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Abstract 

Finding genes unequivocally in DNA sequences is one of 
the key goals of the Human Genome project. The hu- 
man genome is a 9 billion character long DNA sequence 
and i s  estimated to contain about 100,000 genes. It has 
been shown by several biologists that genes in a DNA se- 
quence satisfy certain special properties. In this paper, 
we use a combination of these properties to design a se- 
rial algorithm for gene-finding. To speed up the process 
of finding genes in long DNA sequences (of the order of 
2 100,000 characters), we design a parallel algorithm 
for gene-finding. We have implemented the parallel gene- 
finding algorithm on the CM-5 multicomputer as well as 
on a network of H P  Apollo workstations under PVM. 
Experimental results indicate that our algorithms predict 
genes with reasonable accuracy. 

1 Introduction 

The discovery of DNA and genes and their relationship 
to medicine has revolutionized genetics in the past few 
decades. One of the main goals of the Human Genome 
Project, which is a federally funded Grand Challenges 
Project, is to  unequivocally find genes in the entire hu- 
man genome; there are an estimated number of 100,000 
genes in the 3-billion character long human DNA se- 
quence [lo, ll. Finding genes is an important task, since 
it facilitates novel approaches to cure several diseases (for 
example, cancer) by correcting the defective genes. 

Computational techniques have become increasingly 
important in genetics, especially to map and sequence 
the genomes of different organisms [15, 141. Determining 
biologically significant patterns in raw DNA sequences 
will almost be an impossible task for a human being. 

In this paper, we present parallel algorithms for find- 
ing genes in DNA sequences. Our algorithms make use 
of a few statistical rules that the DNA sequences follow. 
We also present experimental results from our implemen- 
tation of these algorithms on a network of HP Apollo 
workstations running under PVM and compare it to an 
implementation on the CM-5 parallel computer. 

The genome is often called the blueprint for the species. 
Roughly speaking, the genome is a concatenation of genes; 
each gene contains the plans for one or more proteins; and 
proteins are the building blocks of the body. 
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Figure 1 :  An overview of the  DNA and gene. 

A few definitions. The DNA sequence is made up 
of four nucleotides (or base-pairs or bases) called Ade- 
nine (A), Cytosine (C),  Guanine (G),  and Thyamine (T). 
Bases C and T are pyrimidines; A and G are purines. The 
DNA sequence for each organism can be very long; for ex- 
ample, in human beings, the DNA sequence is estimated 
to  be three-billion nucleotides (or, equivalently, charac- 
ters) long. The DNA has a double-helix structure and is 
double-stranded; further, one strand is the complement 
of the other [17]. The bases A and T o n  one strand match 
G and C on the complementary strand. 

A codon is a three-character sequence of nucleotides 
A, C,  T, and G. Thus 43 = 64 different codons are possi- 
ble out of which three specific codons - TAG, TGA, and 
TAA - are known as stop-codons. Each DNA sequence 
can be viewed as consisting of coding regions called exons 
and non-coding regions called introns (see Figure 1). Ex- 
ons are the portions of DNA that, are finally translated, 
according t,o some genet,ic code, int,o proteins. An intron 
just separates two consecutive exons. Finding genes in 
a given DNA sequence is equivalent to finding the exact 
location of exons (or the coding regions). The boundary 
between an exon and intron is known as the 5 splice site 
(5’-ss) and that between an intron and an exon is known 
as a 3‘ splice site (3‘-ss) (see Figure 1). 

