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Fig. 1. Case-injected coevolution system.
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of possible strategies. No single strategy beats every strategy;
a strategy that works well against one opponent may do poorly
against a different opponent. Intransitive superiority, which
Rock-Scissors-Paper exemplifies, relates to this issue [1]. JustI. INTRODUCTION

Abstract-Finding robust solutions that are also capable of
beating specific opponents presents a challenging problem. This
paper investigates solving this problem by using case-injection
with a coevolutionary algorithm. Specifically, we recorded win
ning strategies used by a human player against a coevolved
strategy and then injected the player's strategies into the coevo
lutionary teachset. We compare the strategies produced by case
injected coevolution to strategies produced by a genetic algorithm
that only evaluated against the player's strategies. In this paper,
our results show that genetic algorithms do not work well against
sufficiently difficult opponents. However, coevolution eventually
learns to defeat these opponents by first bootstrapping strategies
that work well in general, which drives the population closer to
strategies that can defeat the challenging opponent. This work
informs our research on finding robust real-time strategy game
players that also defeat specific opponents.

Finding effective, robust strategies in Real-Time Strategy
(RTS) games presents a challenging problem. RTS game
players must manage many problems such as collecting re
sources, building military forces, gathering information on the
opponent's movements, expanding control over the map, and
eventually destroying their opponent's base. Managing even
one of these problems presents a challenge, but an effective
RTS player must manage them all simultaneously. We believe
developing RTS game players that solve these problems will
advance computational intelligence (CI) significantly, just as
developing players for chess and checkers did.

Our overall goal focuses on finding competent RTS game
players that defeat specific opponents without overspecializing.
Strategies that overspecialize to defeat a single opponent often
have easily identifiable weaknesses that many other strategies
exploit. We plan to approach this problem by creating a system
that continuously coevolves new strategies by playing against
and learning from new opponents, as shown in Figure 1. Cases
recorded from human players can be injected into coevolution's
population and teachset, which will help coevolution find
new strategies. These cases are also used to identify the
current opponent's strategy, and find strategies that defeat
similar opponent strategies. In this paper, we only investigate
injection into the teachset, we do not consider injection into
the population.

However, several problems make finding effective strate
gies difficult. Many types of units are available, each with
their own costs, prerequisites, and strengths. Choosing which
units to build, what order to build them and how soon they
should be built leads to a combinatorially explosive number

Fig. 2. Three strategies that defeat each other.

because Strategy 1 beats Strategy 2 does not mean Strategy
1 is better overall, since Strategy 2 may beat Strategy 3,
which in turn beats Strategy 1. It may also be the case that
Strategy 1 only beats Strategy 2, but Strategy 2 defeats many
opponents. Intransitive relationships between strategies makes
coevolving strategies particularly difficult [2]. All these issues
make exhaustive search through the strategy space infeasible,
so we rely on heuristic search methods to find robust strate
gies. Specifically, this paper focuses on comparing a genetic
algorithm (GA) to a coevolutionary algorithm (CA) that injects
cases recorded from a human player into the teachset. Rather
than evolving complete RTS game players, our preliminary
work searches for good build-orders, strategies for what units
to build and the order in which to build them.

Our previous research indicates a GA that trains against
multiple opponents will find strategies that each defeat many
of those opponents [3], [4]. Our previous research also indi-
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cates that a CA finds solutions that are robust against many
opponents, but may not find strategies that defeat particular
opponents [4], [5]. In this paper, we investigate how injecting
cases into the coevolutionary teachset affects the strategies
found by the CA. Does the CA find solutions to defeat those
specific human strategies? How well do the strategies found
by the CA perform against the human strategies? Does the CA
find solutions to beat the human strategies slower than a GA
that trains against only the human strategies? Are the strategies
found by the CA the same strategies found by the GA?

