To Install and Run NCS6

-Instructions using Linux OS

Required Packages: Install before running NCS6

• cuda (CUDA 4.0)

• Use the link below as reference for CUDA installation:

- http://sn0v.wordpress.com/2012/05/11/installing-cuda-on-ubuntu-12-04/
- o visit http://developer.nvidia.com/cuda/cuda-toolkit-40
- choose and download the correct version for your machine
- bison
 - 'sudo apt-get install bison'
- flex
 - 'sudo apt-get install flex'
- openmpi
 - visit http://www.open-mpi.org/software/ompi/v1.6/

 choose the correct file for your machine
- g++ 4.4 and 4.6
 - 'sudo apt-get install g++ g++-4.4 g++-4.6
- doxygen
 - 'sudo apt-get install doxygen'
- graphvis
 - 'sudo apt-get install graphviz'
- cmake
 - o 'sudo apt-get install cmake'

Installing NCS6

- Go to the NCS Project Page and click on the download link for the zip file (NCS6.zip)
 - Download the file in the location you wish to have NCS6
- Extract the files: there are multiple ways to do this
 - Right click on the zip file Choose Extract Here
 - Open a terminal
 - Navigate to the directory where the zip file is located
 - type 'unzip NCS6.zip -d <extraction directory>'
- Open a terminal
 - With Ubuntu, simply press Ctrl+Alt+T
- Navigate to the 'brainslug' directory (this is the extracted directory from the NCS6 zip file)
- Create a build folder
 - o 'mkdir build'
- Enter the build directory
 - \circ 'cd build'
- Make the program (this process may take awhile)
 - 'cmake ..'
 - ∘ 'make'

Run NCS6 on Your Machine

Follow these steps from within the 'brainslug/build' directory

STEP 1: Set the cluster of devices to be used for the simulation

- 'applications/clusterSpecifier/clusterSpecifier -nocpu <options> <outputFile>'
 - The option available for this command is '-nocuda'
 - 'nocuda' will stop the machine from using cuda
 - The outputFile is the name of the file containing the cluster information. Specify the name to later reference the file.

STEP 2: Set the cluster in brainslug

- 'applications/clusterInfo/clusterInfo <clusterFile>'
 - The clusterFile is the name of the outputFile created by the Step 1 command.

STEP 3: Run the NCS Distributor

- 'applications/ncsDistributor/ncsDistributor <NCSFile> <clusterFile> <distributor>'
 - The NCSFile options can be found in sub-directories located in the "files" directory of brainslug (.../files)
 - ex) ../files/simple/Simple.in
 - The clusterFile is the specified cluster file in the build directory (file created in Step 1 command)
 - The distributor is created by the NCSDistributor command. Specify the name to later reference the distributor for use in the simulator.

STEP 4: Run the Izhikevich Distributor

 'applications/izhDistributor/izhDistributor <neuronFile> <synapseFile> <currentFile> <numNeurons> <clusterFile> <distributor>'

- The neuronFile, synapseFile, and currentFile options can be found in sub-directories located in the "files" directory of brainslug (../files)
- The clusterFile is the specified cluster file in the build directory (file created in Step 1 command)
- The distributor is created by the izhDistributor command. Specify the name to later reference the distributor for use in the simulator

STEP 5: Run the simulator

- 'applications/simulator/simulator <distributor>'
 - The distributor option is the name of a distributor created in Step 3 and 4

Run NCS6 on Multiple Machines

Follow these steps from within the 'brainslug/build' directory

STEP 1: Create an MPI file

• using a text editor, create new file: <fileName>.mpi

STEP 2: List the names of the computers and the number of slots to be used

• ex) <computerName> slots=1

```
<computerName2> slots=1
```

• save the file

STEP 3: Set the cluster of devices to be used

- 'mpirun -np 2 --hostfile <fileName>.mpi applications/clusterSpecifier/clusterSpecifier -nocpu <options> <outputFile>'
- *ex) mpirun -np 2 --hostfile myComps.mpi applications/clusterSpecifier/clusterSpecifier -nocpu test.cluster*
 - The option available for this command is '-nocuda'
 - \circ 'nocuda' will stop the machine from using cuda
 - The outputFile is the name of the file containing the cluster information. Specify the name to later reference the file.

STEP 4: Set cluster to be used in brainslug

- 'mpirun -np 2 --hostfile <fileName>.mpi applications/clusterInfo/clusterInfo <clusterFile>'
 - The clusterFile is the name of the outputFile created by the Step 3 command.

STEP 5: Run NCS Distributor

- 'applications/ncsDistributor/ncsDistributor <NCSFile> <clusterFile> <distributor> '
- ex)

applications/ncsDistributor/ncsDistributor ../files/simple/Si mple.in test.cluster foo

- The NCSFile options can be found in sub-directories located in the *'files'* directory of brainslug (../files)
 - ex) ../files/simple/Simple.in
- The clusterFile is the specified cluster file in the build directory (file created in Step 3 command)
- The distributor is created by the NCSDistributor.
 Specify the name to later reference the distributor for use in the simulator.

STEP 6: Run the simulator

- 'mpirun -np 2 --hostfile <fileName>.mpi applications/simulator/simulator <distributor>'
 - The distributor option is the name of a distributor created in Step 5