NCS: A Large-Scale Brain Simulator

University of Nevada, Reno

Brain Computation Lab www.cse.unr.edu/brain

Brain Computation Lab

Navigation

- Research Projects
- People
- Publications
- Sponsors
- Conferences
- Opportunities
- University of Nevada, Reno
- Department of Computer Science and Engineering
- School of Medicine
- Biomedical Engineering Program

Welcome to the Brain Laboratory!

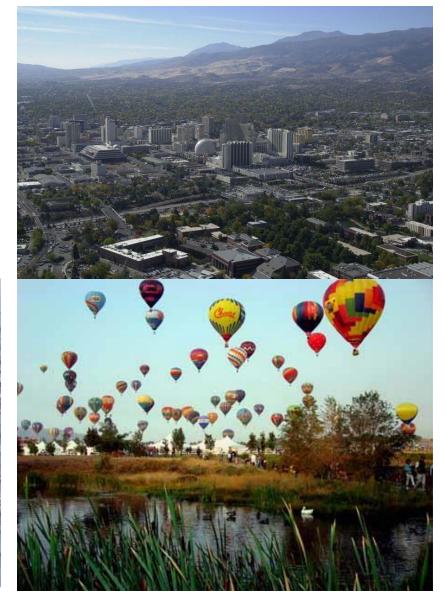
Good Morning!

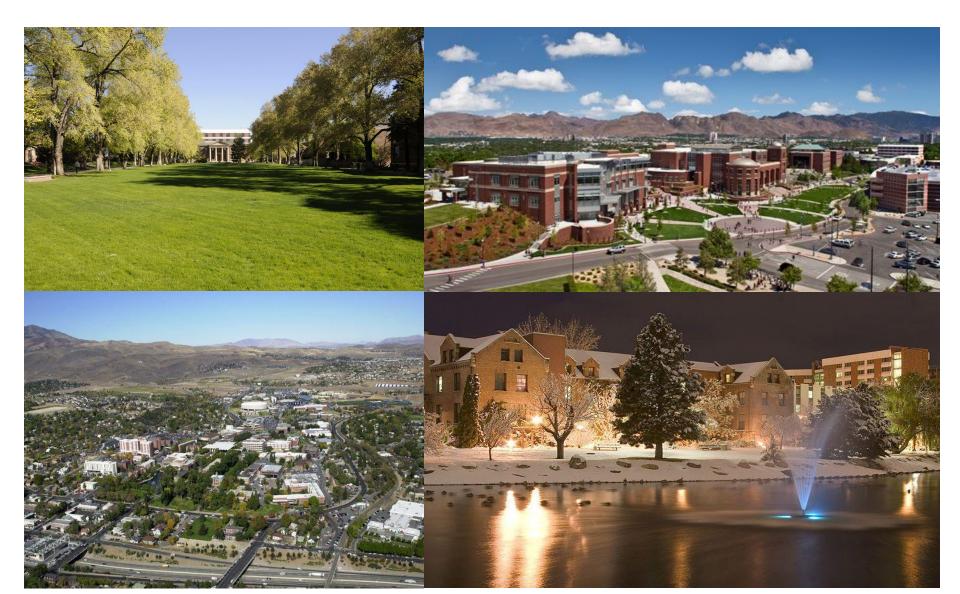
Founded in 2001, the brain lab is a joint research center between the departments of Computer Science & Engineering, Medicine, Physiology & Cell Biology, and the program of Biomedical Engineering. It also has neurobiological collaborations with the Brain Mind Institute at the EPFL (Switzerland), the University of Cergy Pontoise (France), and the University of Bonn (Germany).

Our researchers consists primarily of undergraduate/graduate students and alumni of the University of Nevada, Reno. They are actively developing computational innovations to understand the physiological processes that give rise to neocortical memory, learning, and cognition. Our models and experiments help understand brain pathophysiology and create brain-like artificial intelligence and neural prosthetic devices.

