

Abstract—DNA matching is a crucial step in sequence
alignment. Since sequence alignment is an approximate
matching process there is a need for good approximate
algorithms. The process of matching in sequence alignment is
generally finding longest common subsequences. However,
finding a longest common subsequence may not be the best
solution for either a database match or an assembly. An
optimal alignment of subsequences is based on several factors,
such as quality of bases, length of overlap, etc. Factors such as
quality indicate if the data is an actual read or an experimental
error. Fuzzy logic allows tolerance of inexactness or errors in
sub sequence matching. We propose fuzzy logic for
approximate matching of subsequences. Fuzzy characteristic
functions are derived for parameters that influence a match.
We develop a prototype for a fuzzy assembler. The assembler is
designed to work with low quality data which is generally
rejected by most of the existing techniques. We test the
assembler on sequences from two genome projects namely,
Drosophila melanogaster and Arabidopsis thaliana. The results
are compared with other assemblers. The fuzzy assembler
successfully assembled sequences and performed similar and in
some cases better than existing techniques.

Index Terms— Bioinformatics, Sequence Assembly, Fuzzy
Logic, Approximate Matching, Dynamic Programming

I. INTRODUCTION
DNA sequence assembly can be viewed as a process of

finishing a puzzle where the pieces of the puzzle are DNA
subsequences or strings. The main difference being that a
puzzle has pieces that fit in very well with each other. The
pieces of a DNA puzzle do not fit together precisely. It’s a
puzzle where the ends can be ragged, thus making it very
difficult sometimes nearly impossible to complete the
puzzle. Hence, we need methods or rules to optimally
determine which piece fits with another piece. The following
sections explain the steps involved in sequence assembly.

DNA is composed of four nucleotides A, C, G, T.
Genome sequencing is figuring out the order of DNA

This work was supported in part by the NSF EPSCoR Fellowship (NSF
EPSCoR Nevada).
S. Nasser is with the Department of Computer Science and Engineering,
University of Nevada Reno, Reno, NV 89557. E-mail: sara@cse.unr.edu.
G. Vert is with the Department of Computer Science and Engineering,
University of Nevada Reno, Reno, NV 89557. E-mail: gvert@cse.unr.edu.
M. Nicolescu is with the Department of Computer Science and Engineering,
University of Nevada Reno, Reno, NV 89557. E-mail:
monica@cse.unr.edu.

nucleotides, or bases, in a genome that make up an
organism's DNA. These nucleotides and their order
determine the structure of protein.

Sequencing the genome is a very important step in
Genomics. Entire Genome sequences are very large in size
and can range from several thousand base pairs to million
base pairs. The whole genome can't be sequenced all at once
because available methods of DNA sequencing can only
handle short stretches of DNA at a time. Although genomes
vary in size from millions of nucleotides in bacteria to
billions of nucleotides in humans, the chemical reactions
researchers use to decode the DNA base pairs are accurate for
only about 600 to 700 nucleotides at a time [2].

Current techniques can read up to 800 base pairs (BP). So
biologists chop up a sequence into smaller subsequences.
The steps involved in this process are further explained in
section I.

Sequencing of an organisms’ DNA was a labor intensive
task, but with recent advances in computational power this
can be achieved. Several organisms’ genomes have been
sequenced. On a larger scale, the mouse, rat and chimpanzee
genomes are all being sequenced and mapped to the human
genome to better understand human biology, and multiple
Drosophila species are being sequenced and mapped onto
one another [4]. Other genome projects include mouse, rice,
the plant Arabidopsis thaliana, the puffer fish, bacteria like
E. coli, etc [6].

Even though computational power has made it possible to
sequence genomes in limited time, several other problems
exist. The sequence read from a machine is not always 100%
correct. It may contain experimental errors. Human handling
also causes errors in the input data. Some of the errors are
due to low quality of the input. This adds additional
problems to obtaining correct results. Another well known
problem with these sequences is that they contain repetitive
sections. In other words, certain sections of nucleotides,
called repeats, are repeated in the whole sequences. We will
elaborate on repeats in later sections.