This paper analyzes the results of ten CA runs and ten GA
runs to answer the questions posed in the previous paragraph.
Our results showed that a GA that trains against an easy
human (EH) strategy and a hard human (HH) strategy at the
same time, will only find strategies to defeat the EH strategy.
Strategies that defeated the EH strategy could be found in
the initial population, while strategies that defeated the HH
strategy could not. As a result, the GA focused on strategies
that could defeat the EH strategy and overspecialized. How-
ever, the CA found strategies that could defeat both human
strategies after ten generations. The CA found a solution to
the HH strategy by bootstrapping a diverse set of opponents
to drive the population to more robust solutions closer to
defeating the challenging opponent. Training against these
different opponents also increased the rate at which the score
improved against the player’s strategy. These results show that
case-injection into the teachset helps our CA find high-quality
strategies faster than a GA, while maintaining robustness. This
informs our current research on finding robust RTS strategies
during a game that also defeat the current opponent.

The next section describes related work in game players
using coevolutionary algorithms, our previous related research,
and our own RTS game called “WaterCraft”. In Section III we
describe our GA and CA implementation, and how strategy
fitnesses are calculated. Section IV presents our results in
detail, and analyzes the differences between strategies found
by the GA and CA. The final section provides our conclusion
on how the results inform our research, and what steps we will
take next to continue towards our overall goal.

II. RELATED WORK

In the past, researchers have investigated coevolutionary
approaches to designing players for board games. Chellapilla
and Fogel coevolved the weights of an artificial neural network
(ANN) to play Checkers [6]. The best ANN produced by
their method played competitively against human opponents,
winning most games. The ANN player also defeated an
opponent who was 24 points away from the “Master” level
and was ranked 98th out of 80000 registered players. Cowling
also coevolved the weights of a ANN player to win at “The
Virus Game” [7]. The resulting ANN player performed well
and won against opponents never encountered during training.
Davis and Kendall created a player for the game “Awari”
by using coevolution to tune the weights of an evaluation
function [8]. Using a population of 20 chromosomes, the
best player after 250 generations defeated three out of four
difficulty settings in the commercial Aware game “Awale”.
Nitschke used competitive coevolution in a pursuit-evasion
game to create pursuer-players that cooperated with each other
to capture one of the evader-players [9].

More recently, researchers have turned their attention to
computer games where players do not have discrete turns.
Cardamone compared cooperative coevolution to a GA for
tuning the parameters of a particular AI player in the racing
simulator “TORCS” [10]. The parameters found by coevolu-
tion performed better than the parameters found by the GA,
and the AI player using the parameters found by coevolution
placed 4th in the 2009 TORCS Endurance World Champi-
onship, against opponents that used human expertise to tune
the AI and car configurations. Avery and Louis did work on
coevolving team strategies using influence maps, allowing a
group of entities to adapt to opponent moves [11]. Keaveney
and Riordan used an abstract RTS game to find players that
coordinated their movements with their allies [12]. They
coevolved one population of players only on one map, and
a second population of players on multiple maps. While the
players coevolved on one map were able to win on maps not
used during training, the players coevolved on multiple maps
performed better on the maps not used during training.

In addition to coevolutionary methods, researchers have
used other online and offline methods to find good RTS
strategies, such as case-based reasoning, genetic algorithms,
dynamic scripting, and reinforcement learning [13], [14], [15],
[16], [17]. While some research focuses on producing a player
to manage an entire RTS game, other research focuses on
finding good strategies for specific RTS game elements, such
as combat, positioning, navigation, cooperation and resource
management [18], [19], [20], [21].

Research into case-injection often involves injecting cases
into the population of a GA, which has been shown to help
the GA find higher quality solutions in a shorter amount of
time [22], [23], [24], [25]. Injecting relevant cases into a GA’s
population will bias the GA towards finding similar solutions
that work well. Previous research also examines the problems
of deciding which cases to inject, and when to inject them [22].
However, while these previous works focused on injecting
cases into the population, in this paper we only consider
injecting cases into the teachset.

Our prior work in this domain investigated bit-setting hill-
climbers (HCs), GAs, and CAs for finding robust strategies in
RTS games. We started our research by evaluating five-action
strategies against three hand-tuned baselines that used eight to
thirteen actions, and comparing the five-action strategies found
by a GA and HC to exhaustive search [3]. We extended this
study to include coevolution, first by coevolving five-action
strategies we could compare to the GA strategies and ex-
haustive search, and then coevolving thirteen-action strategies
that were not at a disadvantage against the baselines [4], [5].
We will briefly cover the results of these previous studies in
Section IV.