Problem definition. The problem of finding genes in 
a given DNA sequence is equivalent to finding the exact 
location of exons in the sequence. Our approach to  solve 
the gene-finding problem uses a combination of rules that 
exons in a DNA sequence seem t,o obey. Two important 
facets of a gene-finding algorithm are speed and accuracy. 
Sequential gene-finding algorithms can be slow when ap- 
plied on DNA sequences that are a few hundred thousand 
characters long. To speed up the gene-finding algorithms, 
we design parallel algorithms and present implementa- 
tion results on the CM-5 parallel computer as well as on 
a distributed system running under the PVM environ- 
ment. The second important aspect of gene-finding is 

, 
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accuracy. Accuracy is often measured as rules are applied. One of the novelties of our method . .  is 
the fact that  we combine various techniques using dif- 
ferent weights to  get a high accuracy. The  individual 
features and parameters of genes may occur randomly in 

# exons found by the algorithm 
Total # exons present in the DNA sequence ‘ 

Missing exons, which are the exons that cannot be found 
by the algorithm, are measured by accuracy. However, 
accuracy does not give an indication of the number of 
false exons; false exons are portions of introns that are 
incorrectly identified as exons by the algorithm. 

a DNA sequence; however acombination of these features 
occur only in genuine exons and that is the basis for using 
a combination of techniques. 

2.1 Splice sites 

Literature survey. Computational methods to  identify 
splice sites (5’-ss and 3’-ss) in DNA sequences were de- 
veloped in the mid 1980s by Staden [19] and Senapa- 
thy [18]; they also suggested methods to use splice-site 
information in detecting genes. More recently, Lapedes 
et al. applied neural network techniques to  the gene- 
finding problem [7]. Fields et al. have incorporated sta- 
tistical sequence asymmetries to  improve gene-finding al- 
gorithms [9]. Uberbacher and Mural have developed a 
neural-network based coding-recognition module (CRM) 
for recognizing genes [24]. However, none of the above 
methods are able to  unequivocally identify eukaryotic 
genes [l]. For example, the CRM located 80% of cod- 
ing exons of 100 or more bases. It also identified about 
18% false exons. The  problem is more complicated be- 
cause approximately 30% of exons in genes are shorter 
than 100 nucleotides [23], which are more difficult to lo- 
cate [24, 71. The method of Uberbacher and Mural was 
successful only 30% of the time in identifying such short 
exons. Thus the overall accuracy of the best gene-finding 
algorithms is 70%x80%+30%x30% = 65%. In addition, 
every gene-finding method reports several false exons. 

Exons can be identified if we find the 3’ ,and 5’ s p p  
sites. To find exons, one should find the 3 -ss and 5 -ss 
for each exon. We use the method developed by Shapiro 
and Senapathy [18] and Senapathy et al. [4] to  find the 
most likely splice sites in a given DNA sequence. We 
illustrate this method for 5’ splice sites. 

Table 1: Statistical Table for 5’-ss for Primates 

A 

Table 1 is a statistical table that was formed from ex- 
periments made on various genes of the primate species. 

~- 
A 5’-ss sequence for the primates has a length of 9 charac- 

at location 2 Of the -ssj for 5 5 8. For 
character A appears with 28% frequency in position 0 of 

Difference between Our approach and existing work’ ters. Row i of Table 1 gives the percentage of each base 
Our approach, unlike existing techniques for gene-finding, 
combines a variety of features based on splice sites, branch 
sites, open reading frames, codon bias and RNY period- 

I 

icity. The  motivation to  use a combination of various 
features is as follows: A false exon may satisfy one or a 

a  SS for primates. 111 row Z ,  the final entry (under Col- 
umn CN) is the character that  is most likely to  be found 

few individual features, where as only the genuine exons 
will have all the features. For instance, a false exon may 
have highly accurate splice sites and branch points; but 
it may not have a high codon bias and RNY periodicity. 
Implementation of parallel gene-finding algorithms on a 
distributed system and on the CM-5 is another significant 
contribution of this paper. 

This paper is organized as follows. Section 2 will de- 
scribe the various techniques used in finding genes in a 
DNA sequence, We will also discuss some of the im- 
plementation issues here. Section 3 discusses the results 
from our serial and parallel implementations of the gene- 
finding algorithms. Section 4 concludes this paper. 

