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Abstract

This paper describes a novel hand-based verification
system based on palm-finger segmentation and fusion. The
proposed system operates on 2D hand images acquired by
placing the hand on a planar lighting table without any
guidance pegs. The segmentation of the palm and the fin-
gers is performed without requiring the extraction of any
landmark points on the hand. First, the hand is segmented
from the forearm using a robust, iterative methodology
based on morphological operators. Then, the hand is seg-
mented into six regions corresponding to the palm and the
fingers using morphological operators again. The geome-
try of each component of the hand is represented using high
order Zernike moments which are computed using an ef-
ficient methodology. Finally, verification is performed by
fusing information from different parts of the hand. The pro-
posed system has been evaluated on a database of 101 sub-
jects illustrating high accuracy and robustness. Compar-
isons with competitive approaches that use the whole hand
illustrate the superiority of the proposed, component-based,
approach both in terms of accuracy and robustness. Qual-
itative comparisons with state of the art systems illustrate
that the proposed system has comparable or better perfor-
mance.

1. Introduction
Hand-based authentication is among the oldest live

biometrics-based authentication modalities. The existence
of several commercial hand-based verification systems and
patents indicate the effectiveness of this type of biomet-
ric. Hand-based verification systems are usually employed
in small-scale person authentication applications due to the
fact that geometric features of the hand are not as distinctive
as fingerprint or iris features.

There are several reasons for developing hand-based au-
thentication systems. First, hand shape can be easily cap-
tured in a relatively user friendly manner by using conven-
tional CCD cameras. Second, this technology is more ac-
ceptable by the public in daily life mainly because it lacks a

close connection to forensic applications. Finally, there has
been some interest lately in fusing different biometrics to
increase system performance [21, 14]. The ease of use and
acceptability of hand-based biometrics make hand shape a
good candidate in these heterogeneous systems.

The majority of hand-based verification systems using
geometric measurements are based on research limited to
considerably old patents [10] and commercial products. In
these systems, the user is asked to place his hand on a sur-
face and align it with the help of some guidance pegs on
the surface. Enhancing the ease of use and/or recognition
accuracy of these systems has drawn some attention only
recently. There are two main research directions: (i) de-
signing more convenient, peg-free systems and (ii) extract-
ing more powerful features to improve accuracy and robust-
ness.

Several studies have reported that peg-based alignment is
not very satisfactory and represents in some cases a consid-
erable source of failure [22, 11]. Although peg removal pro-
vides a solution to reduce user inconvenience, it also raises
more challenging research problems due to the increase in
intra-class variance due to inaccuracies in feature extrac-
tion. Nevertheless, most recent studies have concentrated
on the design of peg-free systems. Extracting extremities
of the hand contour, such as finger valleys and finger tips,
is usually the first processing step in these systems. An ex-
ception is the approach of [11] which uses the whole hand
silhouette contour for alignment and matching.

Kumar et. al [14] used palm-print and hand geometric
features. In their approach, the extremities of the hand con-
tour were used to measure finger length and palm width.
Ma et. al [17] used these landmarks as control points to fit
B-spline curves on fingers. Sanchez-Reillo et al. [23, 22]
proposed a new, richer set of geometric features and inves-
tigated the use of multiple templates per subject. Recently,
Yoruk et. al. [27] introduced a more accurate and detailed
representation of the hand using the Hausdorff distance of
the hand contour, and Independent Component Analysis
(ICA). Their approach requires registering the silhouettes
of the hand images using the locations of fingertips and val-
leys.
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A different approach, involving the reconstruction of the
3D surface of the hand, was proposed in [25]. In their ap-
proach, Woodard et. al [25] used a range sensor to recon-
struct the dorsal part of the hand. Local shape index values
of the fingers were used as features in matching. In a re-
lated study, Lay et. al. [16] projected a parallel grating onto
the dorsal part of the hand to extract features that indirectly
capture 3D shape information.

