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Abstract— Robust and reliable detection of overtaking vehicles
is an important component of any on-board driver assistance
system. Optical flow, with the abundant motion information
present in image sequences, has been studied extensively for
vehicle detection. However, using dense optical flow for vehicle
detection is sensitive to shocks and vibrations of the mobile
camera; image outliers caused by illumination changes; and
high computational complexity. To improve vehicle detection
performance and reduce computational complexity, we propose
an efficient and robust methodology for overtaking vehicle detec-
tion based on homogeneous sparse optical flow and eigenspace
modeling. Specifically, our method models the background into
dynamic and quasi-static regions. Instead of using dense optical
flow to model the dynamic parts of the background, we employ
homogeneous sparse optical flow, which makes detection more
robust to camera shocks and vibrations. Moreover, to make
detection robust to illumination changes, we employ a block-
based eigenspace approach to represent quasi-static regions in the
background. A region-based hysteresis-thresholding approach,
augmented by a localized spatial segmentation procedure, attains
a good tradeoff between true detections and false positives.
The proposed methodology has been evaluated using challenging
traffic scenes illustrating good performance.

I. I NTRODUCTION

Overtaking vehicle detection is an important component
of any on-board driver assistance system. It can be used to
alert the driver about driving conditions, possible collision
with other vehicles, or trigger the automatic control of the
vehicle for collision avoidance and mitigation. Overtaking
vehicle detection based on active sensors such as laser, radar,
and sonar has several drawbacks due to sensor interferences
between different vehicles in a limited space. Passive sensor-
based detection approaches, such as vision-based methods,
are becoming widely used due to their low cost and less
interferences between vehicles.

In vision-based overtaking vehicle detection systems, a
single camera is usually mounted on the host vehicle to
capture rear-view image sequences. Various approaches have
been proposed to detect moving vehicles assuming dynamic
background [1]. These methods can be classified into two
main categories: appearance-based [2][3][4][5] and motion-
based [6][7]. Since overtaking vehicles might be partially
occluded and need to be detected as soon as possible (i.e.,
before entering the blind spot of the host vehicle) appearance-
based methods are not very appropriate [8]. In this case, the
relative motion information obtained via the calculation of
optical flow becomes an important cue for detecting moving

vehicles. A common approach for overtaking vehicle detection
using optical flow is to compare a predicted flow field,
calculated by projecting vehicle velocity in 2D, with the actual
image flow, calculated from motion estimation [9][10][11].
From a practical point of view, overtaking vehicle detection
using optical flow has the following three difficulties: (1)
noise due to camera shocks and vibrations will cause errors
in the computation of the temporal derivatives; (2) lack of
texture in the road regions and small gray-level variations
introduce significant instabilities in the computation of the
spatial derivatives and (3) structured noise and strong illu-
mination changes cause spurious image features and unreli-
able flow estimates. Given these inherent difficulties, getting
reliable dense optical flow estimates is not an easy task for
overtaking vehicle detection. Some researchers have tried to
improve the performance of optical flow computation methods
by introducing different techniques. Zhu [8] used variable
bandwidth density fusion with dynamic scene modeling to
achieve reliable flow estimation for passing vehicle detection
and estimate the trajectory of the moving vehicle. However,
their system uses a forward-facing CCD camera, which makes
it difficult to observe overtaking vehicle in the blind spot.
Moreover, it has high time requirements due to using the mean-
shift algorithm to iteratively compute the dominant motion
based on traditional dense optical flow.

