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Abstract. In virtual environments, head pose and/or eye-gaze estimation can be 
employed to improve the visual experience of the user by enabling adaptive 
level of detail during rendering. In this study, we present a real-time system for 
rendering complex scenes in an immersive virtual environment based on head 
pose estimation and perceptual level of detail. In our system, the position and 
orientation of the head are estimated using stereo vision approach and markers 
placed on a pair of glasses used to view images projected on a stereo display 
device. The main innovation of our work is the incorporation of uncertainty 
estimates to improve the visual experience perceived by the user. The estimated 
pose and its uncertainty are used to determine the desired level of detail for 
different parts of the scene based on criteria originating from physiological and 
psychological aspects of human vision. Subject tests have been performed to 
evaluate our approach. 

1   Introduction 

Virtual environments (VEs) are effective computing technologies that allow 
deployment of various advanced applications including immersive training systems, 
surgical simulations, and visualization of large data sets among others. Development 
of such computing environments raises challenging research problems. To allow high 
degree-of-freedom (DOF) natural interaction, new input modalities based on direct 
sensing of the hand, eye-gaze, head and even the whole human body motion are being 
incorporated. To create an immersion effect, advanced display technologies such as 
3D stereo displays or CAVE environments are being engineered and high quality real-
time rendering algorithms are being developed. 

Among different input modalities, head pose and/or eye-gaze estimation provide an 
effective input mainly for navigation tasks in VEs. During navigation, head pose 
information (i.e., 6 DOF) can help to optimize the computational load of rendering 
and increase visual quality at regions where the user is focusing on by estimating 
where the user is looking at. Technically, it is possible to employ adaptive level of 
detail (LOD) in rendering to improve the visual experience perceived by the user 
without a major increase in the computational load. 

In this study, we present a real-time system for rendering complex scenes in an 
immersive virtual environment based on head pose estimation and perceptual level of 
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detail (PLOD) [1]. In our system, the position and orientation of the head are 
estimated using stereo vision and markers placed on a pair of glasses that the user has 
to wear to view images projected on a stereo display device. The main innovation of 
our work is the incorporation of uncertainty estimates to improve the visual 
experience perceived by the user. The estimated pose and its uncertainty are used to 
determine the desired LOD for different parts of the scene based on criteria 
originating from physiological and psychological aspects of human vision. This work 
is part of a larger collaborative effort between our group and BioVis lab at NASA 
Ames to build a virtual simulator (i.e., Virtual Glove Box or VGX). VGX is intended 
to provide an advanced “fine-motor coordination” training and simulation system for 
astronauts to perform precise biological experiments in a Glovebox aboard the 
International Space Station [21][22].  

In the next section, we present a brief review of previous work on PLOD. In 
Section 3, we describe of our system. The implementation details of head-pose 
estimation and PLOD calculation are presented in Sections 4 and 5 respectively. In 
Section 6, we report and discuss the results of our experiments. Finally, Section 7 
contains our conclusions. 

2    Previous Work 

While the first work on PLOD dates back to '76 [1], most of the development has 
been done during the last decade. These advancements can be grouped into three 
areas, namely criteria, mechanism and error measure. The criteria are a set of 
functions that select areas from the objects that need to be drawn with a certain LOD.  
The mechanism is another set of functions that modify the geometry to achieve the 
desired LOD. They correspond to polygon simplification mechanisms that fall under 
four categories [5]: sampling, adaptive subdivision, vertex decimation and vertex 
merging. The error measure is an evaluation of the differences between the original 
object and the modified one, and it is used to control the mechanism. Measuring 
deviations from the original mesh to the modified mesh allows the quantification of 
the errors introduced when modifying the mesh. Common error measures in the 
literature include vertex-vertex, vertex-plane, vertex-surface, and surface-surface 
distances. Ideally, we would like these errors to be imperceptible to the user. 

The most important part of a PLOD system is the set of criteria used to modulate 
the LOD. These criteria are related to or based on physiological and psychological 
aspects of human vision [2, 3]. We list below several important criteria [4]: 

 
• Contrast sensitivity: The LOD is modulated depending on whether it is inside or 

outside of the Contrast Sensitivity Function (CSF) curve that shows the 
relationship between contrast and spatial frequency in human visual perception [4] 
. 