A. Genome Sequence Assembly
The problem of sequencing is not of an exact matching

but obtaining approximate matches through consensus.
Hence techniques try to obtain a consensus sequence
through approximate matches by following an overlap and
consensus scheme [5]. The process of reading chopped DNA

Multiple Sequence Alignment using Fuzzy
Logic

Sara Nasser, Gregory L. Vert, and Monica Nicolescu, Department of Computer Science
and Engineering, University of Nevada Reno, Reno USA

and creating a consensus sequence is shown in Fig 1.

Fig. 1. Whole Genome Sequencing process is displayed in terms of reads
from the DNA sequences.

1) Whole Genome Sequencing
The "whole-genome shotgun" method, involves breaking

the genome up into small pieces, sequencing the pieces, and
reassembling the pieces into the full genome sequence. This
is the point where we are trying to put the puzzle together.
Process of sequencing DNA using Shot-gun sequencing
method was introduced in 1995 [3]. More details about
whole genome shot-gun sequencing can be found in [1, 3].

2) Sequence Alignment
The process of DNA sequencing begins by breaking the

DNA into millions of random fragments, which are then
given to a sequencing machine. Since the process of
selecting the fragments is random using the sequence one
may not cover all the regions. Therefore multiple copies of
original sequence are used to ensure that the entire sequence
is covered. This is generally referred as a coverage of ‘nX’,
where n is the number of copies. Coverage of 8X is widely
accepted to be able to generate the entire sequence. Next, a
computer program called an assembler pieces together the
many overlapping reads and reconstructs the original
sequence [2].

The process of DNA sequencing can thus be divided into
several steps, as shown in Fig 2.

a) Reading Sequences
b) Assembling
c) Finishing

a) Reading Sequences
Reading sequences is the process where a sequence reader

reads raw sequences of DNA. The sequencer can only
handle short sequences at a time. Hence the entire sequence
cannot be fed into the sequencer. The output of the
sequencer is sequences that are read into files called
chromatograms. A Fourier transform on the chromatogram
files can be done to figure out the bases from the

chromatogram files. The results of this process are
subsequences that are readable by human or any simple
program. The output is now in the form of characters A, C,
T, G, which represent nucleotides.

Fig. 2. The major steps involved in the process of assembling sequences.

b) Assembly
After sequences are read and converted to the data files,

they need to be put together. We have pieces of sequences
that need to be put in the right place. A huge amount work
involved in sequencing lies in putting together these
sequences in right place. This process involves creating
consensus sequences as shown in Fig 1. The Contiguous or
overlapping sequence of DNA is also known as a Contig.
Sequences are searched for matching regions and if a
significant portion of these sequences overlap they can be
combined into a Contig. More commonly, this problem is of
obtaining a longest common subsequence (LCS). A LCS is a
common subsequence that belongs to two or more
sequences.

The process of obtaining sequences is error prone, various
problems occur such as errors in reading and flips. The
process of assembly has to be robust to deal with these
issues. The problems that occur during sequencing will be
discussed later.

c) Finishing
Finishing is a process that is generally done at the end of

the assembly process. This is a manual process where
scientists go through the assembled sequences and fill in any
missing gaps. This process some times requires repeating the
previous steps to obtain the gaps or missing pairs in the
sequence on a smaller scale. The process of finishing and
the effort and time required depends on the assembly; if the
assembly was good then finishing becomes easier.

B. Problems with Assembly
 In this paper we discuss problems with the sequence

assembly. A lot of work has been done in sequencing
genomes, but there are still challenges remaining. One of the
reasons as we described above was due to the fact that
precise alignment of subsequences is a hard problem. As
genome sequences are huge in data even with the

computational power available it is not possible to obtain
best solution in a given time. The process of assembly is also
hard because we have to look for several hundreds of
subsequences before we can determine if they can be put
together. The time complexity for a dataset of two
subsequences of length k is Θ (2k). Since this problem is NP-
Hard, and we need to search through several hundreds or
thousands of pairs, a brute-force force approach cannot be
considered as a viable option.

The following section discusses the techniques and lists
some of the tools available for sequence assembly. Section
III provides details about dynamic programming, in Section
IV the fuzzy approach and extensions to dynamic
programming are proposed, Section V contains the results,
followed by conclusion in Section VI.

II. TECHNIQUES

The techniques or processes involved in sequence
assembly can be divided into two steps, I) arranging the
sequences in order to obtain consensus sequences ii) recover
the data lost during the experimental process.