We developed WaterCraft, seen in Figure 3, for researching
evolutionary algorithms in RTS games and wrote Watercraft
primarily in Python with some C/C++ to speed up physics.
WaterCraft uses the popular Python-OGRE graphics engine
for the GUI and graphics display [26]. We modeled the
game play in WaterCraft around the popular commercial game,
StarCraft [27]. While Watercraft lacks some features provided
in commercial games, we have implemented some of the core
features of all RTS games. Players can build several types
of buildings and units, with the objective of destroying their



opponent’s base. WaterCraft’s graphical user interface (GUI)
resembles and functions similar to the player GUI in other RTS
games. The player also has the option of playing against the AI
or another human player over the network. We also model all
the game mechanics and units in WaterCraft around StarCraft,
but we use a naval-based theme instead of a science-fiction
space theme since our research interests also involve military
and defense applications.

Fig. 3. A Command Center as it produces a new SCV.

Projects similar to WaterCraft have been used in the past
for research in RTS games. The BroodWar API (BWAPI)
allows developers to use StarCraft for research by providing
an interface that allows researchers to retrieve game-state
information and interact with units [28]. Stratagus provides
a free, cross-platform RTS engine that has been used to
create custom RTS games useful for research [29]. Stratagus
has been used as the back-end for another popular research-
oriented RTS game call Wargus, which uses the entity data
from the commercial game Wargus II [30]. Like Wargus,
Stargus uses Strategus as the back-end, but uses the entity data
from StarCraft [31]. ORTS, another RTS engine, provides a
total programming environment for computational and artificial
intelligence research, including a graphical client [32]. While
these other projects are designed for CI and AI research
in general, we created WaterCraft with our research needs
specifically in mind. In the next section, we describe the
methods we use when evaluating a strategy in WaterCraft and
finding new strategies that can beat an opponent in WaterCraft.

III. METHODOLOGY

Depending on our needs, we run WaterCraft either with or
without graphics. Disabling the graphics allows us to maximize
the rate the game plays at. This allows us to quickly evaluate
the outcome of two artificial players (game AIs) competing
against each other and give them a fitness. Enabling the
graphics allows a human player to interact with the game,
issues commands, and observe the outcome in real-time. As
the player issues commands, the commands are encoded to a
bit-string which represents the player’s strategy. Matches in
WaterCraft are deterministic, meaning a match between two
strategies will always have the same outcome, regardless of

TABLE I. UNIT ENCODINGS

Bit Sequence Action Prerequisites
000-001 Build SCV None

(Gather Minerals)
010 Build Marine Barracks

011-100 Build Firebat Barracks, Refinery,
Academy

101 Build Vulture Barracks, Refinery,
Factory

110 Build SCV Refinery
(Gather Gas)

111 Attack N/A

whether the graphics are enabled or disabled. This allows us
to take the strategy recorded from the human player with the
graphics enabled, and quickly evolve counter-strategies with
the graphics disabled.

We encode strategies as sequences of commands. GAs
and CAs prefer a binary representation, which has the best
pattern-to-schema ratio [33]. We use the same binary encoded
sequence of commands for GA, CA and human-recorded
strategies, to make strategies produced by different methods
easier to compare. Every three bits in the chromosome repre-
sents an action, as shown in Table I. When the game AI in
WaterCraft receives a chromosome, the game AI sequentially
decode the chromosome and inserts the encoded actions into a
queue. If any prerequisites in Table I are missing for the action,
the game AI inserts the missing prerequisites immediately
before the encoded action. This means that a single encoded
action may cause several actions to be inserted into queue.
In our previous work, we limited ourselves to 15-bit (5-
action) chromosomes, so we could perform an exhaustive
search of strategies and compare them to the strategies found
by the GA and CA [3], [4]. In a later study, we investigated
how increasing the chromosome length to 39-bits (13-actions)
affected our results [5]. In this study, we continue to use 39-bit
chromosomes, so we can compare our results to our previous
work.

