
 
 

 

  

Abstract—DNA matching is a crucial step in sequence 
alignment. Since sequence alignment is an approximate 
matching process there is a need for good approximate 
algorithms.  The process of matching in sequence alignment is 
generally finding longest common subsequences. However, 
finding a longest common subsequence may not be the best 
solution for either a database match or an assembly. An 
optimal alignment of subsequences is based on several factors, 
such as quality of bases, length of overlap, etc. Factors such as 
quality indicate if the data is an actual read or an experimental 
error. Fuzzy logic allows tolerance of inexactness or errors in 
sub sequence matching. We propose fuzzy logic for 
approximate matching of subsequences. Fuzzy characteristic 
functions are derived for parameters that influence a match. 
We develop a prototype for a fuzzy assembler. The assembler is 
designed to work with low quality data which is generally 
rejected by most of the existing techniques. We test the 
assembler on sequences from two genome projects namely, 
Drosophila melanogaster and Arabidopsis thaliana. The results 
are compared with other assemblers. The fuzzy assembler 
successfully assembled sequences and performed similar and in 
some cases better than existing techniques.  
 
Index Terms— Bioinformatics, Sequence Assembly, Fuzzy 
Logic, Approximate Matching, Dynamic Programming 

 

I. INTRODUCTION 
DNA sequence assembly can be viewed as a process of 

finishing a puzzle where the pieces of the puzzle are DNA 
subsequences or strings. The main difference being that a 
puzzle has pieces that fit in very well with each other. The 
pieces of a DNA puzzle do not fit together precisely. It’s a 
puzzle where the ends can be ragged, thus making it very 
difficult sometimes nearly impossible to complete the 
puzzle. Hence, we need methods or rules to optimally 
determine which piece fits with another piece. The following 
sections explain the steps involved in sequence assembly. 

DNA is composed of four nucleotides A, C, G, T. 
Genome sequencing is figuring out the order of DNA 
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nucleotides, or bases, in a genome that make up an 
organism's DNA. These nucleotides and their order 
determine the structure of protein.   

Sequencing the genome is a very important step in 
Genomics. Entire Genome sequences are very large in size 
and can range from several thousand base pairs to million 
base pairs. The whole genome can't be sequenced all at once 
because available methods of DNA sequencing can only 
handle short stretches of DNA at a time. Although genomes 
vary in size from millions of nucleotides in bacteria to 
billions of nucleotides in humans, the chemical reactions 
researchers use to decode the DNA base pairs are accurate for 
only about 600 to 700 nucleotides at a time [2]. 

Current techniques can read up to 800 base pairs (BP). So 
biologists chop up a sequence into smaller subsequences. 
The steps involved in this process are further explained in 
section I. 

Sequencing of an organisms’ DNA was a labor intensive 
task, but with recent advances in computational power this 
can be achieved. Several organisms’ genomes have been 
sequenced. On a larger scale, the mouse, rat and chimpanzee 
genomes are all being sequenced and mapped to the human 
genome to better understand human biology, and multiple 
Drosophila species are being sequenced and mapped onto 
one another [4]. Other genome projects include mouse, rice, 
the plant Arabidopsis thaliana, the puffer fish, bacteria like 
E. coli, etc [6].  

Even though computational power has made it possible to 
sequence genomes in limited time, several other problems 
exist. The sequence read from a machine is not always 100% 
correct. It may contain experimental errors. Human handling 
also causes errors in the input data. Some of the errors are 
due to low quality of the input. This adds additional 
problems to obtaining correct results.  Another well known 
problem with these sequences is that they contain repetitive 
sections. In other words, certain sections of nucleotides, 
called repeats, are repeated in the whole sequences. We will 
elaborate on repeats in later sections. 

 

A.  Genome Sequence Assembly 
The problem of sequencing is not of an exact matching 

but obtaining approximate matches through consensus. 
Hence techniques try to obtain a consensus sequence 
through approximate matches by following an overlap and 
consensus scheme [5]. The process of reading chopped DNA 
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and creating a consensus sequence is shown in Fig 1. 
 