To address the above difficulties, we propose an overtaking
vehicle detection method based on homogeneous sparse op-
tical flow. Our method models the background into dynamic
regions (i.e., abundant texture such as passing trees) and a
quasi-static regions (i.e., lack of texture such as road regions).
Instead of using dense optical flow, we employ homogeneous
sparse optical flow to model the dynamic background, which
allows detection to be robust to camera shocks. Also, a
block-based eigenspace approach is used to model the quasi-
static background, providing good robustness to illumination
changes. To determine candidate overtaking vehicles in an
image, we apply background subtraction. Then, we classify
each candidate (i.e., overtaking vs passing) by calculating
its dominant motion. This approach reduces the influence of
unreliable motion outliers. Our experimental results show that
the proposed method yields reliable dynamic scene analysis
and has good detection performance. In addition, it is robust to
changes in lighting conditions and robust to partial occlusion.
Compared to traditional optical flow methods, sparse optical



flow has lower time requirements.
The rest of the paper is organized as follows: Section

II provides a brief overview of the proposed methodology.
Section III presents our approach for dynamic and quasi-static
background modeling using homogeneous sparse optical flow
and block-based eigenspace analysis, respectively. In Section
IV, we discuss the process for generating the target candidates,
removing false positives due to noise, and classifying targets
using dominant motion analysis. Finally, our experimental
results are presented in Section V while our conclusions and
directions for future research are given in Section VI.

II. OVERTAKING VEHICLE DETECTION: METHODOLOGY

The proposed methodology for overtaking vehicle detection
consists of four phases: (i) scene modeling, (ii) vehicle detec-
tion, (iii) vehicle tracking, and (iv) velocity verification. The
block diagram of our algorithm is shown in Figure 1.
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Fig. 1. The proposed overtaking vehicle detection algorithm.

In the scene modeling phase, the dynamic and quasi-static
background are modeled using a homogeneous block-based
(i.e., sparse) optical flow and block-based eigenspace analysis
respectively. In the detection phase, the moving candidates
are segmented out from the background. This phase consists
of two steps: (i) generation of candidate solutions and (ii)
removing false positives due to noise. To generate the over-
taking vehicle candidates, we subtract the dynamic and quasi-
static backgrounds from the current frame and threshold the
results. To determine a suitable threshold, we have adopted

a region-based hysteresis-thresholding approach, followed by
a localized spatial segmentation process. This approach has
shown to be very effective in remove false positives. Finally,
we apply connected component analysis to form the candi-
date solutions. In the tracking phase, candidate solutions are
associated between frames and tracked over time. Finally,
in the velocity verification phase, the motion distribution of
the moving targets is statistically analyzed using thex and
y motion directions and the amplitude of the optical flow.
Information about the dominant motion of a moving target
is useful for issuing appropriate warnings depending on the
status of the vehicle (e.g., when a vehicle is in the blind spot
of the host vehicle).

III. SCENE MODELING

In this paper, rear-view traffic scene images are segmented
into three main regions: (i) dynamic background, (ii) quasi-
static background, and (iii) moving targets. Usually, texture
abundant large scale background moves consistently in the
field of view as the camera moves along with the ego-vehicle.
We call this type of background as “dynamic background”. In
contrast to dynamic background which exhibits consistent mo-
tion, special types of background (e.g., road, sky) show only
small gray-level variations due to lack of texture and behave
as “quasi-static” background relative to the host vehicle. To
model the dynamic background of a scene, we propose using a
homogeneous sparse optical flow approach which also reduces
noise interferences due to camera shocks. Using a similar
approach to model the quasi-static background would lead
to significant instabilities due to small gray-level variations.
Therefore, we use a block-based eigenspace approach which
also provides a representation less sensitive to illumination
changes.

A. Dynamic background modeling

As mentioned in the previous section, the dynamic back-
ground of a scene moves consistently in the field of view
as the camera moves along with the ego-vehicle. Detecting
moving targets in this case becomes more complex since the
image motion caused by the moving targets can be confused
with the dynamic background motion. Optical flow estimation
has become an indispensable component for many computer
vision applications where the objective is to extract the prime
source of motion of moving targets. However, it is not always
easy to extract reliable velocity differences between moving
targets. On the other hand, it is usually more reliable to
detect dominant velocity differences between the boundary of
a moving target and the dynamic background. Therefore, we
have decided to model the motion of the dynamic background
instead of modeling the motion of the moving targets.