2 Gene Finding Concepts 

in location i of a 5’-ss. Thus, the final column of Table 1 
forms the consensus sequence for a 5 -ss (for primates). 
The following rule was used in arriving a t  the consensus 
sequence. If the highest percentage computed in row : 
for a part.icular charx ter  equals or exceeds 40, choose 
the corresponding character in that row; if there is more 
than one such character, there is a slightly more complex 
rule described in [4]. A similar table is constructed for 
the 3’-ss except t,hat t.he length is 15 characters rather 
than 9 characters used for 5I-s~. 

We use the statistical table to find the 5’ splice sites 
in a given DNA sequence as follows. We take a window of 
9 characters at  a time and match i t  against the statistical 
table given above. Let, zo . . . z g  be the current window of 
9 characters. Let vt be the value for character 5: in row i 

I 

of the statistical table. Similarly, let h,  and 1, be the high- 

Define total = 2, , ,  mast = z-1: h, ,  and mint = 
1 : .  In other wolds, total, mazt and mint represent 

the total score for the current window, maximum possible 
score for any window and the minimum possible score for 
any window, respectively. For example, mazt in Table 1 
equals 40 + 59 + 81 + 100 + 100 + 54 + 74 + 85 + 45 = !38. 
Similarly, mznt ecluals 62. We obtain a score for the 5 -ss 
in the current window using the following formula. 

The basic idea in finding (and thus finding genes) est and the least values in row % of the statistical table. 
is as follows. The  sequence of nucleotides in and around 
exons exhibit certain special characteristics. Any subse- 
quence of the DNA sequence that exhibits these charac- 
teristics will be classified as an exon. 

this section, we will describe various rules used in 
identifying regions in a DNA sequence. we dis- 
CUSS these rules primarily from a computer science per- 
spective, and do not elaborate on their biological signif- 
icance. Figure 5 describes the sequence in which these 
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Figure 2: T h e  branchsite position for a DNA sequence. 

(total - mint) 
(mast-  mint) 

score = 100 

For example, for a window AAGTGAGTA, 

total = 28 + 59 + 81 + 0 + 0 + 54 + 11 + 4 + 16 = 253. 

Thus the score for the window AAGTGAGTA is 43.9. 
The  above procedure is repeated and scores are com- 

puted for all the windows in the given DNA sequence. 
The  windows that  have the highest scores are considered 
good candidates for 5 -ss. The  computation of scores for 
3’-ss is slightly more complex and is discussed in [18, 41. 

Once we find the 3 -ss and 5 -ss with highest scores, a 
3‘-ss and its closest 5‘-ss form a candidate exon. Not all 
candidate exons are genuine exons. The  next few meth- 
ods described in this section help in differentiating gen- 
uine exons from false exons. 

, 

I I 

2.2 Branch Sites 

Another signal sequence that helps the gene finding mech- 
anism is called a branch site or branch point signal. The 
branch site lies within the intron usually between 30 and 
50 characters before the 3 -ss corresponding to an exon 
(see Figure 2). The  biological function of a branch site 
is t o  signal the gene-finding mechanism on how to join 
the eFons. Methods similar t o  those discussed above for 
the 5 -ss also exist for computing the scores of branch 
sites. One such method was developed by Harris and 
Senapathy [ll], which we use in our algorithms. Keller 
and Noon [13] also present a different method to identify 
branch sites. 

After finding candidate exons in the given DNA se- 
quence, we also find all the branch sites in the DNA se- 
quence. For each candidate exon, we determine whether 
there is a branch site before its 3 -ss; the presence of a 
branch sites before the 3’-ss increases the probability of 
the candidate exon being a real exon. 

I 

I 

2.3 Open Reading Frame (ORF) Technique 

A sequence of characters can be an exon in any of the 
three reading frames. Reading frame 1 (or RFl )  is the 
original sequence itself. Reading frames 2 and 3 are ob- 
tained from RF1 by removing the the first and the first 
two characters, respectively, from RF1 (see Figure 3). 