 

 
Fig. 1. Whole Genome Sequencing process is displayed in terms of reads 
from the DNA sequences.   
  

1) Whole Genome Sequencing 
The "whole-genome shotgun" method, involves breaking 

the genome up into small pieces, sequencing the pieces, and 
reassembling the pieces into the full genome sequence. This 
is the point where we are trying to put the puzzle together. 
Process of sequencing DNA using Shot-gun sequencing 
method was introduced in 1995 [3]. More details about 
whole genome shot-gun sequencing can be found in [1, 3]. 
 

2)  Sequence Alignment 
The process of DNA sequencing begins by breaking the 

DNA into millions of random fragments, which are then 
given to a sequencing machine. Since the process of 
selecting the fragments is random using the sequence one 
may not cover all the regions. Therefore multiple copies of 
original sequence are used to ensure that the entire sequence 
is covered.  This is generally referred as a coverage of ‘nX’, 
where n is the number of copies. Coverage of 8X is widely 
accepted to be able to generate the entire sequence. Next, a 
computer program called an assembler pieces together the 
many overlapping reads and reconstructs the original 
sequence [2]. 

The process of DNA sequencing can thus be divided into 
several steps, as shown in Fig 2. 

 
a) Reading Sequences 
b) Assembling 
c) Finishing 

a) Reading Sequences 
Reading sequences is the process where a sequence reader 

reads raw sequences of DNA. The sequencer can only 
handle short sequences at a time. Hence the entire sequence 
cannot be fed into the sequencer. The output of the 
sequencer is sequences that are read into files called 
chromatograms. A Fourier transform on the chromatogram 
files can be done to figure out the bases from the 

chromatogram files. The results of this process are 
subsequences that are readable by human or any simple 
program. The output is now in the form of characters A, C, 
T, G, which represent nucleotides.  

 

 
Fig. 2. The major steps involved in the process of assembling sequences.   

b) Assembly 
After sequences are read and converted to the data files, 

they need to be put together. We have pieces of sequences 
that need to be put in the right place. A huge amount work 
involved in sequencing lies in putting together these 
sequences in right place. This process involves creating 
consensus sequences as shown in Fig 1. The Contiguous or 
overlapping sequence of DNA is also known as a Contig. 
Sequences are searched for matching regions and if a 
significant portion of these sequences overlap they can be 
combined into a Contig. More commonly, this problem is of 
obtaining a longest common subsequence (LCS). A LCS is a 
common subsequence that belongs to two or more 
sequences.  

The process of obtaining sequences is error prone, various 
problems occur such as errors in reading and flips. The 
process of assembly has to be robust to deal with these 
issues.  The problems that occur during sequencing will be 
discussed later. 

c) Finishing 
Finishing is a process that is generally done at the end of 

the assembly process. This is a manual process where 
scientists go through the assembled sequences and fill in any 
missing gaps. This process some times requires repeating the 
previous steps to obtain the gaps or missing pairs in the 
sequence on a smaller scale.  The process of finishing and 
the effort and time required depends on the assembly; if the 
assembly was good then finishing becomes easier.  

 

B. Problems with Assembly 
 In this paper we discuss problems with the sequence 

assembly. A lot of work has been done in sequencing 
genomes, but there are still challenges remaining. One of the 
reasons as we described above was due to the fact that 
precise alignment of subsequences is a hard problem. As 
genome sequences are huge in data even with the 



 
 

 

computational power available it is not possible to obtain 
best solution in a given time. The process of assembly is also 
hard because we have to look for several hundreds of 
subsequences before we can determine if they can be put 
together. The time complexity for a dataset of two 
subsequences of length k is Θ (2k). Since this problem is NP-
Hard, and we need to search through several hundreds or 
thousands of pairs, a brute-force force approach cannot be 
considered as a viable option.  