The area of sequence assembly has been a very prominent
area in computational biology or bioinformatics. Extensive
work has been done to determine optimal methods for
sequence assembly. Techniques such as Neural Networks,
Hidden Markov Models, and Bayesian Networks have been
used. Most of these techniques are computationally
expensive and require high performance computing with
huge training. Genetic Algorithms have also been used to
perform sequence assembly [11]. Even though Genetic
algorithms take a long time to run and converge they are
computationally less expensive than Neural Networks.
Several algorithms and issues with them are discussed in [2].
There are several tools for sequence assembly including
Phrap, TIGR assembler, Celera assembler.

Currently most of the sequence applications do not
tolerate any kind of inexactness or errors in sub sequence
matching. String matching in nucleotide sequences is
challenged by variation because there are few concepts in
matching such as LIKE, NOT LIKE, or SIMILAR. Even
though there have been methods where scores are calculated
based on factors for similarity, these methods still try to find
a crisp match.

Symbolic sequential data can be considered as either (1)
exact matching or (2) approximate matching (most similar
match). Quite often in real world data mining applications,
especially in molecular biology, exact patterns do not exist
and therefore, an approximate matching algorithm is
required. An algorithm that performs a match to a certain
degree is desired.

Another problem is that there are several tools that exist
for alignment. Majority of these tools are designed to work
with good quality data. Data that is of low quality is not used
in the consensus sequence. But if most of the data is low
quality these tools fail to align the sequences and result in

fewer Contigs. The quality of the data is measured as the
probability of the correctness of a nucleotide read from the
sequencer. The raw data is in form of chromatograms, these
are curves have different peaks which represent each of the 4
nucleotide bases, ‘A’, ‘C’, ‘T’ and ‘G’. Some times it is easy
to determine a base from these peaks. Sometimes a base is
not represented strongly. Generally, the quality of the bases
is weaker at the ends and stronger in the middle of a
subsequence. This is due to the behavior of the sequencing
machine. Thus, there is a probability associated with each
base read which indicates the strength of the read. This
probability is called the quality of the base. The quality of
the base is read during assembly of sequences. If the quality
is low, the base is not considered in the alignment process.

For example Phred is software that can be used to
generate base pair files [10]. Phred reads DNA sequence
chromatogram files and analyzes the peaks, and determines
the base from each peak; assigning quality scores ("Phred
scores") to each base. Phred assigns quality within the range
of 4-60 to the bases. A quality of 15 is generally considered
as the lower bound. A quality of 20, which means 99%
accuracy of the base, is universally accepted.

III. DYNAMIC PROGRAMMING

Dynamic programming, like the divide-and-conquer
method, solves problems by combining the solutions to
subproblems [15]. It can also be defined as a method for
reducing the runtime of algorithms which exhibit the
properties of overlapping sub-problems and optimal
substructure [7]. Dynamic programming has been
extensively used to determine the LCS. The reason for its
popularity is that its time complexity is Θ(n3). Modifications
of dynamic programming have been used in the field of
bioinformatics, one such popular algorithm is the Smith-
Waterman algorithm with an Θ(n2) time complexity. This is
only to compare two subsequences. To assemble a genome
we need compare multiple sequences, thus the complexity
for the assembly process can go up to Θ(n5), unless
modifications of dynamic programming are used.

Other techniques for finding the longest common
subsequence include, suffix tree, KMS algorithm, greedy
approaches. The KMS Algorithm identifies best matches of
the longest substrings of the matches of many strings [8]. A
greedy algorithm can be used for aligning sequences that
differ by sequencing errors [12]. A greedy approach can be
much faster than traditional dynamic programming but
cannot be generalized.

Fig. 3. Table constructed using Dynamic Programming to find the Longest
Common Subsequence.

Fig. 3 shows the table constructed while using dynamic

programming. The method of finding a LCS is to start from
the end of the table and traverse along the direction indicated
by the cell. The numbers in the cells indicate the length of
the subsequence until that cell. The highest number in the
table indicates the longest subsequence that can be found
between the two sequences. Since the longest subsequence
will most likely occur in the cells along the diagonal. Note
that by simply traversing the table we can obtain the longest
common subsequence. This may not be a contiguous
subsequence. This method is simple and is very useful in
finding longest common subsequence which may have
mismatches in the sequence. This suits well to assembly
problems since not all subsequences found will be perfect.
This can be easily modified to find contiguous
subsequences. In case of genome subsequences we would
like to get the longest subsequence with few insertions or
deletions (indels). One of common techniques used by
assembly processes such as, Phrap is to search within a
bandwidth along the diagonal. If the path is beyond the
bandwidth the indels increase, and it is not a good match.
The diagonal arrows within each cell indicate a match, the
more diagonal arrows we have we stay within the
bandwidth, as mismatches increase we either go up or left.