New Publications

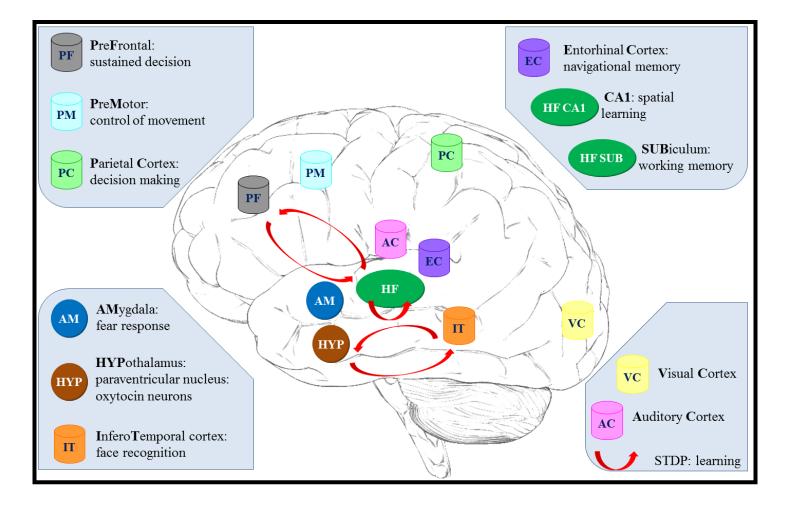
- Goal-related navigation of a neuromorphic virtual robot
- Brainlab: a Python toolkit to aid in the design, simulation, and analysis of spiking neural networks with the NeoCortical Simulator
- Design and Implementation of an NCS-NeuroML Translator
- Real-Time Human-Robot Interaction Underlying Neurorobotic Trust and Intent Recognition




Reno, Nevada

University of Nevada, Reno

What is NCS?


- The NeoCortical Simulator (NCS) is designed for modeling large-scale neural networks and systems
- One of the first simulators to support neurorobotic applications
- Different types of neuron models available:

 Leaky integrate-and-fire / Hodgkin-Huxley
 Izhikevich
- Free and open source
- Developed and maintained by the UNR Brain Computation Laboratory

Why use NCS?

- Biological brain models
- Real-time Simulation
- Different levels of abstraction
- Several neuron models
- GPU computation
- No programming language experience required
- Good for modeling neural systems and networks
- Up to 1M neurons and 100M synapses in quasi realtime

Modeled Brain Regions Using NCS

- Version 1:1999
 - Matlab Goodman, Markram, and McKenna
 - o 160-cell, 2-column architecture
 - Each cell was modeled as a single integrative compartment (point neuron) with a spike mechanism,

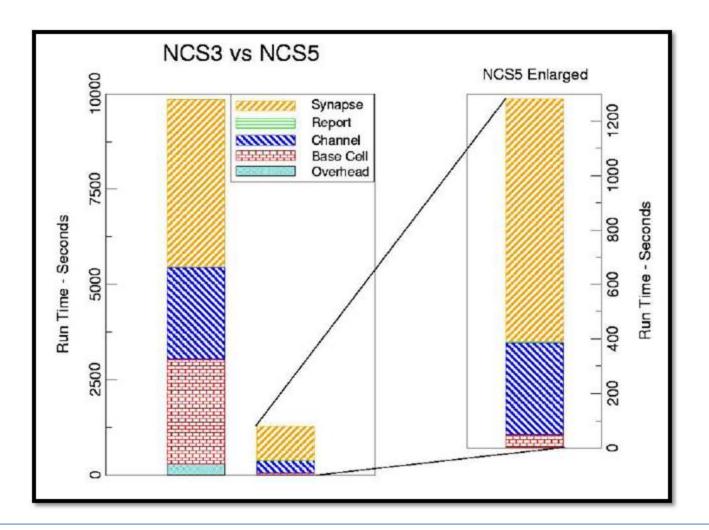
calcium-dependent (AHP) channels, and
 voltage-sensitive A and M (muscarinic)
 potassium channels

M.M. Kellog, H.R. Wills, and P.H. Goodman. "A biologically realistic computer model of neocortical associative learning for the study of aging and dementia." J. Investig. Med., 47(2), February 1999.