The following section discusses the techniques and lists 
some of the tools available for sequence assembly. Section 
III provides details about dynamic programming, in Section 
IV the fuzzy approach and extensions to dynamic 
programming are proposed, Section V contains the results, 
followed by conclusion in Section VI. 

II. TECHNIQUES 
 

The techniques or processes involved in sequence 
assembly can be divided into two steps, I) arranging the 
sequences in order to obtain consensus sequences ii) recover 
the data lost during the experimental process.  

The area of sequence assembly has been a very prominent 
area in computational biology or bioinformatics. Extensive 
work has been done to determine optimal methods for 
sequence assembly. Techniques such as Neural Networks, 
Hidden Markov Models, and Bayesian Networks have been 
used. Most of these techniques are computationally 
expensive and require high performance computing with 
huge training. Genetic Algorithms have also been used to 
perform sequence assembly [11]. Even though Genetic 
algorithms take a long time to run and converge they are 
computationally less expensive than Neural Networks. 
Several algorithms and issues with them are discussed in [2]. 
There are several tools for sequence assembly including 
Phrap, TIGR assembler, Celera assembler.  

Currently most of the sequence applications do not 
tolerate any kind of inexactness or errors in sub sequence 
matching. String matching in nucleotide sequences is 
challenged by variation because there are few concepts in 
matching such as LIKE, NOT LIKE, or SIMILAR. Even 
though there have been methods where scores are calculated 
based on factors for similarity, these methods still try to find 
a crisp match. 

Symbolic sequential data can be considered as either (1) 
exact matching or (2) approximate matching (most similar 
match). Quite often in real world data mining applications, 
especially in molecular biology, exact patterns do not exist 
and therefore, an approximate matching algorithm is 
required. An algorithm that performs a match to a certain 
degree is desired. 

Another problem is that there are several tools that exist 
for alignment. Majority of these tools are designed to work 
with good quality data. Data that is of low quality is not used 
in the consensus sequence. But if most of the data is low 
quality these tools fail to align the sequences and result in 

fewer Contigs. The quality of the data is measured as the 
probability of the correctness of a nucleotide read from the 
sequencer.  The raw data is in form of chromatograms, these 
are curves have different peaks which represent each of the 4 
nucleotide bases, ‘A’, ‘C’, ‘T’ and ‘G’. Some times it is easy 
to determine a base from these peaks. Sometimes a base is 
not represented strongly. Generally, the quality of the bases 
is weaker at the ends and stronger in the middle of a 
subsequence. This is due to the behavior of the sequencing 
machine. Thus, there is a probability associated with each 
base read which indicates the strength of the read. This 
probability is called the quality of the base. The quality of 
the base is read during assembly of sequences.  If the quality 
is low, the base is not considered in the alignment process.  

For example Phred is software that can be used to 
generate base pair files [10]. Phred reads DNA sequence 
chromatogram files and analyzes the peaks, and determines 
the base from each peak; assigning quality scores ("Phred 
scores") to each base. Phred assigns quality within the range 
of 4-60 to the bases. A quality of 15 is generally considered 
as the lower bound. A quality of 20, which means 99% 
accuracy of the base, is universally accepted. 

III. DYNAMIC PROGRAMMING 
 

Dynamic programming, like the divide-and-conquer 
method, solves problems by combining the solutions to 
subproblems [15]. It can also be defined as a method for 
reducing the runtime of algorithms which exhibit the 
properties of overlapping sub-problems and optimal 
substructure [7]. Dynamic programming has been 
extensively used to determine the LCS. The reason for its 
popularity is that its time complexity is Θ(n3). Modifications 
of dynamic programming have been used in the field of 
bioinformatics, one such popular algorithm is the Smith-
Waterman algorithm with an Θ(n2) time complexity. This is 
only to compare two subsequences. To assemble a genome 
we need compare multiple sequences, thus the complexity 
for the assembly process can go up to Θ(n5), unless 
modifications of dynamic programming are used. 