In this paper, we propose a novel, peg-free approach to
hand-based verification which does not depend on the posi-
tion and orientation of the hand or finger movement. There
are two key ideas behind the proposed approach. First, de-
composing the hand image in several regions corresponding
to the palm and fingers. Second, fusing information from
different parts of the hand to improve accuracy and robust-
ness. This work builds upon our earlier work [2] where
the geometry of the whole hand was represented using high
order Zernike moments. Although Zernike moments can
tolerate certain degree of finger movement (e.g., around six
degrees rotation about the axis being perpendicular to the
joint of the finger with the palm), they are quite sensitive
to big finger movements. Moreover, Zernike moments can-
not tolerate well situations where the hand is bent at the
wrist. As we show in this paper, palm-finger segmentation
can alleviate these problems while improving accuracy and
robustness.

Our approach operates on 2D hand images acquired by
placing the hand on a planar lighting table without any guid-
ance pegs. To simplify finger segmentation, we require that
the subjects stretch their hand prior to placing it on the light-
ing table in order to avoid touching fingers. No other restric-
tion was imposed on the subjects. An important character-
istic of our approach is that it does not require the extrac-
tion of any landmark points, a process which is prone to
errors. In contrast, we segment the hand image in different
regions using a robust methodology based on morphologi-
cal operators. Then, instead of representing the hand using
explicit geometrical measurements, we represent the geom-
etry of each part of the hand implicitly using region-based
features (i.e., Zernike moments). The approach adopted
here leads to significant computational savings. In contrast
to [2], however, which requires employing very high order
Zernike moments (i.e., up to 70) to represent the geometry
of the hand, the geometry of the fingers and the palm can be
represented using relatively low order moments (i.e., up to
20) which can be computed both faster and more accurately.

Although fusing information from different biometric
modalities (i.e., face, fingerprint, hand) has received signifi-
cant attention lately, fusing information from different parts
of the same biometric is less common. For example, Ross
and Govindarajan [20] have reported a feature level fusion
scheme using hand and face features. Kumar and Zhang
[15] have investigated feature selection of hand shape and

Figure 1. Block diagram of proposed system.

palm print features. Cheung et al. [5] have proposed a two
level fusion strategy for multimodal biometric verification.
Jiang and Su [12] have investigated fusing faces and finger-
prints to improve verification accuracy.

Our approach is mostly related to component-based ap-
proaches which have shown promising results in various ob-
ject detection and recognition tasks [1][24] including face
detection/recognition [9] and person detection [18]. The
main idea in these approaches is representing an object
in terms of its parts and their geometrical relationships.
Among them, the closest approach to ours is the face recog-
nition system reported in [9] where information from differ-
ent parts of the face were fused together to improve recog-
nition performance. In that study, fusion was implemented
at the feature level (i.e., combining all the features in one
vector and feeding it to a Support Vector Machine (SVM)
[6] classifier). In this paper, we have investigated several
different fusion strategies including feature, score and deci-
sion level fusion.

The rest of the paper is organized as follows: in Section
2, we present an overview of the proposed system. Section
3 contains the details of preprocessing and segmentation.
In Section 4, we discuss the feature extraction scheme. Our
fusion strategies are presented in Section 5 while our exper-
imental results and comparisons are presented in Section 6.
Finally, Section 7 contains our conclusions and plans for
future work.



Figure 2. (a) Prototype image acquisition system, (b, c) images of
the same hand.

2. System Overview
Figure 1 shows the main stages of our proposed system.

The image acquisition system, shown in Figure 2(a)) con-
sists of a VGA resolution CCD camera and a planar lighting
table, which forms the surface for placing the hand. The di-
rection of the camera is perpendicular to the lighting table.
The camera has been calibrated to remove lens distortion.
Figures 2 (b),(c) show some sample images acquired by our
system. Under this setting, a fixed threshold is sufficient to
extract a binary silhouette of the hand and the arm robustly.

After image acquisition, the image acquired is binarized
and goes through the segmentation module. During seg-
mentation, the arm is separated from the hand and dis-
carded from further processing. Then, the hand is processed
to segment the palm and the fingers. Feature extraction
is performed by computing the Zernike moments of each
part of the hand independently. The resulting representa-
tion is invariant to translation, rotation and scaling trans-
formations. Finally, verification is performed by fusing in-
formation from different parts of the hand. In our current
implementation, we employ multiple enrollment templates
per subject and compute similarity scores using the mini-
mum distance between a query image and the templates of
the subject.