• Velocity: The LOD is modulated proportionally to the relative velocity of the eye 
across the visual field. 
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• Eccentricity: The LOD is modulated proportionally to the angular distance of the 
object to the viewpoint. 

 
• Depth of field: The LOD is modulated proportionally to the distance to the 

Panum's fusional area [2]. This is used only in connection with stereo-vision. 
 
There are several examples of systems that make use of eye-gaze for guiding 

perceptually motivated simplifications including Reddy [10], Luebke [3], Williams 
[18] and Murphy [17]. Both [3] and [17] make use of an eye tracker to estimate the 
eye-gaze vector. In [3], the user’s head is placed in a chin rest to avoid having to 
calculate the position of the eyes. Only [17] tracks the head and the eyes 
simultaneously allowing the user to move in a more natural way.  

3   System Design 

Immersive VEs can be implemented in various operational environments, mainly 
determined by the output devices. In this study, we targeted a stereo display system 
[21]. An ideal system would require tracking both the head and eye-gaze 
simultaneously to allow arbitrary motion of the user; however, eye-gaze tracking 
could be very costly and intrusive. In our application, users need to wear a pair of 
polarized glasses which makes eye-gaze tracking challenging since the user's eyes are 
not visible. To keep things simple, we decided to obtain a rough estimate of eye-gaze 
by tracking the head and estimating its orientation. Developing a more accurate eye-
gaze tracking system (e.g., by mounting small cameras on the frame of the glasses) is 
a part of our future work. 

 

 
Fig. 1. Hardware setup: (a) camera setup on the computer, (b) eye-glasses with IR reflective 
markers, (c) camera close-up with IR LEDs. 

To make head tracking fast and robust, we took advantage of the requirement that 
the users have to wear glasses by placing several markers on the frame of the glasses. 
This approach simplifies detecting the head without being intrusive. A challenging 
issue in designing the system was how to deal with illumination since any kind of 
external illumination could interfere with the stereo display device (e.g. projector-
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based) and disturb the user. To deal with this issue, we decided to use IR LEDs for 
illumination and IR reflective markers as shown in Figure 1. A high-pass filter was 
installed on the cameras to block visible light from entering the camera sensor. The 
filter used in our setup was the Kodak Wratten 97c filter which has a cut-off limit of 
800nm. 

The system contains three modules as shown in Figure 2: (a) a vision module, (b) a 
PLOD module and (c) a rendering module. The vision module detects the position, 
orientation and uncertainty of the user’s head and passes it to the PLOD module, 
which takes into account the physiological and psychological aspects of the human 
vision to calculate the LOD at which to draw the elements. Finally, the rendering 
module draws everything on the screen at the calculated LOD. 

 

Vision 
Module 

PLOD Rendering
Stereo 
Images 

Head Pose & 
Uncertainty Screen 

LOD 

 
Fig. 2. Block diagram of the whole system. 

4   Head Pose Estimation 

The vision module includes three processing steps: (a) marker extraction, (b) pose 
estimation, and (c) uncertainty estimation. First, the markers are extracted in each 
image. Then, the head pose is estimated by reconstructing the location of the markers 
in 3D through triangulation. Finally, uncertainty associated with the estimated pose is 
calculated. 

 

 
Fig. 3. Negative of the images from each stage of the process starting with: a) input image; b) 
thresholded with a value of 100; c) smoothed with a 9-pixel Gaussian filter; and d) final image 
showing the centers 
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4.1   Marker Extraction 

The combination of IR illumination and IR reflective markers allows for fast and 
robust feature extraction. In the input images (see Figure 3(a)) the background is 
already suppressed due to the use of the filter that blocks visible light, allowing the 
detection and extraction of markers through a simple thresholding operation as shown 
in Figure 3(b). The thresholded image is then processed using a Gaussian filter to 
eliminate noise (see Figure 3(c)).  

For each marker on the image, we estimate its center with sub-pixel accuracy (see 
Figure 3(d)). It should be noted that, it is still possible to get some extra blobs during 
segmentation due to light reflections on the eye-glasses; however, the special 
arrangement of markers (see Figure 4) can help us to eliminate them (e.g., by 
requiring that the upper 3 markers lie roughly on a line). This special marker 
configuration also allowed us to identify uniquely each marker on a single image (e.g. 
establish correspondences between the left and right images). 
 

 
Fig. 4. Marker arrangement on the glasses. 