Other techniques for finding the longest common 
subsequence include, suffix tree, KMS algorithm, greedy 
approaches. The KMS Algorithm identifies best matches of 
the longest substrings of the matches of many strings [8]. A 
greedy algorithm can be used for aligning sequences that 
differ by sequencing errors [12]. A greedy approach can be 
much faster than traditional dynamic programming but 
cannot be generalized. 



 
 

 

 
Fig. 3. Table constructed using Dynamic Programming to find the Longest 
Common Subsequence. 

 
Fig. 3 shows the table constructed while using dynamic 

programming.  The method of finding a LCS is to start from 
the end of the table and traverse along the direction indicated 
by the cell. The numbers in the cells indicate the length of 
the subsequence until that cell. The highest number in the 
table indicates the longest subsequence that can be found 
between the two sequences. Since the longest subsequence 
will most likely occur in the cells along the diagonal. Note 
that by simply traversing the table we can obtain the longest 
common subsequence. This may not be a contiguous 
subsequence.  This method is simple and is very useful in 
finding longest common subsequence which may have 
mismatches in the sequence. This suits well to assembly 
problems since not all subsequences found will be perfect. 
This can be easily modified to find contiguous 
subsequences. In case of genome subsequences we would 
like to get the longest subsequence with few insertions or 
deletions (indels). One of common techniques used by 
assembly processes such as, Phrap is to search within a 
bandwidth along the diagonal. If the path is beyond the 
bandwidth the indels increase, and it is not a good match. 
The diagonal arrows within each cell indicate a match, the 
more diagonal arrows we have we stay within the 
bandwidth, as mismatches increase we either go up or left.    

The optimal subsequence could be one with perfect 
matches, or in some cases the users could tolerate indels 
more than in other cases. These criteria can depend on the 
use, the source of the data, quality of the data, etc. Almost 
all existing techniques provide thresholds where users can 
choose where to cut off. Sometimes the user is not clear on 
the ideal cut off point for a particular data set, and may need 
to determine it empirically. For example, if the cutoff value 
for the maximum gap allowed is 30 bases and there are fairly 
large numbers of sequences with a gap of 31 and 32, we will 
not be including these sequences, even though they are 
close. Due to the fact that these techniques allow for crisp 
matches only. On the other hand we can represent a match of 
30 and lower with a fuzzy value of 1, which is for crisp 
matches. Matches those are very close like 31 could have a 
fuzzy value of 0.98. If the user selects to allow all matches 

greater than the value 0.8 then these subsequences would be 
included. The user in this case does not have to look into the 
data and change parameters and run the program several 
times. Since there are several parameters the user may not 
even know which parameter needs to be altered? The main 
objective is to obtain the best consensus overall. 

This paper proposes a fuzzy matching technique where we 
can have crisp and non-crisp matches. The user could also 
obtain a fuzzy value that states how well the matching 
sequences fit the threshold. 

The application of Fuzzy Logic has not been explored 
much in the area of approximate matching or similarity 
measures for genome assembly. Fuzzy Logic has been 
applied to classification problems in computational biology. 
Even though applications of fuzzy logic have not been done 
extensively, recently it started gaining popularity. A 
modified fuzzy k-means clustering was used to identify 
overlapping clusters of yeast genes based on published gene-
expression data following the response of yeast cells to 
environmental changes [9].  

IV. FUZZY LCS  
 
The main objective of our method is assembling data by 

approximate matching using fuzzy logic. To achieve this we 
provide several matches of two subsequences. Then to pick 
the best match based on the criterion specified by the user. 
We use dynamic programming to demonstrate the use of 
fuzzy rules as it is the most commonly used method. 

Fuzzy Logic has been used in approximate string 
matching using distance measures, etc. However, very little 
work has been done in the application area of building 
genomes from subsequences of nucleotides. Moreover this 
process becomes computationally expensive because 
multiple comparisons have to be performed for each possible 
string pair. The accuracy of any fuzzy matching system is 
partially determined by the error model used. An accurate 
system reflects the mechanism responsible for the variations 
in the match. Therefore a flexible error metrics is desired 
that is generic for any fuzzy matching. Current sequencing 
methods tend to reject sequences that do not match with a 
high degree of similarity. This can lead to large amounts 
of data being rejected by algorithms that otherwise may 
be important in deriving a genomic sequence and the 
metabolic characteristics of such a sequence.  