3. Preprocessing
This stage includes the binarization of the acquired im-

age and its segmentation into different regions correspond-
ing to the forearm, hand, palm, and fingers. Our current
setting yields very high quality images, which are almost
free of shadows and noise. As a result, binarization can be
performed using a single threshold. To separate the forearm
from the hand, first we detect the palm by finding the largest
circle that can be prescribed inside the hand-arm silhouette.
To segment the hand, we take the intersection of the fore-
arm with the circle’s boundary. To segment the fingers from
the palm, we filter out the fingers first using morphological
closing [7]; then, the palm is subtracted from the hand sil-

Figure 3. (a) Binarized image, (b) largest circle inside of hand-arm
silhouette (c) segmented hand silhouette.

houette to segment the fingers. It should be mentioned that
segmenting the hand into different regions could be done
probably faster by detecting certain landmarks on the hand
silhouette, however, such an approach would be more prone
to segmentation errors. Details of these steps are provided
below.

3.1. Hand-Forearm Segmentation
The binary silhouette obtained during image acquisition

is the union of the hand with the forearm. The forearm does
not have many distinctive features while its silhouette, at
different acquisition sessions, is not expected to be the same
due to clothing and freedom in hand placement (see Figures
2(b),(c)). To segment the forearm, we assume that the user
is not wearing very loose clothing on the arm. Under this
assumption, the palm becomes the thicker region of the sil-
houette, which enables us to detect it by finding the largest
circle inside the silhouette. We use morphological closing
based on a circular structuring element [7] to find the largest
circle. The algorithm can be summarized as follows:

1. Initialize a circular structuring element D with a very
large radius R

2. Apply closing operator on the image using D

3. If the output is an empty image then set R:=R-1 and go
to 2. Otherwise the resulting image corresponds to the
largest circle inside the silhouette.

Figure 3(b) shows the output of the algorithm above on a
sample image. Once the largest circle is found, the forearm
is segmented by detecting its intersection with the circle and
the boundary of the image. Figure 3(c) shows the resulting
silhouette after discarding the forearm region.

3.2. Palm-Finger Segmentation
During image acquisition, we asked the subjects to

stretch their hand in order to avoid touching fingers, how-
ever, finger motion was unavoidable. Figure 4(a) shows two
samples collected from the same user. As it can be ob-
served, the angles between fingers can change a lot between
samples. Deformations of the hand silhouette due to finger
movement can affect the Zernike moments significantly as



(a)
(b)

Figure 4. (a) Two samples belonging to the same subject; (b) nor-
malized Zernike moment differences corresponding to these sam-
ples.

Figure 5. (a) Hand silhouette, (b) morphological closing, (c) the
result of closing and (d) the result of subtracting the palm from the
hand silhouette.

shown in Figure 4(b). To allow for finger movement, the
fingers and the palm would need to be segmented and pro-
cessed separately.

The processing steps of the finger segmentation module
are shown in Figure 5. First, a morphological closing oper-
ator based on a circular disk is applied on the hand image
as shown in Figure 5(a). The radius of the structuring el-
ement was experimentally set to 25 pixels (i.e., making it
thicker than the widest finger in our database). The closing
operation filters out the fingers from the silhouette as shown
in Figure 5(b) and (c). The remaining part of the silhouette
corresponds to the palm, which is subtracted from the hand
image to obtain the finger segments shown in Figure 5(d).

To identify each of the fingers quickly, we assume that
hand rotations are less than 45 degrees. In our prototype
system, larger rotations would require purposeful, unnatu-
ral efforts from the user. Handling larger rotations can be
handled by using additional information such as the length,
width, aspect ratio, and area of each finger. To extract each
finger region and the palm, we use connected components
[8].

3.3. Post-processing of finger regions

A closer examination of the segmentation results shown
in Figure 5(d) reveal that the segmented fingers have sharp
tails at the locations of separation from the palm. In the case
of the little, point and thumb fingers, there might be signif-
icant differences in the length of these tails as illustrated
in Figure 6(a) where different samples of the same subject
are shown. The variation in the length of the tails can intro-
duce important errors in the computation of the Zernike mo-

Figure 6. Pairs of segmented little, point, and thumb fingers. Each
pair corresponds to two different samples of the same subject. (a)
before applying the additional step, and (b) after applying the ad-
ditional step.

ments. To keep these errors as low as possible, we apply an
additional morphological closing on each finger as shown
in Figure 6(b). The structuring element in this case is a sim-
ple 4 by 4 square whose elements are equal to one. Table 1
illustrates the effect of this step by showing the normalized
distances between the pairs of fingers shown in Figure 6.