- Version 1b: 1999
 - Direct translation to C from Matlab
 - \circ 24 times faster.
 - tested on mixed excitatory-inhibitory networks of up to 1,000 cells

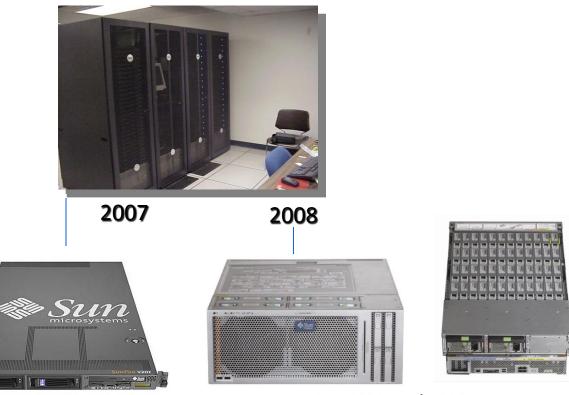
M.M. Kellog, H.R. Wills, and P.H. Goodman. "A biologically realistic computer model of neocortical associative learning for the study of aging and dementia." J. Investig. Med., 47(2), February 1999.

• Version 2: 1999


 code was then redesigned and rewritten for distributed processing on an existing 20-cpu cluster (Pentium II).

 Initial trials of this code were performed on cortical networks of 2 to 1,000 cells

M.M. Kellog, H.R. Wills, and P.H. Goodman. "A biologically realistic computer model of neocortical associative learning for the study of aging and dementia." J. Investig. Med., 47(2), February 1999.


Item	NCS3	NCS5	Ratio	
$Overhead^a$	294.167	1.897	155.1	
Base Cell/Cmp ^{b}	0.020	3.035	153.6	
$Channel^{b}$	0.152	0.398	2.6	
$\operatorname{Report}^{c}$	0.017	4.113	239.4	
Synapse, 0 Hebb ^b	0.031	0.383	12.5	
Synapse, $+$ -Hebb ^b	0.020	0.368	18.1	
a) Seconds.				
b) Millions of Objects Processed per Second				

c) Millions of Values Reported per Second

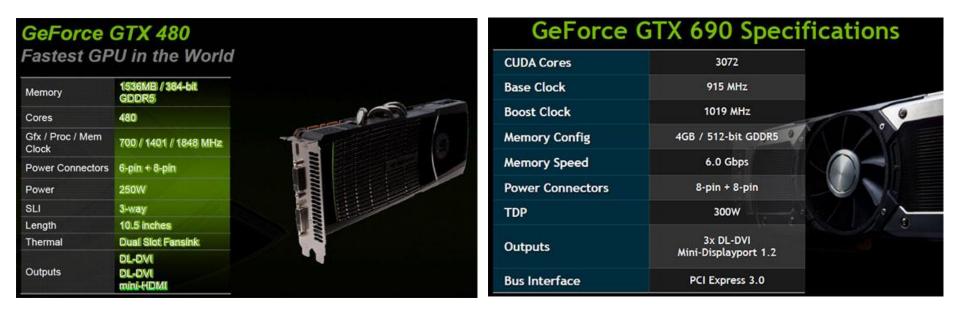
James Frye, James G. King, Christine J. Wilson, and Frederick C. Harris, Jr. "QQ: Nanoscale timing and profiling" In Proceedings of PMEO-PDS, Denver, CO, April 3-8 2005.

NCS5 Hardware

Sun v20z Opteron (60 CPUs)

ONR DURIP 2007:

Sun 4600s and 4500s 16 core boxes with 200GB of RAM connected by Infiniband And several 24TB disk arrays


ONR DURIP 2008:

Current NCS version 6 implementation

- GPU/CPU/cluster-based
 - $\,\circ\,$ Runs on CPUs and CUDA devices simultaneously
- Plugin interface for multiple model support
 - LIF/HH Neurons
 - Izhikevich Neurons
 - Ability to design your own
- Ability for multi-scale modeling

NCS 6 Software / Hardware

- Linux based operating system
- NVIDIA GPU (GeForce GTX 400 series or higher)

Current Optimization

- C++ 11
- Heavily threaded
 - Latency hiding
 - \odot Increased occupancy
- Modular message passing design
- GPU usage for parallel computation
- Load-balancing across heterogeneous clusters

Performance Data Izhikevich

	Izhikevich 1 second simulation				
Machines	# Neurons (k)	Synapses (M)	Time (s)		
1	100	10	0.90		
4	400	40	1.00		
8	500	50	1.03		
8	1000	100	3.16		

	Izhikevich 10 second simulation				
Machines	# Neurons (k)	Synapses (M)	Time (s)		
1	100	10	8.98		
4	400	40	9.89		
8	500	50	10.13		
8	1000	100	23.97		