 

A.  Modifications to Dynamic Programming 
 
One of the problems as mentioned earlier with existing 

techniques is that they have crisp bounds. The user has to 
specify the parameters for the program. The parameters need 
to be changed by the user to suit the data, and then the 
program is run one or more times, until an optimal solution 
is found, since the user has to determine which parameters 
work best with the given sample. 



 
 

 

Sometimes selecting the longest subsequence is the 
optimal solution. Some applications prefer longer sequences; 
in some other cases a long sequence with higher quality is 
preferred. If this criterion is not satisfied the sequences are 
generally not selected. We propose a method where we 
select more than one subsequence and then based on several 
parameters select the optimal solution. If the sequence 
satisfies the aggregate overall requirement it is selected. This 
selection is based on fuzzy values. In other words, we are 
measuring the fuzzy similarity of the given subsequences. 
There are several factors that determine if two subsequences 
can have an optimal overlap. These factors are used to 
measure their similarity. For example, two subsequences can 
form a Contig if their overlap region is larger than a 
threshold. They could be highly similar if they have less 
number of indels. The similarity is lesser if the indels were 
more. 

Firstly, we would like to select several overlapping 
regions. We do not want to select every possible overlap. 
Since finding a fairly longer subsequence is better we select 
this based on length. Based on the longest possible 
subsequence that can be obtained we select every 
subsequence that is within a range ‘x’ of the LCS. The fuzzy 
value for each possibility is calculated and if it is satisfied 
the subsequence is selected.  

In Fig 3, the dynamic programming table is illustrated. 
The arrows indicate the longest common sequence path. The 
darker shaded cells indicate all the cells that will be 
traversed to search for the optimal subsequence. Since we 
perform a non-banded search it’s not ideal to search every 
cell. A cell is marked if it was already traversed, so we don’t 
check it again. We add a new table that will keep track of 
cells that are traversed and everything under a threshold is 
selected. We select subsequences which have:  

 
length  >= threshold 

 
Instead of selecting the longest common subsequence 

from the dynamic programming table, we select all the 
subsequences that satisfy a minimum length required.  Then 
we determine if either of these subsequences will create an 
optimal match using similarity measures. Each of the 
matching regions has a similarity measure associated with 
them.  

Cells that have at least 6 matching base pairs are selected 
for traversal. If we skip cells with less than 6 matching base 
pairs and it’s a high similarity subsequence, then they will be 
picked up in later iterations and only the ends will be lost. 
Therefore this rule does not eliminate any possible good 
subsequences. 

In case of multiple sequence alignment we need to 
compare sequences to determine which ones can form a 
consensus or Contig as shown in Fig 1. This process requires 
several comparisons and it is not easy to determine which 
sequences would yield the better Contigs. Hence we propose 
to calculate fuzzy values for each Contig, where higher 

value indicates a better Contig.  The parameters for this 
would be same as the parameters to select a subsequence. 
The following section lists the characteristic functions. 

 

B. Fuzzy Similarity Measures 
 

Fuzzy similarity measures are an important step in 
creating a Contig from two subsequences or finding an 
overlap between two sequences. We use the term match to 
refer subsequence. 

 
(i) Length of Overlap (µlo):  The first parameter that we 

look at is the length of the match. This is also the size of 
overlap when a Contig is being created. This length includes 
indels and replacements. The higher overlap is better. 