A reading frame is said to be open if it does not con- 
tain any stop codons. For example, RF2 contains the stop 
codon TAA for the sequence ATCGTAATGTTACTA as 
shown in Figure 3; hence, RF2 is not an open reading 
frame, while other reading frames are open. We use the 

RFl RF3 

Stop codon TAA ATCGTAATGTTACTA 
inm 

R E  

J . 4  

StOD 
r -  

S&I codons in RF1,AGTTAA’ITGACTAG t- 
and RF3 w w  

Figure 3: Example for the Open Reading Frame method. 

following biological rule to prune the list of candidate ex- 
ons : A candidate exon can be a real exon only if a t  least 
one of its reading frames i s  open. 

In Figure 3, the third sequence has stop codons in all 
three reading frames. Hence, it cannot be an exon and 
will be removed from the list of candidate exons. 

2.4 RNY Periodicity Technique 

Recall that  bases C and T are termed pyrimidines, and 
A and G are known as purines. Let us denote a purine 
with R and a pyrimidine with Y; further, let N denote 
any of the bases A, C, T, G.  It has been statistically 
observed that the codons found in exons have a purine in 
the first position, any base in the second position, and a 
pyrimidine in  t,he third position. That. is, a codon found 
in an exon is most, likely to have the form RNY, while 
a codon found in  t,he int,ron regions will not have any 
special structure associated with them. 

Thus, given a. canc1idat.e exon, we count the fraction 
of codons of the RNY form in that exon as follows. 

# codons of the form RNY 
RNY factor = 

Total # codons in the candidate exon 

The higher t,he RNY fact,or for a given candidate exon, 
the greater is t,lie probability for it. t,o be a real exon. 

2.5 Codon Bias Technique 

There are 64 codons out of which three are stop codons. 
Proteins, which are the final products of gene-expression, 
are made of 20 amino acids’. Any codon, other than a 
stop codon, can be an amino acid. Thus, there are 61 
codons which are mapped into 20 amino acids. Since 
there are more codons than amino acids, multiple codons 
code for the same amino acid. However, the frequency 
with which a specific codon codes for an amino acid differs 
widely between exons a.nd introns. 

As an example, let u s  assume that codons C,, C, and 
c k  code for amino-acid dl. Codon C, is preferred by 
amino acid dl over codons c, and c k  in exons, while 
no such preference exists in introns. This phenomenon 
according to which exons tend to show bias to  a specific 
codon to code a particular amino acid is known as codon 
bias (or codon preference). 

Staden and McLachlan [20] and Staden [5] used the 
codon bias met,liod t,o ident,ify prot,ein coding regions. We 
use a method similar t,o that, discussed in [20] to distin- 
guish exons from introns. Let 

S = nlblcla,2b2c?. . . . . . anbncnnn+lbn+lcn+l 

‘ A n  amino acid I S  thc l j a w  Ihilding block for a protein 
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be a given candidate exon sequence. Let f a b c  be the 
frequency of the codon abc. Let q, be the product of the 
frequencies of all codons in reading frame i. We compute 
q, using the formulae given below. 

Let pi be the probability that frame i is the correct frame 
in which the given sequence S will be read by the gene- 
splicing process. We compute pa using 

P: = qa/(ql + q2 + q3)i a = 1 , 2 , 3 .  

Next the codon bias value is computed using the equation 

codon-bias-value = max{pl,pz,p3}. (4) 

We declare that the sequence S exhibits codon bias if the 
codon-bias-value exceeds a user-defined threshold. 

codm B i r  

".l' T 
I n n  

I . i  
I i i  1 

Figure 4: Forming the codon bias list and computing 
scores for the candidate exons. 

