on previous feature locations or rough
planar hand models. The low computational complexity of
these methods enable real-time implementations using con-
ventional hardware. However, their accuracy and robust-
ness are arguable. Since they do not account for
perspective distortion, accurate pose estimates are not
expected. Moreover, they rely on high quality segmenta-
tion lowering their chance of being applied on highly clut-
tered backgrounds. Failures can be expected in some cases
such as two fingers touching each other or out of plane
hand rotations.

A more elaborate method is tracking the features
directly in 3D using 3D models. Jennings et al. [102] has
employed range images, color, and edge features extracted
from multiple cameras to track the index finger in a point-
ing gesture. Very robust tracking results over cluttered and
moving backgrounds were obtained. Davis et al. [103] used
cylindrical fingertip models to track multiple finger posi-
tions in 3D without occlusions, over uniform backgrounds.

Employing markers could be considered intrusive but
they have considerable technical advantages in terms of
processing speed. Maggioni et al. [85] used elliptical mark-
ers to estimate the hand frame in 3D. A similar approach
was pursued in [104], using multiple views. In a more recent
study, Kim et al. [84] used white fingertip markers under
black-light to detect fingertip locations yielding a much
richer set of gestures.

4.4. Pose estimation

In 2D applications, the features described above are
used directly to avoid 3D pose estimation. However, 3D
information can also be useful in those applications as
demonstrated by Malik et al. [71]. In that study the dispar-
ity of the fingertip was used to decide if the finger was
touching the desk to implement a Visual Touchpad. In
3D applications, stereo vision comes into use in a straight-
forward manner to calculate the 3D location of the hand
and fingertips, and the orientation of the hand and/or fin-
gers. Using shadows to extract 3D pose information using
a single camera was proposed in [81] but this technique
requires highly controlled background and lighting. When
the hand is in rigid motion, fingertip locations and palm
position provides sufficient information to estimate the
3D orientation of the hand [82,83]. In some studies
[86,83], multiple cameras are used to allow the user to ges-
ture freely by having the system select by the best view for
analysis. In [86], the 3D orientation of the hand plane was
used to select the best camera for gesture classification. In
[83], the area and aspect ratio of the hand silhouette were
used for the same purpose.

4.5. Discussion

The hand model used in these systems consists of a glo-
bal hand pose, binary states (visible/occluded) of the fin-
gers, fingertip locations, and finger orientations.
Extracting these features requires posing to the camera to
keep hand appearance at a reasonable range. As a result,
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extending a small gesture set, such as the one shown in
Fig. 5, seems to be very difficult through appearance-based
methods. It would not be possible to implement many
other interaction procedures using these systems. On the
other hand, all the studies reviewed are real-time systems
with sampling frequencies reaching up to 60 Hz [78], which
is a critical factor in many applications. There are also
environments with limited resources (e.g., wearable com-
puters [105]) that strictly require computationally econom-
ical algorithms.

Usability studies of these interfaces are limited and rare.
User fatigue is a well-known problem reported in many
studies [78,82]. Avoiding too much arm motion is a guide-
line [2] in the design of these system to avoid user fatigue.
Another evaluation is related to the accuracy of the pose
estimates especially for pointing gestures. Jitter in pointing
gestures becomes crucial when distant objects are pointed
at. Except for few studies such as [93], high accuracy is
not a virtue of any of these systems. Classification accuracy
is another factor that can affect the usability. False posi-
tives that occur during transitions from one gesture to
another and failures due to user-dependent variations in
gesturing were reported in [83]. In [86], some users failed
to use some of the gestures in the gesture set. Besides these
issues, most studies report encouraging user satisfaction.

5. Model-based tracking

A block diagram of a generic model-based tracking sys-
tem is shown in Fig. 6. At each frame of the image
sequence, a search in the configuration space is executed
to find the best parameters that minimize a matching error,
which is a measure of similarity between groups of model
features and groups of features extracted from the input
images. The search is initiated by a prediction mechanism,
based on a model of the system dynamics. In the first
frame, a prediction is not available, therefore, a separate
initialization procedure is needed. In the search phase,
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the basic operation is the calculation of the matching error
between the features extracted from the input and the fea-
tures generated by the model. The synthesis of features
using the model also enables a selective analysis that
focuses on regions or a subset of features instead of the
whole input. In the most common implementation, 2D fea-
tures in the image plane are used. In this case, the projec-
tion of the 3D model on the image plane should be
performed. If multiple cameras are used, the matching
error on all the cameras can be combined without solving
any correspondence problem between the images [37]. A
less common approach is using 3D features that can be
acquired using multiple view systems or depth sensors.

The framework summarized above has been intensively
studied in the context of human body tracking research.
Two types of systems have emerged. The first one is based
on a local search and keeps track of only the best estimate
at each frame. We call this type as single hypothesis tracking

throughout this study. However, this type of tracker is not
expected to work well on long sequences, due to some
imperfections in the error function. Spurious local minima,
singularities and discontinuities originating from back-
ground clutter, self-occlusions, and complex motion
dynamics lead to tracking failures [106,107]. Morris and
Rehg [108,109] have provided an in-depth analysis of the
singularity problem and proposed a novel 2D kinematic
model called Scaled Prismatic Models (SPMs) in place of
3D models. SPMs can help avoid most of the singularities
but require further processing to obtain 3D pose estimates.
Employing multiple views is another way to avoid singular-
ities [109,110]. A more general approach that has the ability
to address these imperfections is multiple hypotheses track-

ing (MHT). The basic idea in MHT is keeping multiple
pose estimates at each frame. If the best estimate fails,
the system can still continue tracking using other potential
estimates. The idea is best captured by Bayesian filtering,
which targets the computation of the posterior probability
density function of the hand configurations using the avail-
of
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able observations. An introduction to Bayesian filtering
and pointers to other references can be found in [111].