 
µlo = fn (Overlap) 
 
(ii) Confidence (µqs): The confidence for each Contig is 

defined as, a measurement of the quality of the contributing 
base pairs. The quality of a base pair indicates if the read 
was strong and strong read indicates a correct read or less 
changes of noise or experimental error.  Every base involved 
in the Contig has a quality score. The confidence of a Contig 
is the aggregate quality score of it contributing bases. For 
simplicity, the sum of average quality scores is the 
confidence of the Contig. µqs is the qs for the overall overlap 
region, which we calculate as follows   
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At present a simple function is used for weights. We   

would like to update this with standard functions such as a 
Gaussian, Sigmoid, etc.  

(iii) Gap Penalty (µgp): This is the maximum gap that is 
allowed in a match. Gap is measured in terms of the number 
of bases. 
 

Gaps= ∑(fn(insert)+ fn (delete)+ fn (replacement))   (3) 
µgp =( fn (overlap) – Gaps)/ fn (overlap)       (4) 
 
(iv) MinMatch (µwl): This is the minimum number of 



 
 

 

matching bases that are required between the two sequences. 
Genomic DNA contains only 4 characters and they can be 
lot of overlaps with these 4 characters. Therefore we would 
like to have a cutoff value for matching sequences. We also 
refer to this as the word length. 

 
µwl = fn (matchingBP)              (5) 

 
(v) MinScore: The minimum score of a match. A score is 

calculated from the number of matching bases, number of 
indels and replacement. MinScore is used as a threshold. 
Score can be calculated in different ways. For example: 

 
A- CTCGCGAT- GCG 
AGCTCG- GATTGAG 

 
 For the above subsequences there are 11 BP matches, 2 

inserts, one delete, and one replacement. If all are given 
value one the score is  

 
score= fn(MatchingBP)– fn(Inserts)- fn(Deletes)- 
fn(Replacements)                        (6) 
 
 score= 11-2-1-1 = 7 
 
Some methods weight the matching base pairs higher than 

the indels, so the score might be different.  
Once the fuzzy value for each of these parameters is 

calculated, we plug them in an overall fuzzy function. This 
function is the aggregate fuzzy match value. We currently 
use only 4 of the above parameters in the aggregate function. 
At this point minimum score is used for checking if a score 
is below a certain threshold. In the current implementation 
we fix the value of weights. Later we would like to calculate 
the weights.    

 

lologpgpwlwlqsqs wwwwcfa µµµµ +++=)(      (7) 

afv = fa(c)/m         (8) 
 
The subsequences that produce the highest fuzzy value are 

selected as optimal sequences. Depending on their position 
as a suffix or prefix a new Contig or consensus sequence is 
formed. The new Contig has new consensus quality scores. 
In some cases they are subsequences that overlap only at the 
middle. For example,  

 
tcaatgttactagtgaatatttctatgatgaactgaagaa 
-------------agtgaatatttct---------------------- 

 
 We cannot create a new Contig with these subsequences. 

For these sequences we update the confidence of the 
consensus or the Contig. This makes it possible for them to 
be used in further matches since their confidence is 
increased. For example, if sequence Y has low quality bases 
and matches with other sequences of higher quality then the 
confidence of Y increases. 

 

C. Repeats 
Repeats or repetitive patterns in a sequence are quite 

common in genomic data. Repeats make the process of 
assembly complicated. The sequences not only need to be 
put together into a Contig but the sequences that are similar 
and in a Contig may belong to different regions of the 
genome. We also need to evaluate the sequences are 
matched if they may be from different repeats. 

 
Fig. 4. Repeats in a Contigs can create mis assembly. As can be seen Contig 
A has repeats put together. Contig B would be the correctly assembled 
Contig. 

 
Repeats are illustrated in Fig 4.  Contig A is created by 

two repeats combining together and hence causing a mis 
assembly. Contig B is the actual Contig that is desired, 
where repeat I and repeat II are highly similar but still are 
different parts of the genome. There are ways to resolve 
issues of repeats. For example if a Contig has significantly 
large number of reads then it could be an incorrect assembly. 
This could be determined by the coverage of the genome.  