Creating the codon bias list. Figure 4 shows the 
codon bias for a sample DNA sequence. The x-axis shows 
the locations of the characters in the DNA sequence and 
the y-axis shows the codon bias value at  each location. 
We compute the codon bias value for a character in the 
DNA a t  location i by taking a window of w + l  characters 
from location i to  location i + w (see Figure 4)  and us- 
ing the Equation 4 in Section 2.5 .  The codon bias value 
is computed for all the characters in the DNA. Typical 
window sizes used are around 65 characters [20 ,  51. 

Computing the codon bias score for each candidate 
exon. Once the codon bias list is const,ructed and the 
codon bias values for each location in the DNA obtained, 
we use this information to  compute the codon bias scores 
for the exons in the candidate exon list. As shown i n  
Figure 4, the shaded region of the candidate exon is said 
to have a cogon bias. If the location of the 3'-ss is a and 
that of the 5 -ss is a + m ,  then the exon length is m + l .  If 
the length of the codon bias region that overlaps with the 
exon is z (length of the shaded region), then the codon 
bias score Scb of the candidate exon is 

That is, s c b  is a quantitative measure of the portion of 
the candidate exon that has codon bias. 

2.6 Uneven Positional Base Frequencies (UPBF) 
Method 

The method that we describe in this section is attributed 
to  Fickett [8]. Exons (or coding sequences) tend to  show 
unequal use of the four bases in the three positions of 
codons. From biological experiments, it has been shown 
that this inequality in the usage of bases is more pro- 
nounced in coding than in non-coding regions. 

To apply the UPBF method, let us consider the given 
DNA sequence S. From S,  we calculate N , , ,  the number 
of times base i occurs in  position j of a codon, for each 
base i and each posit,ion j. Since there are four bases 
A, C, T and G and three positions in each codon, 12 
different combinations exist for N,, . We then calculate 
the expected value E, for each base in each position of a 
codon using the following formula 

Now we measure the divergence D of the usage of bases 
in sequence S using t.he formula given below. 

D = IE, - X, , I ,  2 E { A , C , T , G } ,  j E { 1 , 2 , 3 }  
L b J  

(5) 
That is, we measure the absolute differences between ob- 
served and expected positional base frequencies. The di- 
vergence D gives us a measure of the amount of varia- 
tion there is in the usage of the four bases in the three 
locations of the codon. The higher this divergence, the 
greater the probability for a sequence to be an exon. The 
implementation of the UPBF list is done exactly in the 
same manner as the codon bias list [12]. 

2.7 Main Routine 

Figure 5 gives a flowchart for the entire procedure. On 
each candidat,e exon, the techniques based on codon bias, 
branch sites, RNY periodicit,y and UPBF are applied and 
the corresponding scores are obtained. We can compute 
the overall score for each candidate exon using 

So = Woe*So..+PUbs*Sbr+lUcb+ScbfZU,ny*Srny+Wupbj*Supbf.  

where s o ,  soer s b s ,  s c b ,  s u p b j  are the overall, splice site, 
branch sit,e, codon bias, RNY and UPBF scores respec- 
tively; wo, wss ,  W b s ,  tu&, t u m y ,  w U p b j  are the weights for 
overall, splice sit,e, branch site, codon bias, RNY and 
IJPBF t.ecniques respect,ively. We t,hen sort the candi- 
date exons based on their overall scores and select the 
top few exons as t,lie exons fouud by the algorithm. A 
discussion on how to choose weights for individual meth- 
ods will be given in Section :3 .  

Analysis of the serial algorithm. Let n be the length 
of the DNA sequence. The overall complexity is domi- 
nated by the step i n  which splice sites and branch sites are 
found; this step involves sorting of splice sites and branch 
sites based on their scores and thus, requires O(n log n) 
time. Each of the remaining methods requires scanning 
the input DNA sequence at  most once, and hence can be 
completed i n  O( 7 1 )  time. 

2.8 Parallel Implementation 

The basic outline of t.he parallel implementation is given 
below. 
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Figure 5: The flowchart explaining the serial algorithm 
for gene finding. 