The optimal subsequence could be one with perfect
matches, or in some cases the users could tolerate indels
more than in other cases. These criteria can depend on the
use, the source of the data, quality of the data, etc. Almost
all existing techniques provide thresholds where users can
choose where to cut off. Sometimes the user is not clear on
the ideal cut off point for a particular data set, and may need
to determine it empirically. For example, if the cutoff value
for the maximum gap allowed is 30 bases and there are fairly
large numbers of sequences with a gap of 31 and 32, we will
not be including these sequences, even though they are
close. Due to the fact that these techniques allow for crisp
matches only. On the other hand we can represent a match of
30 and lower with a fuzzy value of 1, which is for crisp
matches. Matches those are very close like 31 could have a
fuzzy value of 0.98. If the user selects to allow all matches

greater than the value 0.8 then these subsequences would be
included. The user in this case does not have to look into the
data and change parameters and run the program several
times. Since there are several parameters the user may not
even know which parameter needs to be altered? The main
objective is to obtain the best consensus overall.

This paper proposes a fuzzy matching technique where we
can have crisp and non-crisp matches. The user could also
obtain a fuzzy value that states how well the matching
sequences fit the threshold.

The application of Fuzzy Logic has not been explored
much in the area of approximate matching or similarity
measures for genome assembly. Fuzzy Logic has been
applied to classification problems in computational biology.
Even though applications of fuzzy logic have not been done
extensively, recently it started gaining popularity. A
modified fuzzy k-means clustering was used to identify
overlapping clusters of yeast genes based on published gene-
expression data following the response of yeast cells to
environmental changes [9].

IV. FUZZY LCS

The main objective of our method is assembling data by

approximate matching using fuzzy logic. To achieve this we
provide several matches of two subsequences. Then to pick
the best match based on the criterion specified by the user.
We use dynamic programming to demonstrate the use of
fuzzy rules as it is the most commonly used method.

Fuzzy Logic has been used in approximate string
matching using distance measures, etc. However, very little
work has been done in the application area of building
genomes from subsequences of nucleotides. Moreover this
process becomes computationally expensive because
multiple comparisons have to be performed for each possible
string pair. The accuracy of any fuzzy matching system is
partially determined by the error model used. An accurate
system reflects the mechanism responsible for the variations
in the match. Therefore a flexible error metrics is desired
that is generic for any fuzzy matching. Current sequencing
methods tend to reject sequences that do not match with a
high degree of similarity. This can lead to large amounts
of data being rejected by algorithms that otherwise may
be important in deriving a genomic sequence and the
metabolic characteristics of such a sequence.

A. Modifications to Dynamic Programming

One of the problems as mentioned earlier with existing

techniques is that they have crisp bounds. The user has to
specify the parameters for the program. The parameters need
to be changed by the user to suit the data, and then the
program is run one or more times, until an optimal solution
is found, since the user has to determine which parameters
work best with the given sample.

Sometimes selecting the longest subsequence is the
optimal solution. Some applications prefer longer sequences;
in some other cases a long sequence with higher quality is
preferred. If this criterion is not satisfied the sequences are
generally not selected. We propose a method where we
select more than one subsequence and then based on several
parameters select the optimal solution. If the sequence
satisfies the aggregate overall requirement it is selected. This
selection is based on fuzzy values. In other words, we are
measuring the fuzzy similarity of the given subsequences.
There are several factors that determine if two subsequences
can have an optimal overlap. These factors are used to
measure their similarity. For example, two subsequences can
form a Contig if their overlap region is larger than a
threshold. They could be highly similar if they have less
number of indels. The similarity is lesser if the indels were
more.

Firstly, we would like to select several overlapping
regions. We do not want to select every possible overlap.
Since finding a fairly longer subsequence is better we select
this based on length. Based on the longest possible
subsequence that can be obtained we select every
subsequence that is within a range ‘x’ of the LCS. The fuzzy
value for each possibility is calculated and if it is satisfied
the subsequence is selected.