It is well known that the optical flow vectors of the dynamic
background have opposite direction with respect to the motion
of the ego-vehicle. However, in a real road scene, the direction
of the estimated optical flow of the dynamic background is
not only caused by the ego-motion of the vehicle, but also by
shocks and vibrations experienced by the vehicle. In addition,



dense optical flow vector computations are time quite consum-
ing when the resolution of the image is high. To deal with these
issues, we model the dynamic background by considering
homogeneous regions of “sparse optical flow”. To improve
robustness, we only consider the horizontal component of
“sparse” optical flow field and discard the vertical component.
This is because most vertical deviation errors of the optical
flow vectors are caused by the vertical shocks of the camera
which results in unreliable motion estimates [6].

It should be mentioned that, vehicle vibrations introduce
high frequency components in the image motion. This rep-
resents a significant source of error in the computation of
the temporal derivatives of optical flow [6]. Usually, spatial
smoothing is be used to reduce the effect of such high fre-
quency components. In our case, we compute the sparse opti-
cal field using block-based spatial smoothing on low resolution
(i.e., sub-sampled) images. The proposed sparse optical flow
scheme reduces computation time while suppressing spatial
and temporal derivative computation errors due to camera
shocks and vibrations.

Modeling the dynamic background of a scene involves
the following three steps: (i) image sub-sampling using a
block-based approach and sparse optical flow computation,
(ii) ordering the optical flow vectors by thresholding the angle
difference between vectors within neighboring blocks at every
spatial position, and (iii) clustering the ordered sparse optical
flow field vectors into homogeneous regions and excluding
disordered optical flow vectors.

Fig. 2. Different phase angles of a gray-level distribution of a moving and
a stationary target with time. The vertical bar is the gray-level distribution of
the stationary target with time. The slope bar is the gray-level distribution of
the moving target with time. The phase angle is the angle between thex-axis
and the normal to the slope bar.

A.1 Estimation of sparse optical flow
A wide range of techniques have been developed for optical

flow field estimation including differential, matching, energy-
based, and phase-based approaches. Fleet and Jepson [12] have
shown that the temporal evolution of contours of constant
phase provides a better approximation to local velocity. Figure
2 shows different phase angles of the gray-level distribution of
a moving and a stationary target with time [13]. Phase contours

are more robust with respect to smooth shading and lighting
variations, and more stable with respect to small deviations
due to image translations. Using phase-based optical flow, we
have developed a sparse optical flow technique to model the
dynamic background for overtaking vehicle detection.

Let us consider a sequence ofq frames (i.e., from(t− q−
1)th to tth), each with sizeH × L. Also, let us denote the
intensity value of thetth frame at spatial position(n1, n2)
as Sp(n1, n2, t). Each frame is divided intoNH × NL non-
overlapping square blocks with sizes× s, whereNH = H/s
and NL = L/s. Let Sb(x1, x2, t) be a block-based image
which is obtained by sub-sampling framet as follows:

Sb(x1, x2, t) =
1
s2

s/2∑

k=−s/2

s/2∑

l=−s/2

Sp(n1 + k, n2 + l, t). (1)

where 1 < x1 < NH , 1 < x2 < NL and
Sp(n1 + k, n2 + l, t) is among the eight neighboring pixels
aroundSp(n1, n2, t), x1 × s < n1 + k < (x1 + 1) × s and
x2 × s < n2 + l < (x2 + 1)× s.

Let φ(x1, x2, t) denote the phase responses of theq block-
based image framesSb(x1, x2, t− q − 1), · · · , Sb(x1, x2, t)
which are obtained by spatially filtering each block-based
image with a set of quadrature filter pairs. Assuming phase
constancy [12], in a small region with the motion field
satisfied,φ(x1, x2, t) = c. Differentiating with respect tot,
we have:

dφ(x1, x2, t)
dt

= 0. (2)

The phase-based optical flow vector at a given image
location is computed by solving the linear equation:

∇φ(x, t) · (v, 1) = (φx, φt) · (v, 1) = 0. (3)

where∇φ(x, t) .= [∂φ(x,t)
∂x1

∂φ(x,t)
∂x2

∂φ(x,t)
∂t ] = (φx, φt), v =

[dx1
dt , dx2

dt ], and φx = [φx1 , φx2 ] is the spatial phase gradient
with respect tox1 axis andx2 axis. Also,φt is the temporal
phase gradient and< · > denotes vector inner product.