The problem with repeats is that may lead to an incorrect 
assembly therefore we need to determine if the assembly 
contains repeats. Some assemblers count the depth of the 
match, if it is high then there are higher chances that it was a 
repeat. Since the sequences are sequenced X times, there 
should not be more than X occurrences of a segment. We 
use depth to refer to the number of subsequences that are 
contributing to the Contig. Counting the depth may not work 
since we are selecting the subsequences randomly, certain 
regions may be selected more times than the others. This 
process may work if some of these highly similar regions are 
removed. But the problem still occurs with repeats that are 
not detected because their depth was less and these regions 
were not represented very well. 

Even though these repeats are highly similar they are very 
unlikely same. Small differences can be detected in these 
repeats to separate them. In the absence of sequencing 
errors, a single nucleotide difference between two copies of 
a repeat is enough to distinguish them [2]. Hence once these 
regions are detected we can try to find dissimilar ones 
among them. 



 
 

 

In our approach we created Contigs by pair wise 
comparison of sequences or sequence and a Contig, and we 
also get multiple results, hence for the problem shown above 
we get both Contig A and Contig B. Now we have to 
determine which one of these Contigs is correct. Each 
Contigs is associated with a fuzzy similarity value. The 
fuzzy similarity value is an aggregate of several fuzzy values 
such as, the length of the Contig, the confidence of the 
Contigs, the number of mismatches, maximum length of 
words, etc. If the fuzzy similarity measure is taken for both 
Contig A and Contig B, there are likely chances that Contig 
B will be chosen. The first reason is that the length of Contig 
B has a higher value. Assuming that the repeats have slight 
dissimilarities the match fuzzy value would be lower for 
Contig A than Contig B. Finally, the confidence score of 
Contig A would be lower if we have even a single nucleotide 
that was different than the other. Hence all these factors 
would result in selecting the Contig with the higher fuzzy 
value that is selecting Contig B. 

V. EXPERIMENTS, RESULTS AND DISCUSSIONS 
 
The Fuzzy Genome Sequence Assembler was 

implemented with modified dynamic programming and the 
fuzzy functions given above. The assembler was tested on 
generated data sets and data from GenBank. GenBank is a 
publicly available database of nucleotide sequences. 
Artificially generated data sets were used to verify the 
algorithm and thus the assembly process. The experiments 
were run on a G5 with a 1.83GHz Intel Core 2 Duo 
processor and 4GB of RAM.  

The first genome sequence tested was the Wolbachia 
endosymbiont of the Drosophila melanogaster strain wMel 
16S ribosomal RNA gene, partial sequence, which can be 
obtained from GenBank. Wolbachia is a microscopic 
organism that has been used to test several alignment tools. 
The gene is "rpoBC", locus_tag="WD0024" and the GeneID 
is “2738525” [13]. This particular sequence codes for a 
protein. The sequence contains 8514 base pairs. The total 
bases read were 4X of the original sequence. We selected 
300 random fragments or subsequences from this set.  Each 
subsequence was in the range of 300-600bps.  Fragment 
sizes less than 500bp are commonly used for assembly [11, 
18]. Therefore we chose an average fragment/subsequence 
length 450bp. The results of assembly are shown in Table 1. 
In Table 1, MGS refers to an implementation of Smith-
Waterman algorithm for multiple sequence alignment [16]. 
HGA-GS is a heuristically tuned GA, which used a 4X 
coverage and 500 subsequences with an average length of 
400 bp [11], TIGR is the TIGR Assembler [TIGR]. TIGR 
assembler assembled the data into a final consensus 
sequence. FGS is the fuzzy sequence assembly method that 
is described in the paper.  

The second genome sequence we tested was the 
Arabidopsis thaliana, gene_id:F11I2.4. Detail of this 
sequence can be obtained from GenBank [14]. This 
sequence contains 36, 034 base pairs. We used 3X coverage 

of the original sequence. 300 sequences of length between 
300-600 bps were randomly generated. The result of 
assembly on this data is shown in Table 2. 