In Fig 3, the dynamic programming table is illustrated.
The arrows indicate the longest common sequence path. The
darker shaded cells indicate all the cells that will be
traversed to search for the optimal subsequence. Since we
perform a non-banded search it’s not ideal to search every
cell. A cell is marked if it was already traversed, so we don’t
check it again. We add a new table that will keep track of
cells that are traversed and everything under a threshold is
selected. We select subsequences which have:

length >= threshold

Instead of selecting the longest common subsequence

from the dynamic programming table, we select all the
subsequences that satisfy a minimum length required. Then
we determine if either of these subsequences will create an
optimal match using similarity measures. Each of the
matching regions has a similarity measure associated with
them.

Cells that have at least 6 matching base pairs are selected
for traversal. If we skip cells with less than 6 matching base
pairs and it’s a high similarity subsequence, then they will be
picked up in later iterations and only the ends will be lost.
Therefore this rule does not eliminate any possible good
subsequences.

In case of multiple sequence alignment we need to
compare sequences to determine which ones can form a
consensus or Contig as shown in Fig 1. This process requires
several comparisons and it is not easy to determine which
sequences would yield the better Contigs. Hence we propose
to calculate fuzzy values for each Contig, where higher

value indicates a better Contig. The parameters for this
would be same as the parameters to select a subsequence.
The following section lists the characteristic functions.

B. Fuzzy Similarity Measures

Fuzzy similarity measures are an important step in
creating a Contig from two subsequences or finding an
overlap between two sequences. We use the term match to
refer subsequence.

(i) Length of Overlap (µlo): The first parameter that we

look at is the length of the match. This is also the size of
overlap when a Contig is being created. This length includes
indels and replacements. The higher overlap is better.

µlo = fn (Overlap)

(ii) Confidence (µqs): The confidence for each Contig is

defined as, a measurement of the quality of the contributing
base pairs. The quality of a base pair indicates if the read
was strong and strong read indicates a correct read or less
changes of noise or experimental error. Every base involved
in the Contig has a quality score. The confidence of a Contig
is the aggregate quality score of it contributing bases. For
simplicity, the sum of average quality scores is the
confidence of the Contig. µqs is the qs for the overall overlap
region, which we calculate as follows

n

qw
n

i

ii

qs

!
== 1µ

 (1)

wi is used to standardize the quality scores. The bases

with high quality are given a weight of 1. Only the bases that
are of lower quality are given weights between 0 and 1. uQS
(δ) is the standard bound for threshold that was explained
earlier, this is generally specified by the user, minqs and
maxqs are the minimum and maximum values for quality.

!
!
!

"

!!
!

#

$

%

%

=

&

=

qsqs

qsqs

qs

qs

i if

if

w

minmax

min

0,0

,1

µ

µ

'µ (2)

At present a simple function is used for weights. We

would like to update this with standard functions such as a
Gaussian, Sigmoid, etc.

(iii) Gap Penalty (µgp): This is the maximum gap that is
allowed in a match. Gap is measured in terms of the number
of bases.

Gaps= ∑(fn(insert)+ fn (delete)+ fn (replacement)) (3)
µgp =(fn (overlap) – Gaps)/ fn (overlap) (4)

(iv) MinMatch (µwl): This is the minimum number of

matching bases that are required between the two sequences.
Genomic DNA contains only 4 characters and they can be
lot of overlaps with these 4 characters. Therefore we would
like to have a cutoff value for matching sequences. We also
refer to this as the word length.

µwl = fn (matchingBP) (5)

(v) MinScore: The minimum score of a match. A score is

calculated from the number of matching bases, number of
indels and replacement. MinScore is used as a threshold.
Score can be calculated in different ways. For example:

A- CTCGCGAT- GCG
AGCTCG- GATTGAG

 For the above subsequences there are 11 BP matches, 2

inserts, one delete, and one replacement. If all are given
value one the score is

score= fn(MatchingBP)– fn(Inserts)- fn(Deletes)-
fn(Replacements) (6)

 score= 11-2-1-1 = 7

Some methods weight the matching base pairs higher than

the indels, so the score might be different.
Once the fuzzy value for each of these parameters is

calculated, we plug them in an overall fuzzy function. This
function is the aggregate fuzzy match value. We currently
use only 4 of the above parameters in the aggregate function.
At this point minimum score is used for checking if a score
is below a certain threshold. In the current implementation
we fix the value of weights. Later we would like to calculate
the weights.