4.2   Pose Estimation 

Once the markers have been extracted in each image, the center of each marker can be 
used to calculate its 3D location using triangulation. In our approach, the location of 
the head is estimated by the location of the middle marker P1 while its orientation is 
estimated by averaging the normal vectors corresponding to the three triangles shown 
Figure 4. We have validated the accuracy of our head pose estimate algorithm using a 
magnetic tracker with an accuracy of 1.8mm in the position and 0.5° in the 
orientation.  

4.2   Uncertainty Estimation 

It is possible to associate an uncertainty measure to both the position and orientation 
estimates of the head; however, we have observed that the uncertainty in orientation 
has a much higher effect on the LOD mainly due to the amplification of the error in 
the calculation of the point of interest on the screen (see Section 5). Therefore, we are 
only considered estimating orientation uncertainty. 

Uncertainty calculation in stereo vision is a well studied topic. In general, it is 
possible to propagate calibration and feature localization errors to the estimates of 3D 
position and local orientations [15]. However, estimating orientation uncertainty 
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analytically in our system was rather difficult; therefore, we implemented a random 
sampling approach.  

Specifically, in matching two markers, we assume that the correspondences 
between pixels belonging to each marker are unknown. Using the epipolar constraint 
and the distance of the pixels from the center of the marker, we generate a cloud of 
3D points for each marker. Then, each cloud is randomly sampled and all possible 
combinations of the samples are used to generate orientation estimates by computing 
the covariance matrix of the samples. 

5   Perceptual Level of Detail 

We assumed that the scene is represented by a triangular mesh corresponding to the 
coarsest LOD. For each triangle in the mesh, we calculate the desired LOD and 
increase the resolution (i.e. generate smaller triangles) accordingly, using adaptive 
subdivision.  

In the calculation of the desired LOD, we are interested in finding the highest 
spatial frequency that a person can see at a particular location under conditions 
determined by the triangle's contrast, eccentricity and angular velocity. The spatial 
frequency of a triangle is found by measuring the maximum angle between the 
vertices of the triangle projected on the screen plane with respect to the head position. 
The contrast level for a triangle is obtained by rendering the triangle at the coarsest 
level and examining the color content of the projection. To calculate the eccentricity, 
the triangle is represented by its geometric center. Uncertainty estimates mainly affect 
the eccentricity values.  

When the user is looking at the screen, the direction of his (her) head intersects the 
plane formed by the screen at a point called the Point of Interest (POI). Uncertainty in 
head orientation affects the location of the POI, which in turn affects the eccentricity 
values of the triangles. We have incorporated orientation uncertainty in the 
eccentricity calculations by modifying the triangle’s location with respect to the POI. 
Specifically, given a point P and the orientation uncertainty matrix Σ, an uncertainty 
corrected point Pu is calculated as follows:  

( ) ( ) ( ) PPPOIeP
POIPPOIP

u

T

+−=
−Σ−− −1

2
1

 (1) 

where point P is shifted towards POI proportionally to the probability that P itself is 
the POI. 

The highest spatial frequency is determined by solving a system of equations given 
the contrast, angular velocity and the modified eccentricity values of triangles. Once 
the highest spatial frequency is known, it can be related to a certain LOD that is 
determined by the implementation. In our system, the depth of subdivision is taken to 
be the LOD measure. 
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6   Subject Tests 

The objective of our tests was to quantify the improvement obtained by 
incorporating uncertainty correction on a perceptually oriented display system. The 
test application displays a terrain section or height map (see Figure 5), on which 
PLOD optimizations are applied. The user is shown three test cases (i.e. different 
views of the terrain), each containing three scenarios.  

The first scenario presents the user with common optimizations found in the 
literature; namely velocity, contrast and eccentricity. The second scenario uses a 
constant uncertainty correction to modify the way eccentricity behaves. The constant 
uncertainty matrix is chosen to contain the maximum uncertainty values obtained 
using our algorithm on a large number of experiments. The third scenario uses 
uncertainty corrections like before; however, the covariance matrix is continuously 
updated through the sampling algorithm presented in Section 4.2.  

In each case, the user was asked to judge the amount of changes perceived all over 
the screen while browsing the map by moving his/her head. The judgment of the user 
is constrained to be high, medium or low/no changes. This judgment is obviously very 
subjective but it helps establishing a baseline for comparing the results of different 
types of tests. We are only interested in the relative change rather than the absolute 
values of the responses. 