Performance Data LIF

	LIF 1 second simulation				
Machines	# Neurons (k)	Synapses (M)	Time (s)		
1	25	6	1.36		
4	50	12	1.18		
8	50	12	0.99		
8	300	75	2.82		

	LIF 10 second simulation				
Machines	# Neurons (k)	Synapses (M)	Time (s)		
1	25	6	13.53		
4	50	12	11.63		
8	50	12	9.34		
8	300	75	28.08		

Leaky Integrate-and-Fire Model

Brain

- Define the simulation as a whole
- Preliminary outline of other structures
 - Anatomy
 - \circ Stimuli
 - \circ Reports
- Extrinsic connections
- Include files

Brain

BRAIN		
	TYPE	Two_cell_MODEL_model
	JOB	Two_cell_MODEL_model
	FSV	1000
	DURATION	1
	SEED	-21
	DISTANCE	NO
		######### COLUMN TYPE####################################
		######### STIM INJECT####################################
#######	######################	*****
#######	##################	####### REPORTS ####################################
REP	ORT VOLTAGE	_CELL_1
REP	ORT VOLTAGE	_CELL_2
END_BRA	IN	

- Columns
- Layers
- Cells
- Compartments
- Channels

Anatomy

```
COLUMN_SHELL
         TWO CELL MODEL SHELL
 TYPE
 WIDTH
         300
 HEIGHT 800
 LOCATION
         Θ
                800
END_COLUMN_SHELL
COLUMN
 TYPE
     TWO CELL MODEL COLUMN
 COLUMN_SHELL TWO_CELL_MODEL_SHELL
 LAYER_TYPE layer_TWO_CELL_MODEL
END COLUMN
LAYER SHELL
        layer_TWO_CELL_MODEL_shell
 TYPE
 LOWER
         Θ
 UPPER
         49
END LAYER SHELL
LAYER
             layer_TWO_CELL_MODEL
layer_TWO_CELL_MODEL_shell
TWO_CELL_MODEL_1 1
   TYPE
   LAYER_SHELL
   CELL_TYPE
               TWO CELL MODEL 2 1
   CELL TYPE
# ---- connections
CONNECT
          TWO CELL MODEL 1 somaE
         TWO_CELL_MODEL_2 somaE
          SVNEE TWO CELL MODEL 1 0
END LAYER
```

Channels

• Km

 Only has one activation particle (m). Inhibits its parent cell from reaching threshold

• Kahp

 After Hyper Polarization Channels (Kahp) are voltage independent but Calcium dependent

• Ka

 Helps the cell deal with background noise. It has both an activation (m) and inactivation (h) particle

Channel Km

CHANNEL	Km			
	TYPE	m		
	M INITIAL	0.0		0.0
	REVERSAL POTENTIAL	- 80		0
	M POWER	1		
	E HALF MIN M	- 44		
	SLOPE FACTOR M	40	20	8.8
	TAU SCALE FACTOR M	0.303		
	UNITARY G	5		
	STRENGTH	0.00015		
END_CHAN	INEL			

Channel Kahp

CHANNEL Kahp		
TYPE	ahp1	
SEED	999999	
M INITIAL	0.0	0.0
REVERSAL POTENTIAL	- 80	Θ
M POWER	2	
UNITARY G	6	
STRENGTH	0.00015	
CA SCALE FACTOR	0.000125	
CA EXP FACTOR	2	
CA HALF MIN	2.5	
CA TAU SCALE FACTOR	0.01	
END_CHANNEL		

Channel Ka

CHANNEL	Ка					
	ТҮРЕ	а				
	M INITIAL	0.0		0.0		
	HINITIAL	1.0		0.0		
	REVERSAL POTENTIAL	- 80		0		
	M POWER	1				
	H POWER	1				
	E HALF MIN M	11				
	E HALF MIN H	- 56				
	SLOPE FACTOR M	18				
	SLOPE_FACTOR_H	18				
	UNITARY_G	0.12				
	STRENGTH	2.5				
	V_TAU_VALUE_M	0.0002		9999		
	V_TAU_VALUE_H	0.03	0.08	0.13	0.18	0.23
	V_TAU_VOLTAGE_M	100				
	V_TAU_VOLTAGE_H	-21	- 1	10	21	
END_CHAN	INEL					