From equation (3), due to the aperture problem, we can only
estimate the component of the optical flow vector which is in
the direction of the spatial phase gradientφx/‖φx‖. Then, the
normal flowv⊥(x1, x2) can be rewritten as:

v⊥(x1, x2) = − φt

‖φx‖ . (4)

The above formulation assumes a single phase angle in
the spatio-temporal image sequence. However, in practice,
the image sequence is complex and includes different phase
variations of the gray-level distributions. Thus, we would need
to decompose the image sequence into different frequencies
by applying a set of spatial filters at every frame. Here,
we use quadrature Gabor filter pairs [14]. These filters are
characterized by their center frequencies,(fx1 , fx2). It should
be noted that, all non-zero frequency components associated
with the moving profile must lie on a line through the



center frequencies(fx1 , fx2) in the frequency domain. Then,
equation(4) can be rewritten as

v⊥(x1, x2) = − φt

‖φx‖ = − φt

2π(f2
x1

+ f2
x2

)
(fx1 , fx2). (5)

where the spatial phase gradientφx is substituted by the
frequency vector(2π/fx1 , 2π/fx2). The temporal phase gra-
dient,φt is computed from the temporal sequence of its phase
components by performing a least-squares linear regression on
the (t, φ)-pairs. For more elaborate temporal phase gradient
techniques, please refer to [12][14].

The proposed “sparse optical flow”vs(x1, x2) can be com-
puted by keeping only the horizontal component of optical
flow field:

vs(x1, x2) = − φt

2π(f2
x1

+ f2
x2

)
fx1 . (6)

This reduces the effect of the vertical gradient error of the
optical flow caused by vertical shocks of the camera.

A.2 Homogeneous sparse optical flow
Optical flow vectors with high similarity can be assigned

into a homogeneous optical flow region. In order to extract
the homogeneous regions, we need to establish a measure of
similarity between optical flow vectors. Here, we use the angle
between the x-axis and the sparse optical flow vectors. We call
the regions composed by similar flow vectorshomogeneous
sparse optical flow regions.

Let ψ(x1, x2) be the minimum angle difference between an
optical flow vectorvs(x1, x2) and its corresponding neighbor-
ing vectorsvs(x1 + k, x2 + l), wherek and l are the relative
spatial positions of the neighboring sparse optical flow vectors:

ψ(x1, x2) = min
k,l

arccos
vs(x1, x2) ∗ vs(x1 + k, x2 + l)p
v2

s(x1, x2) + v2
s(x1 + k, x2 + l)

(7)

By considering the minimum angle difference among neigh-
boring sparse optical flow vectors, we can capture a strong
spatial correlation among the vectors in the boundary of
foreground and moving target. This is because the angle
differences of optical flow vectors between the moving target
and the dynamic background is larger than those within a mov-
ing target. Therefore, the dynamical backgroundB(x1, x2) is
extracted by

B(x1, x2) =
{

1 dynamical background; ψ(x1, x2) = π;
0 otherwise; ψ(x1, x2) = 0.

Figure 3 shows a comparison between traditional dense
optical flow field and the proposed sparse optical flow field to
model the dynamic background. Figure 3 (a) shows a sample
scene. Figure 3 (b) shows the result of dynamic background
subtraction. The dynamic background is marked by white
color. The sparse optical flow vectors are shown in figure 3
(c) and (d). Figure 3 (c) shows clearly that the direction of
sparse optical flow (i.e., right to left) describes the dynamic

background accurately. Figure 3 (d) shows the regions having
optical flow directions opposite to those modeling the dynamic
background. These regions include both moving targets and
quasi-static background. It should be mentioned that, it is dif-
ficult to directly distinguish these regions by simply modeling
the motion of the moving targets since the two moving vehicles
in this example have different optical flow fields. Moreover,
the traditional optical flow approach is sensitive to noise while
the flow vectors demonstrate a disordering as shown in Figures
3 (e) and (f). Therefore, the use of sparse optical flow allows
representing the dynamic background more effectively and has
lower computational requirements.