 

 
Fig. 5. Terrain view for test case 2. 

Our experiments were performed using 19 test subjects. Comparisons between 
different scenarios were performed, tabulating the increase and decrease rate of one 
test scenario versus the other. Our results are shown in Tables 1-4. In all tables, 
changes in user's satisfaction across the three scenarios are listed in the first column. 
In all cases, a change in user's satisfaction could be an increase, no change or a 
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decrease. Table 1 shows the average over all cases, while Tables 2, 3 and 4 show the 
results for test cases 1, 2 and 3 respectively. 

Table 1. Satisfaction comparison between test scenarios across all test cases 

All cases Increase No Change Decrease Total 
Fixed vs. None 63.16% 29.82% 7.02% 100.00% 
Variable vs. None 26.32% 54.39% 19.30% 100.00% 
Variable vs. Fixed 8.77% 33.33% 57.89% 100.00% 

Table 2. Satisfaction comparison between test scenarios for test case 1 

Case 1 Increase No Change Decrease Total 
Fixed vs. None 52.63% 47.37% 0.00% 100.00% 
Variable vs. None 21.05% 52.63% 26.32% 100.00% 
Variable vs. Fixed 10.53% 21.05% 68.48% 100.00% 

Table 3. Satisfaction comparison between test scenarios for test case 2 

Case 2 Increase No Change Decrease Total 
Fixed vs. None 63.16% 31.58% 5.26% 100.00% 
Variable vs. None 21.05% 63.16% 15.79% 100.00% 
Variable vs. Fixed 0.00% 42.11% 57.89% 100.00% 

Table 4. Satisfaction comparison between test scenarios for test case 3 

Case 3 Increase No Change Decrease Total 
Fixed vs. None 73.68% 10.53% 15.79% 100.00% 
Variable vs. None 36.84% 47.37% 15.79% 100.00% 
Variable vs. Fixed 15.79% 36.84% 47.37% 100.00% 
 
From Table 1, we can see that the use of fixed uncertainty greatly improves 

performance. In the case of fixed uncertainty, only 7% of the time people perceived 
worse performance compared to not having uncertainty optimizations enabled. The 
results for dynamic uncertainty are not as good as those for fixed uncertainty. About 
55% of the time people did not notice any differences between using variable 
uncertainty and not using it. The direct comparison between dynamic and static 
uncertainty shows that dynamic uncertainty performance is clearly perceived as worse 
57% of the time. Similar results can be observed for all test cases as shown in Tables 
2-4.  

Further analysis of our system's performance revealed that the main reason for the 
underperformance of the variable uncertainty approach was the jitter in the 
uncertainty covariance matrix. In particular, the calculation of the covariance matrix 
was not very stable and its values oscillated. These oscillations made the triangles that 
lie on the outer edges of the high resolution region to change levels back and forth 
from one level to the next. Since the human eye has an increased sensitivity to 
movements on the periphery compared to the center, this effect made the users more 
aware of changes in the periphery. The main reason for the oscillations was probably 
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our sampling strategy. For the sake of high processing speed, we assumed a uniform 
distribution over the cloud of points which might not be a valid assumption. Several 
techniques that can be used to solve this problem including Monte Carlo, Shifted 
Hammersley, Latin Hypersquare, Equal Probability Sampling and others.  

Another important observation was the increase in rendering speed when using the 
PLOD compared to rendering the same terrain at the highest LOD. The frame rate 
increased from 5 fps to 15 fps on a Pentium® 4 2.56MHz processor with 1 GB of 
RAM. 

7   Conclusions 

We have presented a real-time system that combines a vision module that estimates 
the user’s head pose with a PLOD module that optimizes image rendering based on 
perceptual parameters. The system was implemented on a fairly modest PC using off 
the shelf components and it was able to improve the frame rate significantly compared 
to rendering the same terrain at full resolution. Subject tests were performed to assess 
the benefits of using uncertainty estimates in conjunction with other parameters. Our 
results indicated that uncertainty estimates help in making optimizations more 
seamless to the user. An approach for calculating orientation uncertainty was 
presented and employed as part of the vision module. However, the jitter in the 
uncertainty calculations prevented us from achieving the same level of performance 
compared to using fixed parameters.  More details about this work can be found in 
[23]. Future work includes further investigation of these issues as well as estimating 
eye-gaze more accurately. 
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