Stimulus

- External Stimulation (visual, audio...)
- Type of signals
 - \circ Linear
 - \circ Pulse
 - \circ Noise
 - \circ File-based
- Multiple times
- Different Destinations

Stimulus

######################################	IMULUS INJECTS	#######################################	#####		
STIMULUS_INJECT TYPE TWO_CELL_ STIM_TYPE realstim_ INJECT TWO_CELL_ END_STIMULUS_INJECT	TWO_CELL_MODEL	layer_TWO_CELL_MODEL	TWO_CELL_MODEL_1	somaE	1
*****	#define STIMULUS	****	######		
STIMULUS TYPE MODE PATTERN TIME_INCREMENT FREQ_COLS CELLS_PER_FREQ DYN_RANGE TIMING SAMESEED AMP_START WIDTH TIME_START TIME_END #FREQ_START END_STIMULUS	realstim_TWO_ CURRENT PULSE 0.1 100 1 0 75 EXACT NO 4 .010 0.500 0.600 99999	_CELL_MODEL			

Connections

- Extrinsic and intrinsic connections
- Synapse connections
- From the source to the destination
- With or without decaying distance effects
- Recurrent connections

Connections

*****	****
CONNECT	
TWO_CELL_MODEL_1	somaE
TWO_CELL_MODEL_2	somaE
synEE_TWO_CELL_MODEL	1 0

- Connections between other cells and their compartments
- Excitatory
- Inhibitory
- Synaptic Waveform
- Learning
 - \odot Short term synaptic dynamics
 - Facilitation
 - Depression
 - Long term synaptic dynamics (Hebbian Learning)
 - STDP rule

###############SYNAPSES TWO_CELI	MODEL_MODEL####################################
SYNAPSE TYPE SynEE_TWO_CELU SFD_LABEL NO_SFD LEARN_LABEL NO_STDP SYN_PSG PSGexcit MAX_CONDUCT 0.004 DELAY 0.005 0.010 SYN_REVERSAL 0 0 ABSOLUTE_USE 0.25 0.1 END_SYNAPSE	MODEL
############################## NO SFD	******
SFD	NO_SFD NONE 0.0 0.0 0.0 0.0
*****	Long-term synaptic Dynamics ####################################
LEARNING LEARNING_SHAPE NEG HEB WINDOW	0.1 0.0 0.05 0.0 0.02 0.0 0.01 0.0 0.005 0.0
*****	synaptic CONDUCTANCE WAVEFORMS ####################################
	PSGexcit ./EPSG_Vogels_FSV1k_TAU05.inc

- Data about cells
- Report files:
 - \circ Voltage
 - Current
 - Firecount
 - Channel
 - \circ Synaptic strengths
- Automatically generated and saved

Reports

#######################################	#### TWO_CELL_MODEL_MODEL REPORTS ####################################
REPORT	
TYPE	VOLTAGE_CELL_1
CELLS	TWO_CELL_MODEL_COLUMN layer_TWO_CELL_MODEL TWO_CELL_MODEL_1 somaE
PROB	1
REPORT_ON	VOLTAGE
FILENAME	TWO_CELL_MODEL_1_VOLTAGE_E.txt
ASCII	
FREQUENCY	1
TIME_START	
TIME_END	100
END_REPORT	
REPORT	
TYPE	VOLTAGE_CELL_2
CELLS	TWO_CELL_MODEL_COLUMN layer_TWO_CELL_MODEL TWO_CELL_MODEL_2 somaE
PROB	1
REPORT_ON	VOLTAGE
FILENAME	TWO_CELL_MODEL_2_VOLTAGE_E.txt
ASCII	
FREQUENCY	1
TIME_START	-
TIME_END	100
END_REPORT	