For our research, we allow players to build four different
units. We modeled the unit strengths and costs after StarCraft
units, which are balanced against each other. Marines are a
basic offensive unit that are quick and cheap to build, and
are produced from a Barracks. Firebats are stronger than
Marines, but cost more to produce and require an Academy
to be built in addition to the Barracks. Vultures are our
strongest unit, but take the longest to produce. SCVs (Space
Construction Vehicles) are support units with limited offensive
capabilities, but have the ability to gather resources and build
new structures. Since the “Build SCV (Gather Minerals)” and
“Build Firebat” actions are encoded twice, the GA is biased
towards selecting these actions during crossover and mutation.
However, strategies that are biased towards actions will quickly
go extinct in the population, since strategies that make more
effective use of their resources will have a higher fitness.

All game AIs follow the same rules for managing their
units. Game AIs will sequentially issue commands from the
queue as quickly as possible. If a command cannot be issued
due to a lack of resources, the game AI waits until enough
resources are gathered instead of skipping to an affordable
action. The game AI may be “dumb” in this respect, and



relies on the GA and CA to find strategies that use an effective
order for the actions. When the game AI reaches an “Attack”
command, all completed Marines, Firebats and Vultures are
sent to attack the opponent’s Command Center. These units
will also attack any nearby opponent units and structures they
encounter along the way. When a Command Center comes
under attack, SCVs that were gathering resources will defend
the Command Center by attacking the aggressors. Once all
aggressors are destroyed, the SCVs return to their previous
tasks. Players can immediately win and end the game by
destroying their opponent’s Command Center.

Since we are only looking to find build-orders instead
of complete AI players, our game AI does not look at mi-
cromanagement. However, when we had our human player
compete against the strategies to determine difficulty, we
used two different setups. In the first setup we removed
micromanagement from the human player. The human could
determine what units to build as the game progressed, but
the unit behavior and movement automatically followed the
same rules as the game AI. In the second setup, we enabled
micromanagement and allowed the human player to instruct
each individual unit. Since our current representation cannot
encode micromanagement, we use the first setup for recording
human strategies to evolve against. We use the second setup to
further test the difficulty and robustness of the strategies found
by our GA and CA.

At the end of a game, players determine how well they
performed by calculating a score, which we also use as a strat-
egy’s fitness for our search methods. We want strategies that
spend as many resources as possible, since the most expensive
units and structures tend to be the strongest and most useful.
We also want strategies that destroy many of their opponent’s
units, essentially wasting the opponent’s resources. Finally,
we want strategies that destroy their opponent’s structures,
since structures cost many resources to build, take a long
time to build, and are required to produce new units. To find
strategies that meet these goals, we calculate fitness as show
in Equation 1 to reward them for having those qualities.

Fij = SRi + 2
∑

k∈UDj

UCk + 3
∑

k∈BDj

BCk (1)

In Equation 1, Fij is the total fitness of individual i against
individual j. To encourage our first goal, we calculate SRi,
which is the amount of resources spent by individual i. To
meet the requirements of our second goal, we calculate the
sum of destroyed opponent unit cost, where UDj is the set of
units owned by individual j that were destroyed, and UCk is
the cost to build unit k. Our third goal is rewarded by taking
the sum of destroyed opponent structure cost, where BDj is
the set of buildings owned by individual j that were destroyed,
and BCk is the cost to build structure k.

A. Coevolution

We use several methods defined by Rosin and Belew in our
CA to evaluate the fitness of individuals in a population [34].
To calculate the fitness of individuals in the population, every
individual plays against eight opponents in a teachset. We
populate the teachset with opponents from three different
sources: three random opponents from the hall of fame, three
from shared sampling, and two from case-injection.

The hall of fame keeps a history of chromosomes that have
performed well in past generations. Adding chromosome from
the hall of fame to the teachset prevents the population from
forgetting how to defeat strategies that have gone extinct in
the current population.

Shared sampling allows us to find diverse, challenging
opponents so the population avoids overspecializing while
minimizing the number of opponents the population must play
against [34]. When selecting an individual for the teachset,
shared sampling gives less weight to individuals for defeating
opponents already defeated by current members of the teachset.
Sample fitness must be recalculated each time we select a new
chromosome for the teachset, so that remaining members of
the population that defeat different opponents are given higher
preference.

si =
∑
j∈Di

1

1 + jb
Fji (2)

We calculate the sample fitness using Equation 2, where si
is the sample fitness, Di is the set of teachset members
chromosome i defeated, jb is the number of times j has
been defeated by chromosomes already selected by shared
sampling, and Fji is the fitness of teachset member j against
chromosome i.