The main modules of the system shown in Fig. 6 are ini-
tialization, prediction, feature extraction, and search. The
first two tasks are not fully addressed in the literature.
Many systems solve the initialization problem manually
or by assuming a simple known initial configuration (e.g.,
a stretched hand with no occlusion). Such an initialization
has some undesirable consequences, for example, when the
target is lost the user is required to place his hand in the ini-
tial configuration. Modeling the non-linear dynamics of
hand motion is not an easy problem and limited to a few
studies only (i.e., reported in Section 3.2). Instead, weak
linear dynamics, that assert smooth state or velocity
change, are usually assumed. In the following subsections,
we review the implementation of feature extraction and
search modules.

5.1. Feature extraction and matching

Feature extraction is a crucial module in any CV system.
The implementation of this module has a considerable
effect on the robustness of the system to self-occlusions
and background clutter. Feature extraction and matching
also have a huge impact on the processing speed of the
whole system because of the search process (i.e., matching
and/or feature extraction is repeated many times during the
search).

The hand creates images that are very difficult to analyze
in general. High level features such as fingertips, fingers,
joint locations, and the links between joints are very desir-
able, as they provide a very compact representation of the
input supporting high processing speeds. However, it is
very difficult to extract them robustly without any severe
pose restrictions (see Section 4). Therefore, the majority
of studies rely on low-level features. Another group of fea-
tures are 3D features that can be obtained using 3D depth
sensors or multiple cameras.

5.1.1. High-level features

Algorithms employing high-level features often rely on
colored markers to extract fingertip and joint locations or
some anchor points on the palm [44,112,113]. An exception
is a fingertip detection system based on Gabor features and
a special neural network architecture (LLM-net) reported
in [114]. An important problem with point features is their
susceptibility to occlusions. Moreover, It may be difficult to
track markers on the image plane due to frequent collisions
and/or occlusions [113]. Using the predicted marker posi-
tions in place of the missing markers can help to avoid fail-
ures [113,70].

Non-point features, such as protrusions of hand silhou-
ettes, were utilized in [66] to roughly detect fingers, finger-
tips, and links. Another example is the DigitEyes system
[21] that uses the projection of the links in the skeletal
model to guide the extraction of links and fingertips during
model-based tracking. Links and fingertips are very com-
pact features allowing very fast similarity computations;
however, even with a small amount of occlusion one can
expect large fractions of outliers in link extraction. In
[115], this system was extended to include appearance tem-
plates associated with each link and a layered representa-
tion of templates to handle occlusions. Templates
associated with each link were registered and masked using
a window function that depends on the predicted visibility
order. Tracking two fingers in highly occluding poses was
used to demonstrate the effectiveness of occlusion handling.

It should be noted that none of the systems mentioned
above, even the ones with colored markers, operate in the
presence of cluttered backgrounds.

5.1.2. Low-level features
Contours or edges are universal features that can be

used in any model-based technique [38]. Often, a volumet-
ric model of the hand is projected on the images to calcu-
late the occluding contours of the projection. Then, point
correspondences between model contours and image con-
tours are established based on a certain proximity criterion
(e.g., closest point in the normal direction). The edges can
be extracted by either processing the whole image, or the
model projection can be used as a guide to locate gradient
magnitude local maxima (or any other edge detector) in the
vicinity (e.g., the first edge in the direction of the contour’s
normal) of the model contours. The distance between
corresponding points gives the matching error [116,51,22,
51,49]. Edge-based measures are not expected to be effec-
tive under cluttered backgrounds. Thayananthan et al.
[67] combined edge orientation and chamfer matching, to
demonstrate increased robustness compared to shape con-
text features. This combination was utilized in many stud-
ies [57,53,23,54,48]. In [53,57,23,48] skin color models were
also employed to increase robustness. The likelihood of the
segmentation, asserted by the projection of the model, was
calculated using background and skin color models as a
measure of similarity. Combinations of multiple features
are in general expected to improve robustness. Combining
edges, optical flow, and shading was proposed in [117] and
successful tracking results, under severe occlusions, were
presented.

Silhouette (i.e., the outline of the hand provided by seg-
mentation algorithm) is another common feature, which
can mainly help to keep the projection of the model inside
the hand region in the images. The overlapping area of the
model and hand silhouettes is usually taken to be a mea-
sure of similarity [118]. In [47], distance transforms of the
silhouettes were correlated instead. Lin et al. [116,51]
employed silhouette edge combinations and presented
tracking results over cluttered backgrounds in [51]. A
drawback of using silhouettes is the necessity for a separate
segmentation module.

5.1.3. 3D features
Use of 3D features is limited to a few studies. In [119], a

stereo camera was used to obtain a dense 3D reconstruc-
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tion of the scene and segment the hand by thresholding the
depth map. The depth map enables dealing with cluttered
backgrounds as long as the hand is the closest object to
the stereo camera. In [45,46], structured light was used to
acquire 3D depth data; however, skin color was used for
segmenting the hand. In either case, the depth map gives
a surface, which is matched against the model surface in
3D. In another study [59], it was proposed to track a large
number of points of interest on the surface of the hand
using a stereo camera. Motion information obtained from
the 3D trajectories of the points was used to augment the
range data. One can also imagine a full 3D reconstruction
of the hand surface using multiple views; however, an
exact, real-time and robust 3D reconstruction is very diffi-
cult. Ueda et al. [120] used an approximate but fast recon-
struction method based on the visual hull [121] that uses
the silhouettes to compute a bounding volume for the
object. The visual hull was used for human body pose esti-
mation in some studies and was shown to give satisfactory
reconstructions using few cameras; however, the same may
not hold true in the case of the hand because of its mostly
concave geometry. A drawback of 3D reconstruction is the
additional computational cost. Nevertheless, 3D data
contains valuable information that can help eliminate
problems due to self-occlusions which are inherent in
image-based approaches. Markers can lead to 3D informa-
tion in a much more economical way [122,70,44] using the
simple triangulation method. Although colored gloves are
expected to be less intrusive than electro-mechanical ones,
a markerless solution is much more appealing for
widespread use of hand-based HCI.