0 Divide the DNA sequence among the processors. 

0 Each processor then creates a candidate exon list 
and is responsible for the 3’-ss location that lies in 
the DNA subsequence assigned to it. 

0 Each processor applies the steps in  Figure 5 on its 
list of candidate exons. 

The only difference between the parallel and serial 
versions arises from the communication requirements of 
the parallel version. The step in which splice sites are 
found dominates the computation as well as the com- 
munication time of the parallel algorit,hm. Hence, we 
describe only the communication complexity in finding 
splice sites. 

2.8.1 Splice sites 

To get the splice sites with the highest scores, we need to 
first sort the splice sites in each processor by their scores. 
The sorting takes O(f log f ) .  The number of best can- 
didates required is specified by LIMIT. The best LIMIT 
candidates from each processor are merged together into 
one processor. This merging step takes O(1og p * L I M I T ) .  
This array of the best candidates is then broadcasted to 
all the processors in O(p * L I M I T )  time. 

Once every processor has computed its candidate exon 
list, it  is possible that, for a given 3’-ss region, the match- 
ing 5 -ss lies on another processor. The communication 
pattern used in obtaining the missing part of the candi- 
date exon from other processors forms an ucyclic graph. 
This is because each processor needs to send sequences 
to  only those processors whose number is lower than its 
number. The first processor only receives subsequences 
while the final processor only sends. The number of mes- 
sages sent under this communication pattern is O ( p 2 ) ,  
since, in the worst case, each processor sends to every 
processor whose number is lower than itself. Computa- 
tion in the parallel algorithm is dominated by the term 

, 

o(; log f).  

3 Implementation Results 

In this section, we first give a brief summary of the Think- 
ing Machines CM-5 and the PVM software running on a 

network of 7 HP Apollo Workstations. We then give re- 
sults on the performance of the parallel implementations 
of our algorithm on the Thinking Machines’ CM-5 using 
the CMMD version 3.2 message passing library and the 
PVM distributed system. 

3.1 CM-5 Summary 

The CM-5 is the latest massively parallel computer (MPP) 
developed by Thinking Machines Corporation. The CM- 
5 is capable of offering a peak performance of up to  1 ter- 
aflops. I t  uses the Single Program Multiple Data (SPMD) 
programming model. I t  h a s  three networks: a data  net- 
work, a control network and a diagnostic network. The 
data  network provides high performance point-to-point 
data  communication between processors and has a fat- 
tree structure [16]. The control network provides c o o p  
erative operations, including broadcast, synchronization 
and scans. 

The CM-5 uses CMMD as its message-passing library 
[21, 221. The current version is CMMD 3.2 and runs un- 
der the CMOST operating system. The current version of 
the operating system is CMOST Version 7.2 beta l . l -P4 .  

3.2 P V M  Summary 

PVM (Parallel Virtual Machine) is a software package 
developed a t  the Oak Ridge National Laboratory [6]; it 
allows the use of a set. of het,erogenous computers as a 
single comput,ational resource (just, like a MIMD parallel 
computer). The computers networked together could be 
workstations, vect,or machines, and multiprocessors in- 
terconnected by one or more networks. We have PVM 
installed on 7 HP Apollo Workstations in the Computer- 
Aided Engineering Laboratory of UW-Madison. 

The PVM consists of two parts: the pumd daemon 
and the library of PVM routines. Application programs 
must be linked with the library to use PVM. The PVM 
libraries cont,ain all syst.em calls for commnnication and 
synchronization. The programming model used by our 
program is the SPMD paradigm (Single Program Multi- 
ple Data), which is similar t,o Chat, used on the CM-5. 

Na ol PlaC”..C. 

Figure 6: Overall execution time versus number of pro- 
cessors for small sequence.< on PVM. 