Izhikevich Model

Files

- Neuron file
- Synapse file
- Current file

Neuron File

- Parameters
 - NeuronID
 - 0 **a**
 - 0 **b**
 - 0 C
 - $\circ d$
 - 0 U
 - 0 V

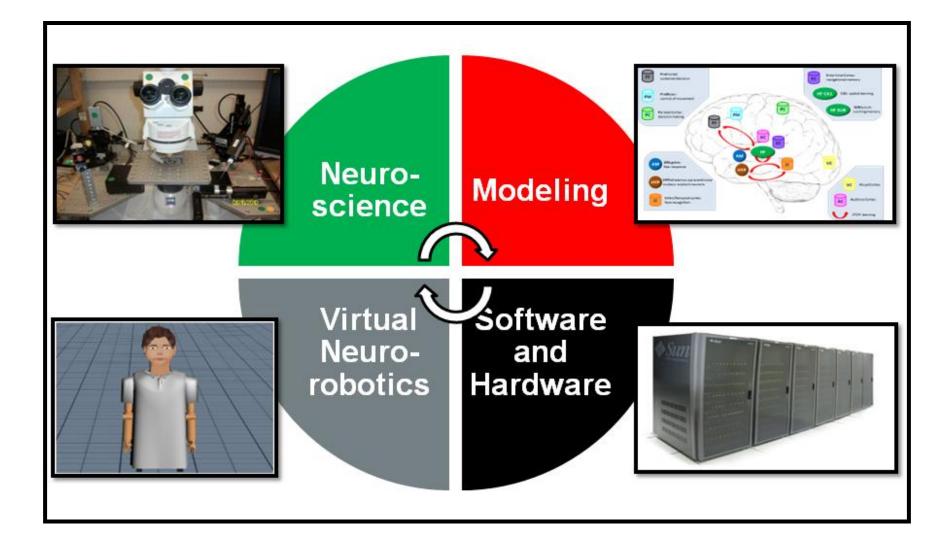
• Regular Spiking

neuron.in **X** 0 0.02 0.2 -65 8 -60 -12

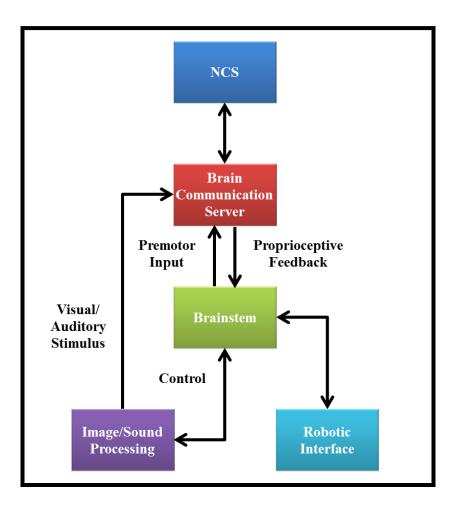
Synapse File

- Parameters
 - \circ PreNeuron
 - o PostNeuron
 - \circ Delay
 - \circ Weight
 - \circ APlus
 - \circ AMinus
 - TauPlus
 - \circ TauMinus

Current File

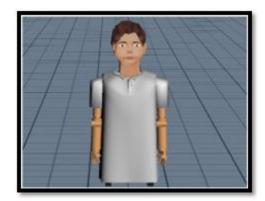

- Parameters
 - \circ Neuron ID
 - \circ Time start
 - $\circ\,$ Time end
 - \circ Amp
 - \circ Width
 - \circ Frequency

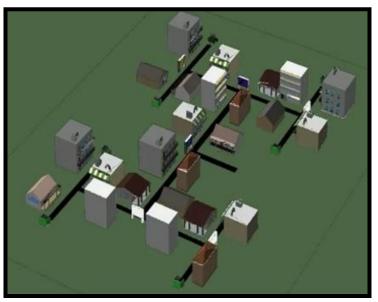
• Regular Spiking



Robotic Applications with NCS

Technical Approach


Virtual NeuroRobotic (VNR)



Laurence C. Jayet Bray, Sridhar R. Anumandla, Corey M. Thibeault, Roger V. Hoang, Philip H. Goodman, Sergiu M. Dascalu, Bobby D. Bryant, and Frederick C. Harris, Jr. "Real-time human-robot interaction underlying neurorobotic trust and intent recognition" Neural Networks, 32:130-137, 2012.