Table 1. The effect of the extra morphological closing operator
on the normalized distances between the Zernike moments (up to
order 20) of the segmented finger pairs before (Figure 6a) and after
(Figure 6b) the extra step.

Pair of Fingers dbefore dafter

Little 0.5904 0.0901
Point 0.7881 0.1135

Thumb 0.7424 0.1253

It should be mentioned that an alternative solution to seg-
ment the fingers from palm is by detecting certain landmark
points on the hand such as fingertips and valleys. This so-
lution, however, would much more prone to errors due to
inaccuracies in landmark detection and extraction.

4. Feature Extraction
To represent the geometry of the palm and the fingers,

we use Zernike moments [13]. When using Zernike mo-
ments, one has to deal with several practical issues includ-
ing computational cost of high-order Zernike moments and
lack of accuracy due to limited numerical precision. In this
work, we employ an improved algorithm, proposed in one
of our earlier works [3], which speeds up computations by
exploiting some recursive relations in the computation of
the Zernike moments and by using look-up tables. Accu-
racy can be achieved using arbitrary precision arithmetic.

A crucial parameter here is determining the maximum
Zernike moment order to represent the geometry of differ-
ent parts of the hand. Capturing the details of the input



image usually requires very high orders. On the other hand,
arbitrarily high order moments are not expected to be accu-
rate and useful for recognition. We used the average recon-
struction error on a large number of palm and finger images
to decide the maximum order that would be useful in the
context of our application. By analyzing the reconstruction
error, the maximum order was set to 20 for the fingers and
to 30 for the palm. It should be mentioned that the same
analysis was used to represent the geometry of the whole
hand in [2], yielding an order of 70. Clearly, decomposing
the hand in different parts improves the processing speed of
the system considerably.

5. Fusion
This module fuses information from different parts of

the hand to improve verification accuracy and robustness.
In general, fusion can be performed at different levels. In
this paper, we have experimented with three different fusion
strategies: feature level, score level, and decision level.

5.0.1 Feature Level Fusion Using Principal Compo-
nent Analysis

The use of Principal Components Analysis (PCA) [?] for
feature level fusion is quite popular. In this case, the feature
vectors of the palm and the fingers are combined into a sin-
gle feature vector. Then, PCA is applied to map them into
a lower dimensional space. Essentially, each PCA feature
represents a linear combination of the original features.

5.0.2 Score Level Fusion Using Weighted Sum

The weighted sum rule has been extensively investigated in
the literature and it is the most straightforward fusion strat-
egy at the score level. In this case, the matching scores
between pairs of fingers and pairs of palms between query
and template hands are combined into a single score using
a weighted sum as follow:

S(Q,T ) =
6∑

i=1

αiS(Qi, Ti) (1)

where S is the similarity measure (e.g., distance) be-
tween the query Q and the template T . Qi, and Ti represent
the i-th parts of the query and template. In our system, the
first five parts correspond to the little, ring, middle, point
and thumb fingers while the sixth part corresponds to the
palm. The parameters αi are the weights associated with
the i-th part of the hand which need to satisfy the following
constraint:

6∑

i=1

αi = 1 (2)

The main issue with this method is determining a set of
appropriate values for the weights. Here, we determined
the weight values experimentally by investigating the dis-
crimination power of each part of the hand. Specifically,
we performed a number experiments using each part of the
hand separately for verification purposes. By measuring the
Equal Error Rate (EER) for each part of the hand, we found
that the certain parts of the hand have higher discrimination
power than others. For example, the index and the thumb
fingers had the highest and lowest discrimination power cor-
respondingly. This is mainly because it is more difficult to
segment the thumb very accurately due to higher motion
flexibility. Based on these observations, we assigned the
weight for each part according to its discrimination power.
The best results, reported in our experimental section, were
obtained using the following weight values: w1 = 0.5 / 12
(little finger), w2 = 2.5 / 12 (ring finger), w3 = 3.0 / 12
(middle finger), w4 = 4.5 / 12 (index finger), w5 = 0.5 / 12
(thumb), and w6 = 1.0 / 12 (palm).