lologpgpwlwlqsqs wwwwcfa µµµµ +++=)((7)

afv = fa(c)/m (8)

The subsequences that produce the highest fuzzy value are

selected as optimal sequences. Depending on their position
as a suffix or prefix a new Contig or consensus sequence is
formed. The new Contig has new consensus quality scores.
In some cases they are subsequences that overlap only at the
middle. For example,

tcaatgttactagtgaatatttctatgatgaactgaagaa
-------------agtgaatatttct----------------------

 We cannot create a new Contig with these subsequences.

For these sequences we update the confidence of the
consensus or the Contig. This makes it possible for them to
be used in further matches since their confidence is
increased. For example, if sequence Y has low quality bases
and matches with other sequences of higher quality then the
confidence of Y increases.

C. Repeats
Repeats or repetitive patterns in a sequence are quite

common in genomic data. Repeats make the process of
assembly complicated. The sequences not only need to be
put together into a Contig but the sequences that are similar
and in a Contig may belong to different regions of the
genome. We also need to evaluate the sequences are
matched if they may be from different repeats.

Fig. 4. Repeats in a Contigs can create mis assembly. As can be seen Contig
A has repeats put together. Contig B would be the correctly assembled
Contig.

Repeats are illustrated in Fig 4. Contig A is created by

two repeats combining together and hence causing a mis
assembly. Contig B is the actual Contig that is desired,
where repeat I and repeat II are highly similar but still are
different parts of the genome. There are ways to resolve
issues of repeats. For example if a Contig has significantly
large number of reads then it could be an incorrect assembly.
This could be determined by the coverage of the genome.

The problem with repeats is that may lead to an incorrect
assembly therefore we need to determine if the assembly
contains repeats. Some assemblers count the depth of the
match, if it is high then there are higher chances that it was a
repeat. Since the sequences are sequenced X times, there
should not be more than X occurrences of a segment. We
use depth to refer to the number of subsequences that are
contributing to the Contig. Counting the depth may not work
since we are selecting the subsequences randomly, certain
regions may be selected more times than the others. This
process may work if some of these highly similar regions are
removed. But the problem still occurs with repeats that are
not detected because their depth was less and these regions
were not represented very well.

Even though these repeats are highly similar they are very
unlikely same. Small differences can be detected in these
repeats to separate them. In the absence of sequencing
errors, a single nucleotide difference between two copies of
a repeat is enough to distinguish them [2]. Hence once these
regions are detected we can try to find dissimilar ones
among them.

In our approach we created Contigs by pair wise
comparison of sequences or sequence and a Contig, and we
also get multiple results, hence for the problem shown above
we get both Contig A and Contig B. Now we have to
determine which one of these Contigs is correct. Each
Contigs is associated with a fuzzy similarity value. The
fuzzy similarity value is an aggregate of several fuzzy values
such as, the length of the Contig, the confidence of the
Contigs, the number of mismatches, maximum length of
words, etc. If the fuzzy similarity measure is taken for both
Contig A and Contig B, there are likely chances that Contig
B will be chosen. The first reason is that the length of Contig
B has a higher value. Assuming that the repeats have slight
dissimilarities the match fuzzy value would be lower for
Contig A than Contig B. Finally, the confidence score of
Contig A would be lower if we have even a single nucleotide
that was different than the other. Hence all these factors
would result in selecting the Contig with the higher fuzzy
value that is selecting Contig B.

V. EXPERIMENTS, RESULTS AND DISCUSSIONS

The Fuzzy Genome Sequence Assembler was

implemented with modified dynamic programming and the
fuzzy functions given above. The assembler was tested on
generated data sets and data from GenBank. GenBank is a
publicly available database of nucleotide sequences.
Artificially generated data sets were used to verify the
algorithm and thus the assembly process. The experiments
were run on a G5 with a 1.83GHz Intel Core 2 Duo
processor and 4GB of RAM.