Teachset case-injection takes individuals from an outside
source, and places the individual into the teachset for every
generation. In our case, we inject winning strategies a human
player used to defeat the best strategy found by coevolution.
This makes the CA prefer solutions that can defeat the human
player’s strategy, while the remainder of the teachset prevents
the CA from overspecializing against the human strategies.

We limit our teachset to eight opponents, because that was
the highest number of opponents our population could evaluate
against in a reasonable amount of time. Evaluating the fitness
of fifty chromosomes in a population against eight opponents
requires 400 evaluations.

Once all individuals in the population have a fitness against
all opponents in the teachset, we calculate shared fitness [34].
Usually, only chromosomes that defeat many opponents have
a high fitness. However, shared fitness gives a high fitness
to individuals that defeat opponents few other individuals can
defeat. If an individual defeats only one opponent, but no other
individual can defeat that opponent, we want that individual to
have a high fitness because it contains important information
on winning that no other individual has. We also multiply the
shared fitness by the score the individual got against each
opponent. If two individuals defeat the same opponents, but
one individual does better at winning, we give the individual
with the better performance a higher fitness. We calculated
fitness sharing as shown in Equation 3. Where fshared

i is
the shared fitness of chromosome i, Di is the set of teachset
members chromosome i defeated, j a teachset member in Di,
Lj is the number of times j lost against all chromosomes, and
Fij is the fitness of chromosome i against teachset member j.

fshared
i =

∑
j∈Di

1

Lj
Fij (3)

Lj is the total number of individuals that teachset member
j lost to in the current population. We calculate Lj using



Equation 4, where P is the set of all chromosomes in
a population, and i is an element of P . GameResult is
a function that returns 1 if teachset member j lost against
individual i, and returns 0 if teachset member j won against
individual i, as shown by Equation 5. Since Equation 3 only
takes the sum of teachset members that were defeated Lj can
never be 0, since if a teachset member j was never defeated
j would not be in set Di.

Lj =
∑
i∈P

GameResult(j, i) (4)

GameResult(j, i) =

{
0, Fji >= Fij

1, Fji < Fij

}
(5)

Once we calculate shared fitness for the population, we
use linear fitness scaling with a factor of 1.5. This prevents
an exceptionally good individual from suddenly taking over
the population. Instead, we even out the selection pressure
by adjusting the fitness of each individual accordingly, so
we produce more diverse children. Strong individuals still are
selected more often, but only to a certain threshold.

With the fitness of each individual appropriately scaled,
we produce a population of child chromosomes using roulette
wheel selection, uniform crossover with a 95% occurrence, and
a .1% chance of each individual bit in a chromosome mutating.
Our experimental results showed that these parameters gave
us the best results. These parameters allow our CA to explore
many new strategies, while exploiting the progress made by
current strategies. We repeat this process until the child pop-
ulation contains the same number of individuals as the parent
population. We then play the child population against the same
opponents the parent population played against, and give each
child a shared fitness. Finally, we use CHC selection to select
the best chromosomes from the child and parent population, to
produce our new population for the next generation [35]. This
prevents valuable information in the parent population from
being lost if our CA produces many unfit children.

B. Genetic Algorithm

Implementing a GA to find build-orders was simple, as we
use a slightly modified version of our CA. We removed shared
sampling and the hall of fame from the CA, so the teach set
only contains the two human strategies in every generation.
All other methods and parameters in our GA are identical to
our CA.

IV. RESULTS

In our previous work, we compared 39-bit strategies pro-
duced by our CA to strategies produced by a GA evaluating
against three baseline strategies [5]. The baselines used to
evaluate the GA strategies were designed to provide a diverse
set of challenges. The first baseline built five Marines and
attacked, which could quickly defeat an opponent with a
weak attack force. The second baseline built ten Marines and
attacked, taking a little longer than the first baseline, but using
a much stronger attack force. The third baseline built five
Vultures and attacked, which took a very long time to build
but provided the strongest attack force.