5.2. Single hypothesis tracking

Single hypothesis tracking corresponds to a best fit
search where the matching error is minimized. There are
two types of methods for performing the search. The first
one is following explicit matching error minimization tech-
niques (i.e., optimization methods). The second one con-
sists of applying physical forces on the model.

5.2.1. Optimization-based methods

The most common approach to fitting a model to the
extracted features is using standard optimization tech-
niques. In [21], an error based on joint links and fingertips
was minimized using the Gauss–Newton method aug-
mented with a stabilization step [38]. Stabilization was used
to deal with kinematic singularities that occur when the
change of some parameters does not have any effect on
the appearance of the hand. In [113], the same technique
was applied using fingertip and joint markers. Silhouette-
based error measures were minimized using Nelder Mead
Simplex (NMS) in [123], and Genetic Algorithms (GAs)
and Simulated Annealing (SA) in [47]. In [123], the NMS
algorithm was modified to account for closed-form hand
model constraints. In [51], a two-stage model fitting algo-
rithm based on NMS using edge and silhouette features
was proposed. First, a coarse stage that forces simplex to
pass through sample points collected using a glove-based
sensor. Second, a fine tuning stage, where the simplex
evolves without any constraints. Lien et al. [122,70] used
stereo cameras to extract the 3D locations of a number
of markers on the palm and fingertips and applied GAs
to estimate the orientation of the palm. The state of the fin-
gers was estimated using inverse kinematics and regression
techniques. Bray et al. [46] used Stochastic Gradient Des-
cent (SGD) along with depth features. A small number of
points on the model surface were selected randomly at each
iteration to reduce computational cost and avoid spurious
local minima. Hand model constraints were carefully taken
into consideration by using an additional step at each iter-
ation. The resulting algorithm was called Stochastic Meta
Descent (SMD).

In [124], a ‘divide and conquer’ approach was proposed.
First, the global motion of the hand was estimated, fol-
lowed by the estimation of the joint angles. This procedure
was applied iteratively until convergence. As it is not pos-
sible to accurately segment the palm region from images,
outliers are expected. Therefore, robust estimation meth-
ods were utilized for estimating the pose of the palm. Later,
different global pose estimation algorithms were proposed
[116,51,56], all of them modeling the palm with a 2D planar
shape.

Kalman filters have also been employed in single
hypothesis tracking. In [22], the Unscented Kalman Filter
(UKF) was used for tracking. UKF applies a deterministic
weighted sampling of the Gaussian posterior to be able to
track a non-linear system.

5.2.2. Physical force models

An alternative approach to model fitting utilizes physi-
cal force models. In this approach, the matching error is
used to create forces to be applied on the surface of the
articulated model. Then, the model parameters are updated
by solving the dynamic equations of the kinematic model.
In [119], the forces were derived using the Iterative Closest
Point (ICP) algorithm for registering the model with a 3D
reconstruction obtained using a stereo head. Another 3D
system described in [120] uses the visual hull of the hand
to derive a force model. Using the parts of the model lying
outside the visual hull, forces were applied on the link of
the skeletal model to push these parts inside the visual hull.
In [117], the forces were derived using a combination of
multiple features (edges, shading, and optical flow) from
the image. Finger motion limits and inter-finger penetra-
tions were considered, and have been reported to signifi-
cantly improve the robustness of tracking.

5.3. Multiple hypotheses tracking

There are many approaches for multiple hypothesis
tracking. Many of them rely on Bayesian filtering or similar
formulations. In the following subsections, we describe
some representative approaches.
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5.3.1. Particle filters

Particle filtering is a well-known technique for imple-
menting recursive Bayesian filters using Monte Carlo sim-
ulations. The basic idea of particle filtering is
representing an arbitrary probability density using
weighted samples drawn from another easy to sample den-
sity, called the importance density. The weights represent
the probability of occurrence of each sample and the
weighted samples are usually called particles. In case of
tracking, the particles of the hand configuration distribu-
tion should be updated at each frame. In [116], a parame-
trization of the hand configuration space was used (see
Section 3) for generating the samples. It was demonstrated
that it is possible to track the fingers by keeping an order of
magnitude less samples than that of the more conventional
condensation algorithm [125]. A problem with particle fil-
ters is the requirement on the number of samples to be kept
and tested. The most expensive part of a tracking system is
the error calculation, therefore, repeating this operation on
a large number of samples (e.g., [116] reports using 100
samples) is not desirable.

To reduce the number of samples, some approximations
have been proposed by assuming a semi-parametric poster-
ior [126]. Combinations of semi-parametric particle filters
and local search algorithms provide solutions requiring
fewer samples. The samples representing the modes of the
posterior are kept and used to initiate local search proce-
dures. In [45], the SMD algorithm was employed resulting
in an 8 particle tracker, while [51] uses the two-stage NMS
algorithm (see Section 5.2.1) with 30 particles.