(a) Sample traffic scene. (b) Dynamic background sub-
traction based on homoge-
neous sparse optical flow.

(c) Modeling the dynamic
background using sparse opti-
cal flow having uniform direc-
tion from right to left.

(d) Sparse optical flow having
uniform direction from left to
right.

(e) Traditional phase-based
optical flow with direction
from right to left .

(f) Traditional phase-based
optical flow with direction
from left to right.

Fig. 3. Comparison of dynamic background modeling based on sparse optical
flow and traditional dense optical flow.

B. Quasi-static background modeling

The quasi-static background model is used to represent
special types of background that lack texture information and



have small gray-level variations over time. Small gray-level
variations introduce significant instabilities in the computation
of the spatial derivative errors which could increase the number
of false positives. We have developed a block-based eigen-
background prediction mechanism to address this issue. In
this approach, the quasi-static background is statistically rep-
resented by a set of basis vectors computed from then latest
frames. The basis vectors retain the dominant information in
the observed data. Changes in global and local illumination
can be accounted by continuously updating the basis vectors
over time.

B.1 Block-based eigen-background
Considering the strong correlation between neighboring

pixels, we divide each image into a fixed set of blocks and
represent the quasi-static background in each block using a
set of eigenvectors. Such a representation enables capturing
the global information of the gradually evolving background.
The number of eigenvectors kept determine the amount of
information preserved in each block. It should be mentioned
that it is common in the literature to employ mixtures of
Gaussians to model the background scene by estimating the
variance of the observed data. In this study, eigenvectors are
used to approximately estimate the dominant directions of
variance.

Fig. 4. The block diagram of the proposed quasi-static background model.

Figure 4 illustrates the main steps of the proposed quasi-
static background model. Incoming video frames and refer-
ence frame are divided into blocks with index(x1, x2). Let
Sp(n1, n2, t) be the vector (i.e., gray or color) of thetth
incoming video frame at position(n1, n2). Let Sp(n1, n2)
denote a pixel set at spatial location(n1, n2) from time
t − q − 1 to time t, where Sp(n1, n2) = {Sp(n1, n2, t −
q), · · · , Sp(n1, n2, t)}. The mean vector ofSp(n1, n2) is com-

puted byS̄p(n1, n2) = 1
q

t∑
r=t−q−1

Sp(n1, n2, r).

Each block in the reference image is modeled from the last
q observed block scenesSb(x1, x2) with sizes× s. Formally,
Sb(x1, x2) is an s × s × n array containing the vectors of
each pixels in a fixed block from timet − q − 1 to t, i.e.,

Sb(x1, x2) = {Sp(x1, x2, t−q−1), · · · , Sp(x1, x2, t)}, where
Sb(x1, x2, t) = {Sp(n1, n2, t), ..., Sp(n1 + k, n2 + l, t)}. The
mean vector of these vectors in the each block is given by:

S̄b(x1, x2) = [S̄p(n1, n2), · · · , S̄p(n1 + k, n2 + l)]T . (8)

Thus, the zero mean vectors of each block scene
Sb(x1, x2, t) are obtained bŷSb(x1, x2, t) = Sb(x1, x2, t) −
S̄b(x1, x2). The covariance overq observed block scenes is
given by:

C =
1
q

t∑
r=t−q−1

Ŝb(x1, x2, t)[Ŝb(x1, x2, t)]T (9)

Every quasi-static background scene at a fixed block
(x1, x2), Q(x1, x2, t), can be modeled by the eigen-
vectors {R1(x1, x2), · · · , Rn(x1, x2)} of the covariance
C and their corresponding coefficientsW (x1, x2, t) =
{ω1(x1, x2, t), · · · , ωn(x1, x2, t)}:

Q(x1, x2, t) =
K∑

k=1

ωk(x1, x2, t)Rk(x1, x2). (10)

whereK ¿ n (i.e., in our experiments, we setK=3).