The first genome sequence tested was the Wolbachia
endosymbiont of the Drosophila melanogaster strain wMel
16S ribosomal RNA gene, partial sequence, which can be
obtained from GenBank. Wolbachia is a microscopic
organism that has been used to test several alignment tools.
The gene is "rpoBC", locus_tag="WD0024" and the GeneID
is “2738525” [13]. This particular sequence codes for a
protein. The sequence contains 8514 base pairs. The total
bases read were 4X of the original sequence. We selected
300 random fragments or subsequences from this set. Each
subsequence was in the range of 300-600bps. Fragment
sizes less than 500bp are commonly used for assembly [11,
18]. Therefore we chose an average fragment/subsequence
length 450bp. The results of assembly are shown in Table 1.
In Table 1, MGS refers to an implementation of Smith-
Waterman algorithm for multiple sequence alignment [16].
HGA-GS is a heuristically tuned GA, which used a 4X
coverage and 500 subsequences with an average length of
400 bp [11], TIGR is the TIGR Assembler [TIGR]. TIGR
assembler assembled the data into a final consensus
sequence. FGS is the fuzzy sequence assembly method that
is described in the paper.

The second genome sequence we tested was the
Arabidopsis thaliana, gene_id:F11I2.4. Detail of this
sequence can be obtained from GenBank [14]. This
sequence contains 36, 034 base pairs. We used 3X coverage

of the original sequence. 300 sequences of length between
300-600 bps were randomly generated. The result of
assembly on this data is shown in Table 2.

The results obtained from assembling both the genome
projects showed a fairly high percentage of the genomes
covered. For the Wolbachia project 99.6% of genome was
recovered which is similar to the TIGR assembler. For
Arabidopsis thaliana 92% of the genome is recovered. Even
though the results are better than the other techniques, we
suspect the smaller percentage could be due to the smaller
amount of initial coverage; only 3X was used in this case.
We could not use larger coverage or test on larger genome
projects due to limitations of available hardware.

VI. CONCLUSION

This paper proposes use of fuzzy logic for approximate

sequence assembly. Preliminary fuzzy characteristic
functions are proposed which suggest one possible approach
towards utilizing fuzzy logic in assembly. We tested the
FGS assembler on published genome projects and compared
the results with other assemblers. The results obtained
clearly demonstrate that the FGS assembler can generate
optimal assembly. This technique addresses the problems
caused by repeats and low quality data.

The functions proposed can be easily adapted in other
assembly methods or techniques. Fuzzy logic can also be
used in a similar fashion for database querying, since the
approach proposed can be easily generalized for database
search problems.

The assembly can be further improved by applying
techniques such as scaffolding. Another improvement would

TABLE II
ASSEMBLY COMPARISONS ON ARABIDOPSIS THALIANA

Assembler Number of
Contigs

Average
Length

Percentage
Genome
Covered

MGS 144 940 56.8%
TIGR 102 502 88.8%
FGS 190 842 92.135%

MGS = Multiple Genome Sequencing using Smith-Waterman
algorithm, TIGR=TIGR Assembler 2.0, HGA_GS =Heuristically tuned
GA for assembly, FGS= Fuzzy Genome Sequencing, Number of
Contigs= total number of Contigs obtained after assembly, third
column is the average length of the Contigs, fourth column is the
percentage of original genome covered by the assembly.

TABLE I
ASSEMBLY COMPARISONS ON RPOBC OF WOLBACHIA GENOME

Assembler Number of
Contigs

Average
Length

Percentage
Genome
Covered

MGS 106 853 65%
TIGR 150 501 99.6%

HGA_GS 181 301 82%
FGS 165 608 99.6%

MGS = Multiple Genome Sequencing using Smith-Waterman
algorithm, TIGR=TIGR Assembler 2.0, HGA_GS =Heuristically tuned
GA for assembly, FGS= Fuzzy Genome Sequencing, Number of
Contigs= total number of Contigs obtained after assembly, third
column is the average length of the Contigs, fourth column is the
percentage of original genome covered by the assembly.

be data reduction before assembly; this would make it
possible to run larger data sets and also make the process
faster. This can be achieved by encoding the data, using hash
tables, indexing, etc. Current assemblers use different
techniques to achieve data reduction.