5.3.2. Tree-based filter

Another approach to implementing Bayesian filtering is
grid-based filtering. Such an approach was followed in [53]
by partitioning the state space using a regular multi-resolu-
tion grid. Bayesian filtering was implemented over the tree
by assuming a piecewise constant distribution over its
leaves. A large number of images, generated using an arti-
ficial hand model and marker-based motion capture, were
used to construct representative templates for each node
of the tree. During tracking, the tree was traversed to
update the probabilities. Skipping the children of the nodes
with small probability masses enabled fast traversal of the
tree. In a later study [57], alternative tree construction
methods, including regular partitioning of the eigenspace
and vector quantization, were considered and the hand
dynamics were captured by keeping a histogram of the tree
node transitions in the training data (see Section 3). The
tree-based filter has a distinctive feature that it supports ini-
tialization and single frame pose estimation by simply tra-
versing the whole tree (see Section 6).

5.3.3. Bayesian networks

Bayesian networks allow for representing the posterior
through lower dimensional distributions. In [48], a NBP
(Nonparametric Belief Propagation) network was used to
model the kinematic structure of the hand. The network
was designed to enforce the kinematic motion and collision
constraints on the links that are modeled as independent
rigid bodies. In [56], a dynamical model of the hand, con-
structed using EDA (see Section 3), was used to construct
a Dynamic Bayesian network DBN.

5.3.4. Template database search

In [52], an artificially generated template database was
employed for tracking. Features providing scale, position
and rotation invariance were extracted from the silhouette
contour. During tracking, several hypotheses were kept
and the neighborhood around each hypothesis was
searched using the beam-search technique to find the best
matching templates and establish new hypotheses. Once
the best match from the database had been found, it was
further refined using a local search algorithm.

5.3.5. Other methods

In an older study [66], the Extended Kalman Filter
(EKF) was used and the EKF output was modified by
using closed-form hand motion constraints. The ambigui-
ties, which appear as singularities (i.e., the Jacobian
becomes singular), were detected to generate pose candi-
dates. Then each candidate was tracked separately.

6. Single frame pose estimation

By single frame pose estimation we mean estimating the
pose of the hand using a single image or multiple images
taken simultaneously from different views. In terms of the
model based approach, the solution to this problem corre-
sponds to a global search over the entire configuration
space. Especially with a single image and unconstrained
hand motion, single frame pose estimation is an ambiguous
problem due to occlusions.

One motivation for addressing this more challenging
problem is for the purpose of initializing tracking without
imposing too many constraints on the user. If a fully
unconstrained solution is available, one can also imagine
applying the same algorithm at each frame, thus eliminat-
ing the need for complex tracking algorithms presented in
the previous sections. However, a less intensive form of
tracking operating directly over the configuration space
might be needed to resolve ambiguities. The fast motion
capability of the hand, which is a source of tracking fail-
ures, also motivates single frame pose estimation [127].

6.1. Object detection

Single frame pose estimation has a close relationship
with object detection methods used in hand localization
(see Section 4.1). If the training data is labeled using pose
information, it becomes possible to estimate the pose
through classification techniques. However, obtaining pose
information for all samples is not feasible; therefore, artifi-
cial hand models come into use to cheaply provide syn-
thetic but labeled data.
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In [23], the tree-based filter (explained in Section 5.3.2),
was employed to implement an initialization module for
the filter. The multi-resolution tree corresponds to clusters
of similar hand poses, each represented using a template.
Traversing the tree based on template matching results pro-
vides the hand pose estimate. Successful global hand pose
estimation results were demonstrated for a fixed posture
of the hand.

In [127], real images containing out of plane rotations of
a set of finger-spelling gestures were manually labeled and a
binary classifier tree was constructed by unsupervised clus-
tering of Fourier-Mellin transform-based features. In case
of classification failures, which are expected due to the
sparse sampling of hand postures, missing frames in the
image sequence were interpolated using successful estima-
tions to drive graphics animation of a moving hand.

6.2. Image database indexing

Another approach to improve searching large databases
of templates is using indexing techniques to retrieve the
nearest neighbor(s) of a given input. Athitsos et al. [54]
introduced indexing methods for chamfer matching and
a probabilistic line matching algorithm for this purpose.
In a more recent study, Zhou et al. [128] combined a fast
text retrieval technique and Chamfer distances. Although
none of these studies has reported results that can support
reliable frame-by-frame pose estimation with uncon-
strained motion, it is still possible to employ them as ini-
tialization modules in tracking algorithms or in gesture
classification.

6.3. 2D–3D mapping

In [55], a general machine learning approach was pro-
posed based on the idea of learning a mapping from a
2D feature space to the parameter space. Rotation and
scale invariant moments of the hand silhouette were uti-
lized to implement the mapping by employing a machine
learning architecture called Specialized Mapping Architec-
ture (SMA). Unlike searching algorithms used to retrieve
the closest matches in a database, SMA provides continu-
ous pose estimates through regression. Some problems with
ambiguous appearances were reported. In a later version of
that system [129], multiple hypotheses generation was con-
sidered. Similar to the database indexing methods in the
previous section experimental results that can support ini-
tialization and gesture classification were reported. How-
ever, it is hard to draw any useful conclusions about the
system’s performance over real image sequences.