Robotic Interface

- Constructed using Webots 5
- Motions were programmed in C++ using the provided interfaces and the communication was accomplished using the NCSTools C++ client

Trust

- Behavior between a humanoid neurorobot and human actor
 - Oxytocin release
 - Social reinforcement
 - Reduction of inhibition
- Experiment has two conceptual phases:
 - \circ Learning
 - \circ Challenge

Paradigm

Learning

Robot Initiates Action

1. Robot brain initiates arbitrary sequence of motions

Human Responds

 Human moves object in either a similar ("match"), or different ("mismatch") pattern

Match: robot learns to trust

Mismatch: don't trust

Challenge (at any time)

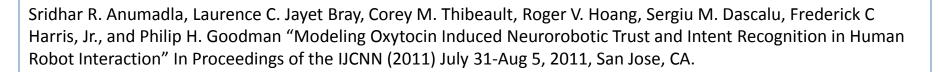
Human Acts

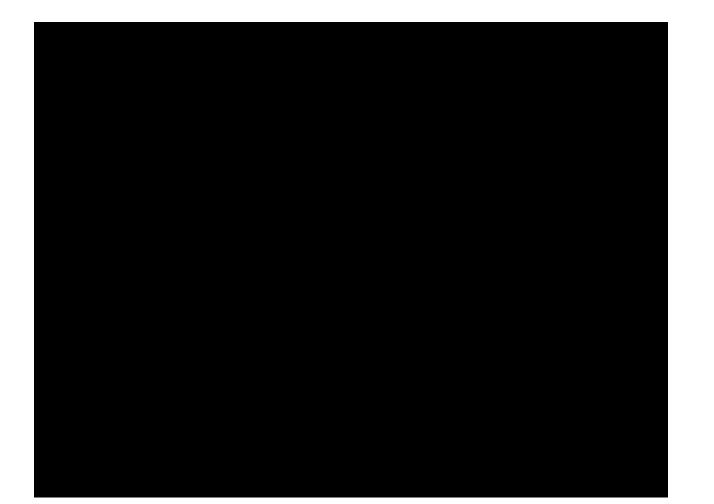
3. Human slowly reaches for an object on the table

Robot Reacts

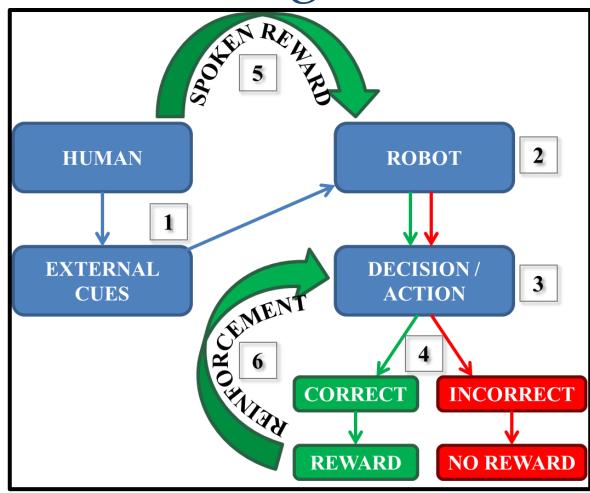
4. Robot either "trusts", (assists/offers the object), or "distrusts", (retract the object).