3.3 Results from Parallel Implementations 
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Table 2: The  Description of the Benchmark Sequences 
Used (Human Genes) 

Description Sequence Name No. of 
base pairs 

HUMFABP 

HUMILlBX 
HUMALBGC 
HUMAFP 
HUMNEUROF 

Table 2 gives a rief listing of all the sequences that we 
used in ourkxperiments. These sequences were obtained 
from the Genbank, which is a public domain software 
that contains a database of all the known genes and their 
locations in the DNA [3]. Each sequence in the database 
gives information about the locations of the known exons 
and introns, the number of base pairs and other relevant 
information. The exons in these sequences were known; 
this fact helped us in measuring the degree of accuracy 
with which our implementations find genes. We took 
several DNA sequences whose length varied from 5000 to 
above 100,000 characters. 

Accuracy of gene-finding for benchmark sequences. 
Table 3 reports the accuracy of our gene finding algo- 
rithm. It should be noted that the parallel version im- 
plemented on both the PVM and the CM-5 give the same 
accuracy because they use the same algorithms. As seen 
from the table, most of the sequences we used show an 
accuracy of close to  65%. This accuracy is better than 
the accuracy that we obtained if only a particular method 
was used (instead of a combination of various methods) 
t o  find exons. The  HUMNEUROF sequence is one of the 
longest sequences that we ran and since there are only 
23 exons in such a long sequence makes it difficult to get 
high accuracies. We observed that,  for those exons that 
had not matched in the ,HUMNEUROF sequence, most 
of them had either the 3 -ss matched to  the wrong 5 -ss 
or vice-versa. Ultimately, the accuracy of gene-finding 
can be improved only if new biological rules related to  
exons are discovered. 

Table 3: Exons Found by Our Algorithm for a Few 
Benchmark DNA Sequences 

I Sesuence Name I No. of I Exons I Accuracy I 

HUMFABP 
HUMILlBX 
HUMALBGC 
HUMAFP 
HUMNEUROF 

exons I found 

14 9 
23 10 

1 (in percent) 

43% 

Choosing Weights. 
ble 3 were for a specific combination of weights. 

The accuracies reported in Ta- 
The  

set of weights we chose for the sequences given in Table 3 
were those that gave us the highest accuracy. 

However, we found that modifying the weights could 
lead to the uncovering of new exons at  the expense of 
masking some other exons found with the old set of weights. 
The  accuracy can vary widely for different weight combi- 
nations. For example, for the sequence HUMALGBC, a 

gives an accuracy of 57%; for the same sequence, ex- 
ons are found with an accuracy of 64% with weights 
w,, = O.5,wcb = 0.2, Wbs = 0.2, and wrny = 0.1. At this 
time, an optimal combinat.ion of weights which yields best 
accuracies can only be found by t.horough experimenta- 
tion. 

Comparison of implementations on PVM & CM-5. 
In our implementation, we chose t.0 run DNA sequences 
of different lengths for processor sizes ranging from 1 to 
7 on the CM-5. We ran similar experiments on the dis- 
tributed system of workstations running under PVM by 
varying the number of workstations networked together 
(from 1 to 7 as well). We however did run the gene- 
finding program for upto 32 processors on the CM-5 in 
order to see the performance of the algorithm for larger 
number of processors. We were limited to  a set of seven 
workstations t,liat, were available to run PVM. 

Figures 6 and 7 show t,he overall execution times for 
short and long sequences t,hat, were run on PVM. The 
PVM measurements were taken when we had exclusive 
access to  t,he ent,ire iiet,work of workstat,ions (no other 
users were on the system). We ran the same experiments 
on the CM-5 and got graphs with similar shapes (except 
different execution times as discussed later). 

Set Of weights Wcs = 0.6, WCb = 0.2, Wbs = 0.1, W r n y  = 0.1 

+- --. L 1 

Figure 7: Overall execution time V ~ I S U S  number of pro- 
cessors for large sequences 011 PVM. 