6.4. Inverse kinematics

Calculating the joint angles given the end effector posi-
tion and orientation corresponds to a classical inverse kine-
matics problem. In case of the hand, the fingertip positions
are used in a similar way; however, the uniqueness of the
solution is not guaranteed. Extensive use of hand model
constraints help to regularize the problem. For example,
the whole finger flexion can be reduced to 1 DOF by relat-
ing PIP, DIP, and MCP flexion angles [44,68,114]. In [68],
closed-form solutions were derived to calculate the angles
from 2D marker positions under orthographic projection.
In [114], a neural network architecture, called PSOM,
was trained to construct a mapping from 2D fingertip posi-
tions to joint angles.
7. Summary and evaluation

The key characteristics of the full DOF hand pose esti-
mation systems reviewed in this study are summarized in
Table 1. These studies were chosen on the basis of general-
ity of their solutions and satisfactory experimental results.
The first column provides the reference number while the
other columns provide the key characteristics of each sys-
tem. Specifically, we report: (1) the effective number of
DOF that the system targets (i.e., the final DOF after pos-
sible reduction due constraints), (2) the number and type of
cameras used, (3) the ability of the system to operate in a
cluttered background, (4) the features used, (5) the
approach used to enforce hand model constraints, (6) the
type of the system according to the taxonomy used in this
study, (7) systems using a database of templates, (8) details
of the algorithm, (9) execution speed, and (10) observed
pose restrictions. The last field is provided in an extra
row for the corresponding study.

In order to evaluate and compare these systems, one
would expect a quantitative evaluation in terms of accuracy
and robustness. Accuracy evaluation mainly depends on
the availability of ground-truth data. However, obtaining
ground truth data for hand pose estimation is a difficult
problem. A limited number of studies [47,55,116,120,
128,54] have reported precision or jitter measurements
based on synthetic data generated by the hand model itself.
Such results can provide some valuable insight on the oper-
ation of the system or can be taken as a proof of correct-
ness, but it is hard to make performance projections on
real data. Without ground truth data, it is possible to pro-
vide some quantitative results for rough estimates of jitter
by plotting the estimates of a fixed DOF. Also, it would
be possible to evaluate robustness by reporting the dura-
tion of successful tracking over a long sequence of hand
motion. Another possibility is a goal oriented evaluation
procedure where the algorithms are tested in the context
of an application, as in the case of partial pose estimation
systems (see Section 4). In general, evaluations of full DOF
pose estimation systems are limited to visual, qualitative
evaluations, where the hand model is projected on input
image(s) to show how well its projection(s) matches the
hand image(s) over a short sequence (See Fig. 7). It is
not possible to evaluate or compare the quality of a match;
furthermore a good match on the images does not guaran-
tee good accuracy of the system in 3D. However, the image



Table 1

Summary of the systems reviewed

Ref. DOF Camera Clut. Features Constr. Method Templ. Details Speed (f/s)

Bray 04 [46] 20(6) 1 Depth Y Depth C SH SMD 1/4.7

Delamarre 01 [119] 21(0) 1 Depth Y Depth SH Force model

Palm faces camera

Heap 96 [49] N/A 1 Y Edge L SH Weighted least squares 10

Holden 97 [113] 15(6) 1 Marker SH Gauss–Newton

Palm faces camera

Lien 98 [122] 17(6) 2 Marker C SH Inverse kinematics (GA) 1/1.5

Lien 05 [70] 17(6) 2 Marker C SH Inverse kinematics (GA)

Palm faces camera

Lu 03 [117] 20(6) 1 Edge, opt. flow, silh., fingers SH Force model 4

Nirei 96 [47] 27(6) 2 Silh., opt. flow SH NMS, GA

Minor global motion, moderate occlusion

Ouhaddi 99 [123] Unclear(6) 1 Edge, Silh. C SH NMS

Limited finger motion, palm faces camera

Rehg 94 [21] 21(6) 1 Fingertip and link SH Gauss–Newton 10

5(3) DOF tracking

Rehg 95 [115] N/A 1 layered templates SH Gradient Descent

Two-finger tracking at highly occluding poses

Wu 99 [124] Unclear 1 Edges, fingertips C SH Inverse kinematics (LMS)

Inconclusive

Kuch 95 [118] 23(6) 1 Silhouette SH Model fitting

Separate finger and global pose estimation. In case of fingers, palm faces camera

Stenger 01 [22] 21(6) 1 Edge SH UKF 3

1(6) DOF tracking

Ueda 03 [120] 21(6) 4 Visual hull SH Force model 1/0.340

Limited finger and global motion

Dewaele 04 [59] 21(6) 1 Depth Surface, 3D point trajectory SH ICP

Palm faces camera

Bray 04 [45] 20(6) 1 Depth Y Depth C MH Particle filter

Wu 01 [58] 20(Unclear) 1 Edges, silhouette L MH Particle filter

Palm faces camera

Shimada 01 [52] Unclear(0) 1 Contours, moments L MH Y Template matching 30

Shimada 98 [66] 20(6) 1 Silh., fingertip, link C MH EKF

Stenger 03 [53] 21(6) 1 Y Oriented edge, color L MH Y Tree-based filter 1/2

Thayananthan 03 [57] 20(0) 1 Y Oriented edge, color L MH Y Tree-based filter 1/2

Palm faces camera

Lin 02 [116] 20(3) 1 Edge, Silh. L MH (SH) Particle filter (ICP)

Palm faces camera but large in plane rotations are allowed

Lin 04 [51] 21(6) 1 Y Edge, Silh. L MH (SH) Particle filter (NMS)