5.0.3 Decision Level Fusion Using Majority Voting

Majority voting is among the most straightforward decision
level fusion strategies. In this case, the final decision is
based on the output results of several matchers. In the con-
text of hand verification, we verify the identity of a subject
using each part of the hand (i.e., fingers and palm) sepa-
rately. Then, if three or more parts of the hand support the
same verification result, we accept this result as a correct
verification; otherwise, we reject the subject.

6. Experimental Results
In order to evaluate our system, we have hand collected

data from 101 people of different age, sex and ethnicity. For
each subject, we collected 10 images of his/her right hand
during the same session. Subjects were asked to stretch their
hand and place it inside a square area drawn on the surface
of the lighting table; however, no other restrictions were
imposed on the subjects. To capture different samples, sub-
jects were asked to remove their hand from the lighting ta-
ble, relax it for a few seconds, and then place it back again.
As a result, finger movement was unavoidable as shown in
Figure 4(a).

To calculate the distance between a query hand Q and
the template hands Ti of an individual in the database, we
compute all Euclidean distances between the query and the
templates and take the minimum distance:

D = argimin{||Q − Ti||}, i = 1, .., k (3)

where k corresponds to the number of templates. If the
minimum distance is below a threshold, then verification is
considered successful; otherwise the subject is rejected.



In the following subsections, we report our evaluation re-
sults based on the proposed hand-based verification system.
First, we compare the different fusion strategies discussed
earlier. Then, we illustrate the effectiveness of the hand de-
composition scheme by comparing it with the approach of
[2] where the whole hand is used for verification without
segmentation.

6.1. Verification using hand decomposition and fu-
sion

For evaluation purposes, we used different numbers of
samples (i.e., 3,4, and 5) for each subject as enrollment tem-
plates. To capture the effect of template selection on overall
system performance, we repeated each experiment 30 times,
each time choosing the enrollment templates randomly. The
remaining samples were used to construct matching and
non-matching sets to estimate False Acceptance Rate (FAR)
and False Reject Rate (FRR).

In feature level fusion, the feature vectors of each part of
the hand were combined into a single feature vector yield-
ing 861 features. Using PCA and keeping 99.9% of the
information in the data yields vectors containing between
72 and 81 features. Figures 7, 8, 9 show the average ROC
curves of each fusion strategy using different template sizes.
Table 2 compares the fusion strategies in terms of EER as
well as the mean and the standard division of TAR when
FAR = 0.1%. As it can be observed, all fusion meth-
ods improved system performance so that TAR is more
than 99.4% when FAR is more than 0.1%. Overall, ma-
jority voting had the best performance among the three fu-
sion strategies considered here. PCA had the lowest perfor-
mance, however, using PCA reduces the size of templates
by more than 10 times.

To further investigate the performance of our system, we
have performed a qualitative comparison of its error rate
with those reported in the literature. It should be mentioned
that since there is no standard acquisition method and, as
a result, no benchmark databases, quantitative comparisons
of different systems are not completely fair and should be
taken as indicative only and not conclusive. Our database
size is comparable to most of the systems reported here and
our error rates are better even to the ones reported on much
smaller databases.

Yoruk et al. [27] have reported a 1.79% EER using
458 × 2 ( # of people × # of samples per person) images
as enrolment set and 458 × 1 as test set. Xiong et al. [26]
have reached a 2.41% EER using 108 × 1 images as enrol-
ment set and 108× 4 as test set. Ma et al [17] have reported
a 5% error rate using 20 × 1 images as enrolment set and
20× 5 as test set. Reillo et al. [23] Show less than 5% EER
using 20 × 5 images as enrolment set and 20 × 5 as test
set. Bulatov et al. [4] have reported a TAR = 97% when
FAR = 1% using 70×5 images as enrolment set and 70×5

Figure 7. Average ROC curves using feature level fusion based on
PCA using 3, 4, and 5 templates per subject. The experiment was
performed 30 times using a different training set each time.

Figure 8. Average ROC curves based on score level fusion
(weighted sum) using 3, 4, and 5 templates per subject. The exper-
iment was performed 30 times using a different training set each
time.

as test set. Ribaric et al. [19] have reported a TAR = 1.1%
when FAR = 1.22% on a database which includes 130×1
images as enrolment set and 130 × 4 as test set. Their ap-
proach fuses information from the hand and the palm print
using a weighted sum rule. Finally, Kumar et al [14] have
fused hand geometry and palm print features at the decision
level, reporting a TAR = 92% when FAR = 1% using
100 × 5 images as enrolment set and 100 × 5 as test set.