2 0  I O  I O  I O  
No dPr=r.on 

In Figure 7,  we see that when going from 1-processor 
to a 2-processor case, t.here is an increase in the overall 
execution time. This is because there is absolutely no 
communication overhead in the serial case, while in the 
’-processor case the communication overhead is high due 
to large data  sizes. However, as we use more than 2 pro- 
cessors, the execution time starts to decrease because the 
message sizes start  decreasing drastically. On the CM- 
5, the communication cost is significantly higher than 
the computation cost on the CM-5 [ 2 ] .  The  decrease in 
the message sizes with larger number of processors makes 
computation dominate comIiiunication, and this results 
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in lower execution times as the number of processors in- 
creases. Similar behavior is seen when we run the same 
algorithm on the CM-5. This trend is not observed for 
smaller sequences as shown in Figure 6. We observed that 
the overall execution times on PVM are lower than those 
obtained from the CM-5; the reasons are given below. 

U .I RI..m 

Figure 8: Percent of time spent in communication for 
DNA sequences run on PVM. 

Comparison of Computation time between PVM 
and CM-5. Figure 9 gives a comparison of the time 
spent only in computation on the CM-5 and the PVM. 
This comparison is done for the sequence HUMALBGC. 
As mentioned earlier, the PVM gives lower execution 
times than CM-5. We ran a few experiments to com- 
pare the processing power of a CM-5 node to  that  of an 
H P  Apollo workstation. We found that the HP  worksta- 
tion was about five times foster than a single CM-5 node; 
hence the reason for the lower execution times on PVM 
than that on the CM-5. In Figure 9, we notice that,  as 
we increase processors, this gap between the computa- 
tion times starts decreasing. This is because the amount 
of computation per node starts to decrease as the num- 
ber of processors increases, thus reducing the effect of 
computation on the overall execution t,ime. 

N. d R D I . l m  

Figure 9: Comparison of computation times for the CM-5 
and PVM for the sequence HUMALBGC (19002 charac- 
ters). 

Comparison of communication time between PVM 
and CM-5. Figure 8 shows the percent of time spent 

in communication by the algorithm when run on PVM. 
We obtained this as follows: 

Communication Time 
Overall Execution Time 

Percent of Communicat,ion = 

As expected, for a smaller number of workstations we see 
that computation dominat,es and thus a smaller amount 
of time is spent in communication. For a larger number of 
workstations, the number of messages exchanged between 
workstations increases and, as a result, we see an increase 
in the percent of time spent in communication. As we go 
to 7 processors, we see that PVM spends around 50% 
of its time in communication. Compared to  PVM, the 
percentage of time spent in communication for the CM-5 
is negligible. 

Parallel comput,ers are required to solve problems in com- 
putational genetics because of the following reasons: 
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Figure 11: Overall execution time versus number of pro- 
cessors for large sequences for 32 nodes on CM-5. 

0 Data sizes in the DNA sequences are very large, and 

0 The rate a t  which data  is being sequenced is high 
thus leading to  a rapid influx of raw DNA sequences. 

In this paper, we have developed a parallel algorithm 
for finding genes in DNA sequences. This algorithm uses 
of a combination of biological rules that the exons in the 
DNA sequence obey statistically. Various investigators 
have used individual techniques such as splice site, codon 
bias, branch site and RNY periodicity to find exons. In 
this paper, we used a combination of these various tech- 
niques t o  get accuracies better than those that can be 
obtained by one technique alone. We have experimented 
with different weights given to  these techniques and have 
found that  different combinations of these weights give 
rise to  different accuracies in gene-finding. We achieve 
accuracies in the range of 65% for sequences of vary- 
ing lengths. Ultimately, the accuracy can be improved 
only if new biological rules about exons are discovered. 
Our implementation results show that the performance 
of the parallel gene-finding algorithms implemented on 
a distributed system using PVM is comparable to that 
implemented on the CM-5 supercomputer. We are in- 
vestigating the possible use of more biological rules to 
improve the accuracy of gene-finding. 
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