Sudderth 04 [48] N/A 1 Y Oriented edge, color MH Belief propagation

Only moderate occlusions are allowed

Zhou 03 [56] 21(6) 1 Y Edge, color L MH (SH) DBN 8

Separate global and finger motion

Athitsos 03 [54] N/A 1 Y Oriented edge, lines L SF Y Database indexing

Initialization, gesture classification

Zhou 05 [128] N/A 1 Y Silhouette L SF Y Database indexing

Initialization, gesture classification

Chua 02 [112] 6(6) 1 Marker SF Inverse kinematics

Lee 93 [44] 14(6) 2 Marker C SF Model fitting

Nolker 99 [114] 10(0) 1 Fingertip C SF Inverse kinematics

Palm faces camera

Rosales 01 [55] 22(2) 1 Y Moments L SF 2D–3D mapping

Initialization, gesture classification

Stenger 04 [23] N/A 1 Y Oriented edge, color L SF Y Object detection

Fixed posture initialization

Abbreviations: C, closed-form constraints; L, learning-based constraints; SH, single hypothesis; MH, multiple hypotheses; SF, single frame; Y, yes. The entries outside the parentheses refer to the pose of the fingers while the entries within

parentheses refer to the global pose.
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Fig. 7. A representative experimental output demonstrating the performance of pose estimation (from [57]).

66 A. Erol et al. / Computer Vision and Image Understanding 108 (2007) 52–73
sequences presented could be used to draw some useful
conclusions on pose and background restrictions imposed.

The lack of quantitative or goal oriented evaluations
indicates that the main concern of researchers is finding
promising techniques to overcome the basic challenges in
this area. In the rest of this section, we discuss existing
work in the context of the challenges and difficulties out-
lined in Section 2.
7.1. High-dimensional problem

The majority of the systems listed in Table 1 use natural
hand motion constraints either in closed form or based on
learning to explicitly or implicitly reduce the search space
(see column 6). Closed-form dynamic constraints help to
reduce the dimension directly (see column 2). Learning-
based approaches rely on collecting data using data gloves,
and using the data directly or applying some dimensional-
ity reduction first. Some of these systems rely on a large
database of templates (see column 8), therefore have some
deficiencies in terms of computational power and memory
requirements as demonstrated by Shimada et al. [52]. On
the other hand, these systems perform global or quasi-glo-
bal search over the configuration space using complex fea-
tures; off-line computation of the features is a reasonable
way to make the search feasible.

Some systems perform low DOF pose estimation by fix-
ing many DOFs in the hand model to support initialization
or simply to track low DOF motion primitives such as
Fig. 8. A demonstration of pointin

Fig. 9. An example of tracking results containing considerable a
pointing or navigation. In these systems, the hand is kept
almost as a rigid object and mainly the global pose of the
hand is estimated (see Fig. 8 for an example).

The ones that perform initialization are single frame
pose estimation systems. Except for marker-based systems,
one or more fixed postures are assumed during initializa-
tion. Stenger et al. [23] presents single fixed posture initial-
ization results, while other markerless approaches
[54,128,55] provide some promising results using multiple
postures. Ambiguities and classification errors is an impor-
tant source of failure in these systems.
7.2. Self-occlusions

A common assumption in most systems is having the
palm facing the camera and allowing at most in plane rota-
tions with respect to the camera. There are also a few stud-
ies that use multiple views of the hand but do not support
any type of global motion or limit finger motion (e.g., one
finger at a time or adduction/abduction only). Studies
without a comment row in Table 1 correspond to the ones
that can tolerate certain amount of out of plane rotations.
Some of them [53,117,52,45,46] provide remarkable track-
ing results under severe occlusions with a viewing direction
almost parallel to the palm surface. Fig. 9 shows the track-
ing results of Lu et al. [117] as a representative.

Model-based methods partially handle occlusions
through visibility calculation; however, they do not provide
a complete solution to the problem especially in the case of
g gesture tracking (from [22]).

mount of occlusions and out of plane rotations (from [117]).
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single camera systems. Except for the extension of the Dig-
itEyes system [115] and 3D surface or point marker recon-
struction systems, there is actually no explicit treatment of
occlusions. Therefore, pose restrictions are a part of many
full DOF hand pose estimation algorithms in order to
avoid large amount of occlusions.

7.3. Processing speed

There are few systems with high processing speed. One
of them is the rather old DigitEyes system [21]. It works
at 10 Hz on an image processing board and can track three
fingers in five DOF motion and the hand in 3 DOF planar
motion under uniform background. Another old system is
due to Heap et al. [49] running at 10 Hz; however, that sys-
tem is using a surface model instead of a kinematic hand
model. The system of Zhou et al. [56] can operate at
8 Hz on cluttered background. Robust global tracking
results (without finger motion) even in case of one hand
occluding the other were presented in this study. The fast-
est system reported in literature is the template-matching
system given in [52]. It is implemented using a PC cluster
consisting of six PCs and operates at about 30 Hz. Some
tracking results under severe occlusion and rapid hand
motion were demonstrated.

7.4. Uncontrolled environments

The fourth column of Table 1 shows that there are many
systems that can cope with background clutter. By clutter
we mean a static background full of many other, mostly
non-skin-colored, objects. Most of these systems are multi-
ple hypothesis tracking systems, using edges, oriented edge
(i.e., orientation-based chamfer distance) and color combi-
nations. Most other systems should be complemented by
strong 2D hand localization algorithms to be able to oper-
ate under clutter.

7.5. Rapid hand motion

Restrictions on hand motion speed or, equivalently,
desired camera speed can be roughly expressed as the num-
ber of frames required to capture certain hand motions.
Most of these systems are tested using a hand closing
action, where one or more fingers are flexed starting from
the stretched pose. In [113,119,45] the testing action was
captured in about 6, 20, and 100 frames, respectively. As
most of the studies do not report such information, it
becomes hard to evaluate the state of the art in terms of
hand motion speed.