B.2 Updating quasi-static background model
To make the quasi-static background model robust, it is

necessary to update the eigenvectors over time to account for
global changes in the environment (i.e., illumination changes).
Here, we keep information about each block in the image over
a time intervalT (e.g., 5 frames). The eigen-background model
can be updated by removing the old frames and adding the new
ones using standard Singular Value Decomposition (SVD) or
incremental SVD [15].

IV. OVERTAKING VEHICLE DETECTION, TRACKING, AND

VELOCITY VERIFICATION

Overtaking vehicle detection based on a mobile camera
faces many challenges including that the motion caused by
a moving target can be confused with the motion of the
background due to camera motion. Several methods have
been investigated to address this issue including modeling the
motion distribution of the moving target and the mobile camera
separately. These methods needs to accumulate the energy of
the moving target over multi-frames while suppressing noise.

In general, it is relatively easier to represent the motion of
the background, however, the motion distribution of moving
target could be very difficult to capture in a real scenario. In
this paper, we segment out the overtaking vehicles by sub-
tracting the dynamic and quasi-static background from each
frame, using a region-based hysteresis-thresholding strategy. In
order to classify the status of overtaking vehicles, we estimate
the dominant motion of each overtaking vehicle. Since it has
been observed that pixel-based velocities are unreliable at the
motion boundaries of the motion field [16], we search for the
dominant motion in the homogeneous region of the sparse
optical field associated with the vehicle.



A. Overtaking vehicle detection

To detect moving vehicles, we project each block in the
incoming video frame onto the eigenvectors corresponding to
that block location and we subtract the eigen-coefficients from
the reference frame. Specifically, given a block(x1, x2) in
the incoming frame, we define the discrepancy between the
incoming block and the quasi-background as follows:

D(x1, x2, t) = min
r,k,l

‖ W (x1, x2, t)−W (x1 + k, x2 + l, r) ‖

where W (x1, x2, t) corresponds to the eigen-coefficients
computed by projecting the incoming scene onto the quasi-
static backgroundE(x1, x2) = {e1(x1, x2), · · · , eK(x1, x2)}.
W (x1 + k, x2 + l, r) is the eigen-coefficients of ther quasi-
static background scene at the spatial block(x1 + k, x2 + l).
This computation is performed between the incoming block
(x1, x2) and each background blocks(x1 + k, x2 + l) within
a small window. Eventually, we pick the smallest difference to
generate a binary mapM(x1, x2, t), indicating the presence
of overtaking vehicles:

M(x1, x2, t) =

�
0 background ; D(x1, x2, t) < α,
1 foreground ; otherwise.

(11)

Choosing a fixed threshold to decide whether there is some
significant change within a block often leads to miss-detections
and miss-classifications. Here, we have adopted a region-
based hysteresis-thresholding strategy based on two thresholds
[17]. Based on this strategy, a low and a high threshold,
denoted byαh and αl, are used. Accordingly, two binary
maps,Mh(x1, x2, t) and Ml(x1, x2, t), are generated using
equation (11). A coarser resolution binary map̂Mh(x1, x2, t)
is then obtained by dividingMh(x1, x2, t) into blocks and by
counting all pixels labeled as ’1’ in each block. Then, a pixel
in M̂h(x1, x2, t) is labeled as ’1’ only if the majority of pixels
in the corresponding block fromMh(x1, x2, t) are labeled as
’1’. The main purpose of the coarser resolution binary map is
to filter out isolated regions due to noise inMh(x1, x2, t).
A hypothesis is formed if a connected region of pixels in
Ml(x1, x2, t) corresponding to a connected region of pixels in
M̂h(x1, x2, t). The use of region-based hysteresis-thresholding
enhances detection while suppressing false positives.