The results obtained from assembling both the genome 
projects showed a fairly high percentage of the genomes 
covered. For the Wolbachia project 99.6% of genome was 
recovered which is similar to the TIGR assembler. For 
Arabidopsis thaliana 92% of the genome is recovered. Even 
though the results are better than the other techniques, we 
suspect the smaller percentage could be due to the smaller 
amount of initial coverage; only 3X was used in this case. 
We could not use larger coverage or test on larger genome 
projects due to limitations of available hardware.  

VI. CONCLUSION 
 
This paper proposes use of fuzzy logic for approximate 

sequence assembly. Preliminary fuzzy characteristic 
functions are proposed which suggest one possible approach 
towards utilizing fuzzy logic in assembly. We tested the 
FGS assembler on published genome projects and compared 
the results with other assemblers. The results obtained 
clearly demonstrate that the FGS assembler can generate 
optimal assembly. This technique addresses the problems 
caused by repeats and low quality data. 

The functions proposed can be easily adapted in other 
assembly methods or techniques. Fuzzy logic can also be 
used in a similar fashion for database querying, since the 
approach proposed can be easily generalized for database 
search problems.  

The assembly can be further improved by applying 
techniques such as scaffolding. Another improvement would 

TABLE II 
ASSEMBLY COMPARISONS ON ARABIDOPSIS THALIANA 

Assembler Number of 
Contigs 

Average 
Length 

Percentage 
Genome 
Covered 

MGS 144 940 56.8% 
TIGR 102 502 88.8% 
FGS 190 842 92.135% 

MGS = Multiple Genome Sequencing using Smith-Waterman 
algorithm, TIGR=TIGR Assembler 2.0, HGA_GS =Heuristically tuned 
GA for assembly, FGS= Fuzzy Genome Sequencing, Number of 
Contigs= total number of Contigs obtained after assembly, third 
column is the average length of the Contigs, fourth column is the 
percentage of original genome covered by the assembly. 

 
 

TABLE I 
ASSEMBLY COMPARISONS ON RPOBC OF WOLBACHIA GENOME 

Assembler Number of 
Contigs 

Average 
Length 

Percentage 
Genome 
Covered 

MGS 106 853 65% 
TIGR 150 501 99.6% 

HGA_GS 181 301 82% 
FGS 165 608 99.6% 

MGS = Multiple Genome Sequencing using Smith-Waterman 
algorithm, TIGR=TIGR Assembler 2.0, HGA_GS =Heuristically tuned 
GA for assembly, FGS= Fuzzy Genome Sequencing, Number of 
Contigs= total number of Contigs obtained after assembly, third 
column is the average length of the Contigs, fourth column is the 
percentage of original genome covered by the assembly. 

 
 

 



 
 

 

be data reduction before assembly; this would make it 
possible to run larger data sets and also make the process 
faster. This can be achieved by encoding the data, using hash 
tables, indexing, etc. Current assemblers use different 
techniques to achieve data reduction. 

VII. FUTURE WORK 
 

The work proposed in this paper is preliminary; there is 
room for enhancements and extensions. We would like to 
refine each of the parameter’s fuzzy characteristic functions. 
Fuzzy matching calculates the degree to which the input data 
match the conditions of the fuzzy rule; this can be used to 
determine the degree of similarity [16]. One of the future 
goals is to describe each match in terms of degrees of 
similarity. Some of our future goals include:  
 

a) Enhancing fuzzy matching techniques and using 
them with other methods that are used for 
sequence assembly such as suffix trees. 

b) Using the fuzzy approximate methodology for 
database searches of genomes. 

c) Secondary structure prediction to enhance the 
assembly process, using fuzzy similarity matrix. 

d) Fuzzy dynamic programming in which we keep 
track of gaps, word sizes, etc in a table that is 
created along with the dynamic programming 
tables.  During sequence selection stage we can 
check if the value is not in the limits in constant 
time and accept or reject the subsequence. This 
will save time of traversing every solution. 

e) Creating an assembly tool for meta-genomic data 
that is based on fuzzy logic. 
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