8. Future research directions

Model-based vision seems to be a promising direction
for hand pose estimation. All the studies reviewed here rep-
resent important steps taken forward to achieve the ulti-
mate goal but there are also some problems that have
not received enough attention. One is the hand model cal-
ibration problem, which has received attention only
recently [70]. In many applications, precision is important;
however, it may not be possible to obtain it with a general
manually constructed hand model. Besides, imperfections
in the hand model could also result in tracking failures.
Automatic calibration of the hand model is not very easy,
but without a solution to this problem it may not be possi-
ble to use these algorithms in a wide range of applications.

Use of multiple views is mostly limited to marker-based
systems. The majority of markerless systems reviewed in
this study are designed to operate with a single camera
and many of them have a tendency to keep the global hand
pose fixed with respect to the camera. If more flexible, non-
posed, interaction is required (e.g., for object manipulation
tasks), employing multiple cameras would be necessary.
Another reason for multiple view systems could be two-
handed interaction, which means an increase in occlusions
and the dimension of the problem. Possible extensions of
existing systems to multiple views would be through best
view selection and/or simple combinations of matching
error functions. Early combination of multiple view data
(i.e., establishing correspondences across cameras) and
3D features have not been explored very well. Such
approaches can be more effective to reduce the ambiguities
in pose estimation and provide better occlusion handling.

Another important problem is the quantitative evalua-
tion of these systems. Unfortunately it is very difficult to
compare different algorithms for many reasons. Design of
testing methods, establishing benchmarks and construction
of standard databases would give researchers a better idea
about the capabilities of each algorithm, in order to take
principled steps for the development of better systems.

From the summary and discussion provided in the previ-
ous section, we can also conclude that there are a lot of open
problems that could lead to quite different, new approaches.
In fact, we were able to find some attempts in this direction.
One is a hierarchical factorization algorithm presented in
[130]. Factorization represents a bottom-up approach,
where 2D point features in the images are tracked to recon-
struct articulated motion. The algorithm was tested on syn-
thetic hand images and was not completely implemented;
therefore, it was not included in our taxonomy. Another
one [131] is related to object manipulation tasks in VEs.
Instead of tracking the hand all the time, an object-centered
approach without any pose estimation was proposed. In this
system, the virtual environment was projected on the images,
and when the hand came close to the objects in the images,
some 3D features were extracted for classifying manipulative
and controlling gestures.

It should be noted that our intention is not to argue for
the two studies mentioned above or render existing solu-
tions useless, but to support the idea that employing
entirely different techniques would always be a part of this
research. Probably, appropriate combinations of various
techniques will provide more robust solutions to the pose
estimation problem.
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9. Conclusions

CV has a distinctive role in the development of direct
sensing-based HCI. However, various challenges must be
addressed in order to satisfy the demands of potential inter-
action methods. Currently, CV-based pose estimation has
some limitations in processing arbitrary hand actions.
Incorporating the full functionality of the hand in HCI
requires capturing the whole hand motion. However, CV
can only provide support for only a small range of hand
actions under restrictive conditions. This approach has cer-
tain drawbacks in terms of natural interaction require-
ments (see Appendix A). The hand gestures used in
existing real-time systems are limited to a carefully chosen
vocabulary of symbolic gestures that mainly serve to issue
commands.

Other types of gestures such as gesticulations and
manipulation operation, or high DOF interaction require
more efficient general pose estimation algorithms. Full
DOF hand pose estimation is still a big challenge in CV.
The high dimensionality of the problem and self-occlusions
are the main obstacles for implementing real-time, robust
systems. Nevertheless, various techniques have been
explored to engineer full DOF hand pose estimation sys-
tems. The existence of an expensive but high speed system
is quite encouraging [52]. However, pose restrictions and
the lack of an implementation that is part of a real world
application indicate that there are still a lot of open prob-
lems to be solved in order to obtain robustness, accuracy,
and high processing speed.
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Appendix A. Hand gesture-based HCI

In this appendix, we provide a brief summary of the
potential interaction styles to be employed in advanced
HCI systems. In a sense, these interfaces represent the
requirements imposed on sensing and interpretation
technologies.

There is a growing body of literature on gesture-based
HCI. The main objective in this research area is the devel-
opment of design and evaluation methods to assure usable
interaction methods. The ultimate system would be a com-
pletely passive system that would interpret all types of hand
motions without any constraints; however, current inter-
pretation and sensor technology renders this ultimate inter-
face unfeasible. Researchers should find an equilibrium
between limitations of the interpretation technology and
natural interaction requirements. Various interaction
methods have been proposed as a solution to this very chal-
lenging problem. The main difference among these systems
is the way that the hand motion is interpreted, which also
determines the characteristics of the sensor to be used.

In some applications, the hand serves mainly as a high
DOF input device. These applications require high DOF
input and suffer from bottlenecks in the classical input
devices. Combined with the dexterity and hand–eye coordi-
nation skills of humans, the hand, which can technically be
considered as a complex input device with more than 20
DOF, can become an easy to use high DOF control device.
Sturman [13] presented a design and evaluation method
that demonstrates the versatility of the whole hand input

in a wide range applications with special emphasis on high
DOF interaction. Continuous input provided by data-
gloves can be mapped to control signals in applications
such as complex machinery or manipulator control, com-
puter-based puppetry and musical performance.

In many other applications, maximizing the DOF in the
input is not the major concern. Instead, generic interaction
styles made up of combinations of low DOF (mostly six or
less) motion primitives such as pointing, rotating, and
selecting an object are being investigated to provide natural
HCI. In the rest of this appendix, we will briefly summarize
some gesture-based interaction styles with different charac-
teristics and discuss the importance of pose estimation in
their implementation.