Our GA produced a strategy that builds two SCVs, several
Firebats, another SCV, several more Firebats, two Vultures,
then attacks. Interestingly, this strategy builds the third SCV
seconds after SCVs are destroyed by the second baseline,
showing that this strategy may be slightly overspecialized.
The CA produced three effective strategies to defeat different
opponents. The “Single Attack” strategy builds two SCVs,
followed by mostly Vultures, then two Firebats and attacks.
The “Double Attack” strategy builds one SCV, five Firebats,
attacks, builds five more Firebats, and attacks again. The
“Defensive” strategy focused purely on defense by building a
few Firebats followed by Vultures. We put our strategies into
five groups: the three baselines were in the Baseline group, the
single best GA strategy was put in the GA group, the three best
strategies in the CA population were put in the CA group, the
three best strategies in the CA teachset were put in the Teachset
group, and ten randomly created strategies were put into the
Random group. To evaluate the quality of our strategies, we
had every group compete against every other group and took
the average score of all strategies in a group against all their
opponents.

Our results from this previous study showed that as
expected, the GA defeated all three baselines and got the
highest average score. The GA also performed well in general,
and got a higher average score than the baseline or random
players against all the groups.The CA never trained against
the baselines, but still produced solutions that did well against
two of the baselines. However, the CA solutions got a higher
average score and more wins against all other opponents than
any other group, including the GA. The CA was robust enough
that the Random group could not beat any strategies in the
CA group, while the GA group was slightly more exploitable,
showing that the CA produces more robust strategies.

For our current work, one of the authors acted as the human
player and competed against the strategies produced by a GA
and CA from our previous study. Our human player is “Gold”
rank in StarCraft II and found that the CA Single Attack
strategy was the most challenging to defeat. We plan to more
formally compare strategies against other human players later.
We recorded the player’s actions as they competed against the
CA strategy, and found two significantly different strategies
that could win. The first winning strategy used by the human
player, which we call the EH strategy, was to build two
Marines, attack, and repeat six times. This strategy slowly
chipped away at the CA strategy’s Command Center, while
also destroying some of the CA strategy’s SCVs early on and
slowing down how quickly structures were built. The second
winning strategy used by the human player, which we call
the HH strategy, was to build nine SCVs, then build seven
Firebats and seven Vultures in parallel. This strategy builds a
strong defense and waits to destroy the CA strategy’s attack
force. Once the human player destroyed the CA strategy’s
attack force, the human player builds a few more units and
destroys the CA strategy’s Command Center. Both human
strategies required 75-bits to encode, compared to the 39-bits
the CA strategy used. We then reinitialized the CA population
to random chromosomes and injected the two human strategies
into the CA’s teachset. We also removed the baselines from our
GA, and instead ran the GA against only the human player’s
strategies. We ran our GA and CA ten times, and used the
average score of the entire population at each generation for



Fig. 4. Average Number of Wins Against Human Strategies.

our results.

Our results show that the EH strategy was trivial to beat,
and often could be beaten by random chromosomes, as shown
by Figure 4. On the other hand, the HH strategy proved
to be overwhelmingly difficult, and was never defeated in
the initial generation. This balance issue caused a problem
for the GA. Although improving the score against the EH
strategy also slightly improved the score against the HH
strategy, as shown in Figure 5, the improvement did not lead
to successful strategies against the HH strategy. As a result,
the GA produced strategies that were overspecialized to defeat
the EH strategy. The strategies found by the GA quickly build
two SCVs and a couple Firebats to ward off the Marines
while minimizing casualties, followed by a mix of Firebats
and Vultures used to attack the opponent’s base. The GA finds
the best strategy to defeat the EH strategy after about thirty
generations.

Fig. 5. Average Score Against Human Strategies.

However, our CA was able to quickly find solutions to
defeat both human strategies, as shown in Figure 4. The

CA typically found at least one strategy to defeat the HH
strategy by generation ten. We also see that the average score
against the EH strategy peaks almost immediately, while the
GA continues to improve and overspecialize over all fifty
generations. While the CA also immediately finds strategies
to defeat the EH strategy, the other opponents in the teachset
force the CA to explore more possible solutions and prevent
the CA from overspecializing at the beginning. This leads to
enough diverse strategies that work well in general that the CA
finds solutions that also work against the HH strategy. These
strategies build two SCVs, followed by Vultures, then attack.
This strategy loses a few more units to the EH strategy than
the GA does, but enables the strategy to build a strong enough
defense to defend against the HH strategy. As Figure 5 shows,
this compromise lowers the score against the EH strategy
significantly compared to the strategies found by the GA but
dramatically increases the score against the HH strategy.