VII. FUTURE WORK

The work proposed in this paper is preliminary; there is
room for enhancements and extensions. We would like to
refine each of the parameter’s fuzzy characteristic functions.
Fuzzy matching calculates the degree to which the input data
match the conditions of the fuzzy rule; this can be used to
determine the degree of similarity [16]. One of the future
goals is to describe each match in terms of degrees of
similarity. Some of our future goals include:

a) Enhancing fuzzy matching techniques and using
them with other methods that are used for
sequence assembly such as suffix trees.

b) Using the fuzzy approximate methodology for
database searches of genomes.

c) Secondary structure prediction to enhance the
assembly process, using fuzzy similarity matrix.

d) Fuzzy dynamic programming in which we keep
track of gaps, word sizes, etc in a table that is
created along with the dynamic programming
tables. During sequence selection stage we can
check if the value is not in the limits in constant
time and accept or reject the subsequence. This
will save time of traversing every solution.

e) Creating an assembly tool for meta-genomic data
that is based on fuzzy logic.

ACKNOWLEDGMENT
The authors wish to thank Dr. Alison Murray, Assistant
Research Professor with the Division of Earth and
Ecosystem Sciences at the Desert Research Institute, Reno
Nevada. This work was supported in part by a grant
from NSF EPSCOR.

REFERENCES

[1] Gene Myers, Whole-Genome DNA Sequencing, IEEE Computational

Engineering and Science 3, 1 (1999), 33-43.
[2] Mihai Pop, Steven L. Salzberg, Martin Shumway, Genome Sequence

Assembly: Algorithms and Issues, 2002.
[3] F. Sanger et al., “Nucleotide Sequence of Bacteriophage Lambda

DNA,” J. Molecular Biology, vol. 162, no. 4, 1982, pp. 729-773.
[4] Mihai Pop, Adam Phillippy, Arthur L. Delcher and Steven L.

Salzberg, “Comparative Genome Assembly”, HENRY STEWART
PUBLICATIONS 1467-5463. BRIEFINGS IN BIOINFORMATICS.
VOL 5. NO 3. 237–248. SEPTEMBER 2004.

[5] Peltola, H., Soderlund, H. and Ukkonen, E. (1984), ‘SEQAID: A
DNA sequence assembling program based on a mathematical model’,
Nucleic Acids Res., Vol. 12(1), pp. 307–321.

[6] Genome Wikipedia, http://en.wikipedia.org/wiki/Genome , Accessed,
October 2006.

[7] Dynamic Programming- Wikipedia,
http://en.wikipedia.org/wiki/Dynamic_programming, Date accessed
Oct 2, 2006.

[8] K Kaplan. An Approximate String Matching Algorithm with
Extension to Higher Dimensions. UMI Microfilm. 1995.

[9] Gasch, A. P. & Eisen, M. B. Exploring the conditional coregulation of
yeast gene expression through fuzzy k-means clustering. Genome Biol
3, RESEARCH0059 (2002).

[10] Phred Quality Base calling,
http://www.phrap.com/phred/#qualityscores, date accessed Oct 3
2006.

[11] Satoko Kikuchi and Goutam Chakraborty,” Heuristically Tuned GA to
Solve Genome Fragment Assembly Problem”, IEEE Congress on
Evolutionary Computation, Vancouver, Canada, 2006. pp. 5640-5647

[12] Zheng Zhang, Scott Schwartz, Lukas Wagner, Webb Miller, “A
Greedy Algorithm for Aligning DNA Sequences”, Journal of
Computational Biology, vol 7, pp. 203-214, 2000.

[13] rpoBC DNA-directed RNA polymerase, Wolbachia endoysymbiont
of Drosophila melanogaster,
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrie
ve&dopt=full_report&list_uids=2738525, Date accessed Oct 2006.

[14] Arabidopsis thaliana genomic DNA, chromosome 3, BAC
clone:F11I2,
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=
7209730, Date accessed Oct 2006.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and
Clifford Stein, Introduction to Algorithms, Second Edition, 2001, pp
321-430.

[16] Smith T, Waterman M: Identification of common molecular
subsequences. Journal of Molecular Biology 1981, 147:195-197.

[17] J. Yen, R. Langari, “Fuzzy Logic Intelligence, Control, And
Information”, 1999, Prentice Hall.

[18] K. Mita, et al., “The Genome Sequence of Silkworm, Bombyx mori,”
DNA Research 11(1), pp.27-35, 2004

[19] TIGR Assembler 2.0, http://www.tigr.org/software/assembler/, Date
accessed Oct 2006.