A.1. Object manipulation

Object manipulation is a general interaction style that is
used in VEs. One application of VEs is to simulate the real-
world with a life-like interaction. Surgical simulations [14],
immersive training systems [15], diagnosis and therapy in
computational neuroscience [132] are some examples.
However, a realistic interaction is a complex process that
requires full DOF precise hand motion capture, implemen-
tation of physics related details of virtual objects, and often
employment of force-feedback.

In many VE applications, abstractions of objects and
events are employed. In these systems the user navigates
in the VE, selects objects and manipulates them by chang-
ing their attributes. A wide range of advanced techniques,
including eye-gaze or head pose estimation, and human
body pose estimation are employed in implementing these
tasks. When the hand is used, often low DOF hand pose
estimation is utilized [10,11]. Hand position and orienta-
tion or pointing direction can provide sufficient input to
extend a selection ray, to navigate in VE, and to translate
and rotate objects. Some systems support more complex
manipulation operations such as resizing and reshaping.
On the other hand, lack of force-feedback can still be an
issue that affects the naturalness of interaction [12].
Another important component of VEs is the control sys-
tem, where gesture commands (see next subsection) come
into use together with 2D or 3D menus, buttons or tools,
which can all be regarded as objects that can also be
manipulated in a similar way [133]. These systems, even
the ones using data-gloves, look like a 3D extension of
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the ‘‘direct manipulation’’ [134] style that is used with con-
ventional input devices and GUI. The use of the hand is
often limited to rigid motion in 3D.

A.2. Command and control interfaces

Command and control interaction is common in many
applications and gestural communication could be very
helpful in these interfaces. There are various types of ges-
tures that people use for communication purposes.
Detailed gesture taxonomies in the context of HCI can be
found in [89,19,2]. In existing UI designs or systems, the
majority of gestures are the ones with a symbolic interpre-
tation leading to simple sign languages tailored for HCI [1–
4]. In particular, a predefined set of static hand postures or
dynamic gestures form a gesture vocabulary to make up a
gesture language that provides structured, unambiguous
communication. In these applications, hand motion data
is classified into an element of the gesture set and inter-
preted based only on its symbolic content. One exception
to this processing scheme is the pointing gesture, which
should always be complemented by a pointing direction
estimate. A disadvantage of gesture–language-based com-
munication is the difficulty of learning, since it requires
recall without any visual guidance as in menu-based inter-
faces [2].

A.3. Multimodal UI

Multimodal UI is another important trend in HCI. Nat-
ural human communication involves multiple modalities.
From a technical point of view, multi-modal interfaces
can help to resolve ambiguous situations and increase the
recognition accuracy of the system. The most promising
multimodal interaction style is the combination of speech
and hand gestures, which also affects the way that hand
gestures are used. Wexelblat [5] criticized the use of gesture
commands as an interaction method. He argued that there
was little gain in functionality by using the hand that way
due to its functional equivalence to pressing a key on the
keyboard and the additional cognitive load in recalling
the correct gesture. Instead, he proposed the use of gestic-

ulations, which are spontaneous movements of the hand
and arms that accompany speech, especially in descrip-
tions. It should be mentioned that gesticulations make up
90% of the human gestures [2]. However, modeling and
interpreting all gesticulations is an open problem that
needs further investigation [6].

Bolt [7] presented a more practical ‘‘Put That There’’
interface that demonstrates the power of speech–gesture
combination. The user points at an object or location while
issuing voice commands to manipulate them. Pointing
belongs to the category of gesticulations called ‘‘deictic ges-
tures’’. Later, the interface was extended by incorporating
‘‘iconic gestures’’ [8]. Iconic gestures are gesticulations
depicting some feature of the object, an action or an event.
They allow commands such as ‘‘Move the teapot like this’’.
After establishing an analogy between hand shape and the
object, the transformation derived from hand motion can
be applied to the object. Interpretation of iconic gestures,
which are free-form gestures without a specific pattern, is
a more complex process that raises challenging research
problems [135]. This type of use of the hand enables more
natural and probably more complex object manipulation.
Recent experimental evidence shows that users overwhelm-
ingly prefer speech and speech–gesture combination to
pure gestural interfaces [136,9]. A review and some design
guidelines for this type interface can be found in [9].

A.4. Discussion

The above interfaces capitalize on either the manipula-

tive or the communicative skills of humans. In either case,
there is a tendency to import the corresponding functional-
ity naturally to allow intuitive interaction. Manipulation
corresponds to the main functionality of the hand and nat-
ural effective manipulation requires high DOF pose estima-
tion. In the case of communication, there are two
approaches lying at opposite ends. The first one is an active
approach that asks the users to memorize a gesture vocab-
ulary. The second one is a relatively passive approach in
terms of hand usage and utilizes gesticulations and speech.
Interpretation of gesticulations again relies on pose
estimation.

All of the above interaction methods are experimental
and their use is limited to laboratory environments. Their
success depends mainly on human factors but the quality
of the input has a crucial role too. Broad deployment of
such interaction methods would require processing
arbitrary hand motions and delivering data that support
high recognition accuracy and precision. In that respect,
data-gloves provide very general purpose data (i.e.,
the joint angles) regardless of the application. In
CV-based approaches, there is a dilemma between appear-
ance-based or 3D modeling of the hand motion. Appear-
ance-based methods allow high speed processing with a
loss of generality while 3D model-based methods provide
generality at a higher cost of computational power. How-
ever, if we consider high DOF control tasks, object
manipulation, and the interpretation of gesticulations,
3D approach becomes a requirement.
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