We have augmented the above strategy with a localized
spatial segmentation step which is very useful when the color
of quasi-background is similar to the color of a moving vehicle
at the same spatial position. In this case, the local region-of-
interest is segmented into homogeneous regions using ak-
means clustering algorithm. Moving vehicles are identified by
comparing their color similarity to the moving targets obtained
in previous frames.

B. Overtaking vehicle tracking

The purpose of object association and tracking is to keep
track of overtaking vehicles over time. Here, we track all
detected vehicles using a simple correlation measure based

on Euclidean distance. Specifically, let us assume that the
location of a vehicle in framet is (xt

j ,yt
j). Once the vehicle

has been detected, we compute its enclosing rectangleRt
j

to approximate its region. To determine whether a vehiclej,
detected at framet, is the same to vehiclei, detected at frame
t− 1, two conditions are required,

{
dij = min

s
{dsj |s = 1, 2, · · · , N};

Rt
j ∩Rt−1

i 6= ∅. (12)

where dij =
√

(xt
j − xt−1

i )2 + (yt
j − yt−1

i )2 and N is
the number of vehicles in the tracking list. If there is no
overlapping region between several consecutive frames, then
the vehicle is added to the tracking list as a new vehicle.

C. Velocity verification

The role of this step is to determine the status of the
overtaking vehicles (i.e., overtaking vs passing) in order to
issue appropriate warnings to the driver. When a vehicle is
overtaking the host vehicle, different parts of the overtaking
vehicle are associated with different velocities. For example,
the distant parts of the overtaking vehicle seem to move slowly
while its closer parts seem to move faster. Moreover, pixel
velocities at the motion boundaries of the motion field of
the detected vehicle are unreliable. To determine the status
of overtaking vehicles, we need to extract their dominant
motion. In this paper, we search for the dominant motion
in the sparse optical flow field of the moving target. First,
we establish a set of homogeneous regions corresponding to
the motion of different parts of overtaking vehicles. This is
performed by grouping together the sparse optical flow vectors
into homogeneous regions using the amplitude of the optical
flow vectors and k-mean clustering. The dominant motion is
then determined by the motion of the largest area.

V. EXPERIMENTAL RESULTS

The proposed overtaking vehicle detection system has been
tested under the highway scenarios in Reno, Nevada. In this
section, we demonstrate the performance of the proposed
overtaking vehicle detection system under several challenging
highway traffic scenes. Our evaluation has been carried out
both qualitatively and quantitatively.

A. Data Set

A video camera was held on the frame of the left window of
the host vehicle to capture several rear-view image sequences.
The overtaking vehicle video were captured on I80 in Reno,
Nevada. To consider a variety of scenarios, we captured several
different video sequences on different days and times, as
well as under different weather conditions (e.g., sun and
snow). The video was digitized using a sample rate of15
frames per second. The size of each frame is576 ∗ 720.
The digitized image sequences contain various cases including
partial occlusions, shadows, and multi-vehicles overtaking the
host vehicle. To evaluate the performance of the proposed
approach, we computed ground truth information by labeling



each sequence manually (i.e., enclosing overtaking vehicles by
a rectangle).

(a) Partial occlusion. (b) Two overtaking vehicles.

(c) Partial occlusion of two
overtaking vehicles.

(d) Illumination changes due
to passing through the over-
pass.

(e) Sun highlight. (f) Multiple vehicles simul-
taneously overtaking the host
vehicle.

Fig. 5. Overtaking vehicle detection under various scenarios.

B. Qualitative evaluations

Figure 5 presents several examples of overtaking vehicle
detection in a highway. Figure 5 (a) shows a case of detecting
an overtaking vehicle is moving in from the left. The over-
taking vehicle is partially occluded. Figure 5 (b) shows two
different vehicles simultaneously overtaking the host vehicle.
In Figure 5 (c), an overtaking vehicle is partially occluded by
another overtaking vehicle. If the two overtaking vehicles have
different speeds, our algorithm can separate them. Figure 5 (d)
presents a case where the overtaking vehicle goes through an
overpass, causing significant illumination changes. Figure 5
(e), illustrates a case where an overtaking vehicle is detected
under sun highlight. Finally, Figure 5 (f) shows a case where
multi-vehicles are simultaneously overtaking the host vehicle.