Table 2. Comparison of different fusion techniques using 5 tem-
plates per subject as enrolment size.

Method PCA Weighted Sum Majority Voting
EER(%) 0.523 0.119 0.044

TAR(%) (FAR=0.1%) 99.47 99.86 99.98
σTAR(%) (FAR=0.1%) 0.231 0.119 0.059

6.2. Verification using whole hand
For comparison purposes, we have compared our system

with the one reported in [2] where the whole hand is used



Figure 9. Average ROC curves based on decision level fusion (ma-
jority voting) using 3, 4, and 5 templates per subject. The exper-
iment was performed 30 times using a different training set each
time.

for verification without segmentation. In this case, only the
arm is segmented from the rest of the hand and hand ge-
ometry is represented by computing the Zernike moments
of the whole hand. As mentioned earlier, in the case of the
whole hand, we need to compute Zernike moments up to
order 70 which is very time consuming. On the other hand,
the palm and the fingers require much lower orders (i.e. up
to order 20 and 30 for fingers and palm respectively). It is
worth mentioning that it is taking about 6 minutes to com-
pute the Zernike moments of the whole hand silhouette up
to order 70, while it is only taking 35 seconds to compute
the Zernike moments of the fingers and palm up to order 20
and 30 respectively.

Figure 10 shows the ROC curves of the two systems.
In both cases, we used 5 enrollment templates. As it can
observed, finger segmentation improves performance to a
great extent. For example, when FAR=1%, TAR increases
from 96.06% to 100% when employing palm-finger seg-
mentation and fusion. The reason for this, as mentioned
in 3.2, is because finger segmentation eliminates the effect
of finger movements which can affect Zernike moments sig-
nificantly in all orders (i.e., see Fig 4).

6.3. System Performance Over Time
In this section, we report preliminary results to illus-

trate the performance of majority voting over large lapses
of time. In this context, we recorded 10 new samples from
20 subjects of the 101 subjects after a period of 9 months
(i.e., 200 images). These samples were used to test the per-
formance of our system when there is a substantial passage
time between the acquisition of the template and test im-
ages. In a similar manner as before, we repeated each ex-
periment 30 times using 3, 4, and 5 samples from our ini-
tial data collection as enrolment templates. To keep results
consistent, we used exactly the same enrolment templates
in each experiment as in our previous experiments. Fig. 11

Figure 10. Average ROC curves using 5 templates for each subject;
the solid curve corresponds to the whole hand while the dashed one
corresponds to the weighted sum of the finger and palm features.
The experiment was performed 30 times using a different training
set each time.

Figure 11. Effect of time lapse: average ROC curves based on
decision level fusion (majority voting) using 3, 4, and 5 templates
per subject. The experiment was performed 30 times using the
same enrollment templates as in the previous experiments. For
testing, we used 200 images from 20 of the 101 subjects, taken 9
months later.

shows the average ROC curves obtained in this case. As it
can be observed by comparing Fig. 11 with Fig. 9, there
is a small deterioration in system performance over time,
however, this is quite reasonable and acceptable.

7. Conclusion
We have presented a component-based hand verification

system using palm-finger segmentation and fusion. The
proposed method has certain advantages including that it
is peg-free, it does require the extraction of any landmark
points, and it is not affected by the orientation and position
of the hand or finger movement. The only restriction im-
posed by our system is that the used must present his hand
in a stretched configuration to avoid touching figures. Qual-
itative comparisons between our system and other systems
reported in the literature indicate that our system performs



comparable or better.
Our system is still under development and further work

is required to improve its performance. First of all, we
plan to investigate the idea of combining multiple templates
into a single, ”super-template”, to reduce memory require-
ments but also build more accurate models for each individ-
ual. In particular, we plan to investigate ways to update the
”super-template” over time (i.e., template ”aging”) to main-
tain system performance. Second, we plan to increase the
size of the database in order to perform larger scale experi-
ments and obtain more accurate error estimates. Moreover,
we plan to test more systematically the robustness of the
method when there is substantial passage time between the
template and test images. Finally, we plan to compare our
technique with other techniques using the same datasets to
reach more useful conclusions.
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