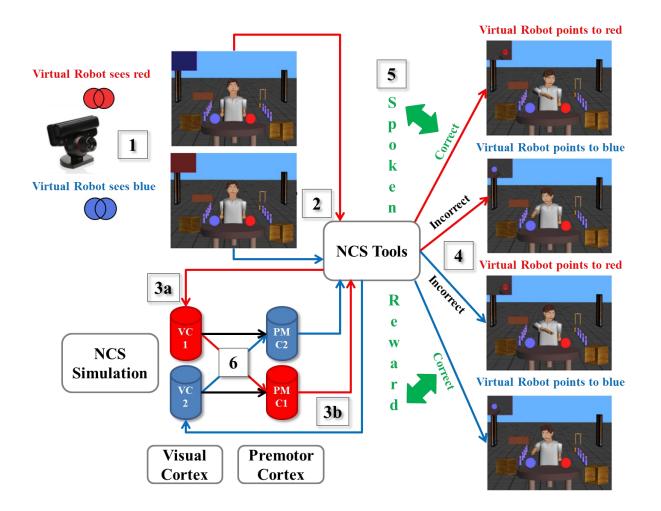
trusted





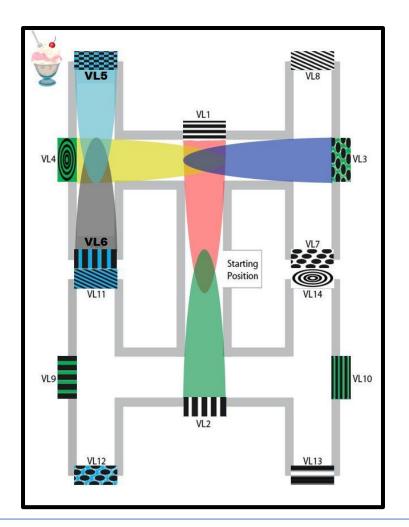
Concordant Motions Video


Discordant Motions Video

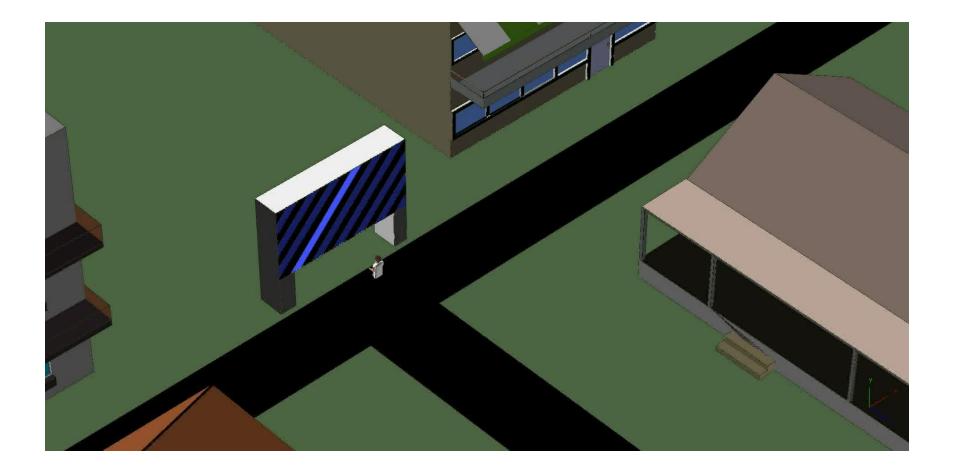

Emotional Speech

- Allows for more natural interaction between humans and robots
 - Determine the ideal behavior from a simple reward feedback
- Emotional Speech processor
 - $\,\circ\,$ Successfully distinguished "sad" and "happy" utterances
- Integrated into neurorobotic scenario
 - The robot received a spoken reward if the correct decision was made
- Step toward the combination of human emotions and virtual neurorobotics

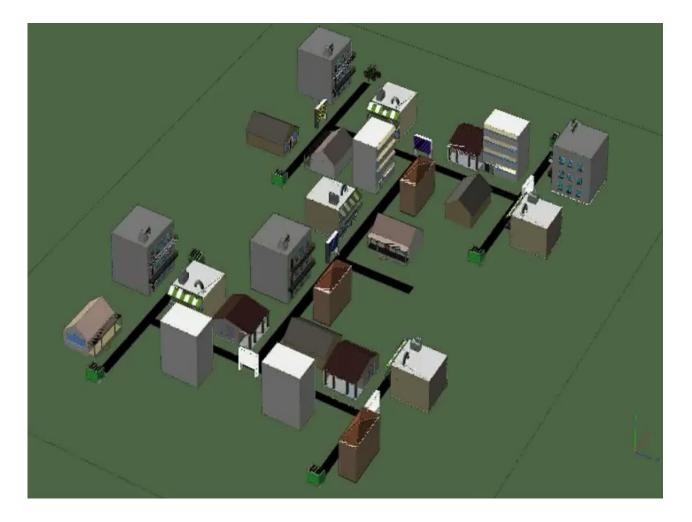
Reward-based Learning Through ESP


Reward-based Learning Through ESP

Navigation


- Navigate to familiar location
 - Prefrontal Cortex
 - Hippocampus (CA1 and Subiculum)
 - Entorhinal cortex
- Computational system representing a navigating rodent
- Reward at the end of a sequence of 3 turns
- Showed learning performance without biased decisions
- Short-term memory

Paradigm



Jayet Bray L. A Circuit-Level Model of Hippocampal, Entorhinal and Prefrontal Dynamics Underlying Rodent Maze Navigational Learning. Ph.D. Dissertation. University of Nevada, Reno, 2010.

Navigation Video

Navigation Video Correct Choice

Future Directions Simulator & Tools

- Near Term:
 - \odot GUI-based brain model builder and visualizer
 - \circ Multi-Scale modeling
 - \odot Input language options
- Long Term:

 \odot Simulated fMRI data

Acknowledgments

• Office of Naval Research

DARPA Synapse project and HRL