C. Quantitative evaluations

The proposed algorithm was also evaluated using an objec-
tive measure to quantify its detection performance in terms
of the overlapping ratio between the rectangular area detected
by the proposed method and the manually labeled rectangular
area. The overlapping ratior is defined as follows [18]:

r =
2 ∗ (A ∩B)

A + B
, (13)

whereA is the ground truth area, andB is the area detected
by our algorithm. Figure 6 shows a quantitative evaluation
using several different video sequences. Figure 6(a) shows the
overlapping ratio in a snow scene, recording an overtaking
vehicle in the video sequence from frame 244 to frame 322.
The overtaking vehicle was correctly detected as it is shown
by the graph. Figure 6 (b) presents evaluation results in the
presence of tree shadow, recording an overtaking vehicle in
the video sequence from frame 8 to frame 76. The overtaking
vehicle was detected correctly.
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(a) Overlapping ratio curve in a
snow scene.
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(b) Overlapping ratio curve as-
suming shadows.

Fig. 6. Performance results of overtaking vehicle detection under different
video sequences. The x-axis denotes the frame number and y-axis denotes the
overlapping ratio between the labeled rectangular area and the one detected
by the proposed algorithm.

In Figure 7, the proposed algorithm shows consistent detec-
tion when operating in a snow scene for a long period, record-
ing a total of414 vehicles in a video sequence from frame103
to frame548. Five different vehicles overtook the host-vehicles
in this example. In the same video sequence, three different
vehicles overtook the host-vehicle simultaneously from frame
105 to frame 128. These overtaking vehicles were detected
correctly as it is shown in the figure. The drop in performance
from frame 150 to frame 160 for vehicle 2 is due to partial
occlusions.

Table I shows the performance of the system in terms of true
positives, false negatives and false positives under different
scenarios. It should be noted that, most of the false positives
were due to the relative motion between the host-vehicle and
the manually held camera. We expect that fixing the camera
on the host-vehicle would reduce the false positives.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an overtaking vehicle detection
algorithm by modeling the background of a traffic scene into
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Fig. 7. Performance results of overtaking vehicle detection in a snow scene
for a long period. Five different vehicles overtook the host-vehicles. The x-axis
denotes the frame number and y-axis denotes the overlapping ratio between
the labeled rectangular area and the one detected by the proposed algorithm.

Table I. Performance results of overtaking vehicle detection on typical

scenes captured.(Legends: TP represents True Positives, FP represents False

Positives and FN represents False Negatives.)

Video sequences TP(%) FP(%) FN(%)
Sunny scene 96.2% 5.6% 3.8%
Vehicle go through the bridge 96.0% 3.1% 4.0%
Multi-overtaking vehicles 94.5% 4.6% 5.5%

dynamic and quasi-static regions. Homogeneous sparse optical
flow was used to model the dynamic background due to
camera motion. An eigenspace approach was used to model
the quasi-static background, providing good robustness to
illumination changes. A region-based hysteresis-thresholding
approach, augmented by a localized segmentation method,
was developed to make the proposed algorithm more robust
to noise and reduce false positives. Our experimental result
demonstrated the robustness of the proposed system under
challenging traffic scenarios. The proposed technique will
evidently fail when the overtaking vehicles are far from the
host vehicle due to the velocity perspective effect and when
overtaking vehicles are significantly occluded. There is also a
significant relative deviation of motions when the direction

of overtaking vehicles is not perpendicular to the image
plane of the camera. For future work, we plan incorporate
more sophisticated tracking (i.e., this would produce smoother
overlapping ratio curves) and test our system more extensively.
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