Fig. 6. Average Percent Score Increased Against Human Strategies.

Although the initial scores for the GA and CA against
the human strategies start off the same in Figure 5, the
average rate at which the scores increase are immediately
different. Figure 6 shows the average increase in score the
entire population received against the human strategies. We
see that although the initial GA population cannot defeat the
HH strategy, the fitness against the HH strategy increases by
5% for the first ten generations. The initial CA population also
cannot defeat the HH strategy, but increases the score against
the HH strategy by 10%. The GA population increases the
score against the EH strategy much faster, since all strategies
in the population are evolving to beat only the EH strategy.
The CA population not only evolves strategies to defeat the EH
strategy, but also strategies that defeat other opponents at the
cost of lowering the score against the EH strategy. Both the CA
and GA do the most learning in the first fifteen generations,
at which point the amount the scores increase each generation
becomes much smaller.

V. CONCLUSION AND FUTURE WORK

In this paper, we want to find robust strategies that also
defeat specific opponents. In our previous work, we compared
strategies found by a genetic algorithm training against three



baselines to strategies found by a coevolutionary algorithm.
We then had a human player compete against the strategies
produced by the genetic algorithm and coevolutionary algo-
rithm. The human player found that the strategies produced
by the coevolutionary algorithm were the most challenging to
defeat.

This paper expands upon our previous work, which can be
found on the author’s website, by introducing case-injection to
our coevolutionary algorithm’s teachset, and comparing strate-
gies found by the coevolutionary algorithm to the strategies
found by a genetic algorithm. We had our human player com-
pete several times against the most challenging strategy found
by coevolution in our previous study. As the human player
competed, we recorded their actions to a bit-string, allowing
us to replicate their actions and outcome against the opponent.
We recorded two successful and vastly different strategies the
human player used against coevolution’s strategy. We then used
the human player’s strategies to evaluate strategies using a
genetic algorithm, and injected the same two player strategies
into coevolution’s teachset. We only consider case-injection
into the coevolutionary teachset for this paper, and not case-
injection into the coevolutionary population.

Our results showed that when an opponent poses a signifi-
cant challenge, the genetic algorithm will not find strategies to
defeat the opponent, and will instead over specialize against the
easier opponent. This was unexpected, since genetic algorithms
have been shown to produce good solutions against the prob-
lems used in training. However, when there are multiple oppo-
nents with a large difference in difficulty, the genetic algorithm
may converge too quickly on solutions for the easy opponents,
which does not lead to solutions for the harder opponents.
On the other hand, coevolution finds strategies to defeat both
opponents after ten generations. Coevolution finds solutions
to beat the challenging opponent because coevolution uses
a diverse teachset that gradually increases in difficulty. This
prevents coevolution from converging to quickly, and allows
coevolution to move towards strategies more capable of defeat-
ing the challenging opponent, even if no strategies currently
beat that opponent. We also show that coevolution increases the
population’s average score against the challenging opponent
much faster than the genetic algorithm does. These results
are interesting compared to our previous studies, where our
genetic algorithm produced better strategies than coevolution
for defeating specific opponents, despite the genetic algorithm
only competing against the same three opponents while co-
evolution competed against eight opponents that changed over
time. This shows that while genetic algorithms can produce
good strategies to defeat specific opponents, genetic algorithms
can also be mislead if only a few opponents are used for
evaluation, or if the opponents have a large gap in difficulty.

These results indicate that teachset case-injection helps
coevolution to quickly find strategies that defeat specific oppo-
nents, while maintaining robustness against other opponents.
This informs our research into adapting new strategies during a
game to defeat the current opponent. In our future research, it
would be interesting to increase our strategy length far beyond
13 actions and see how this affects the strategies produced by
our GA and CA. We also plan investigate alternative strategy
representations that allow us to model human strategies more
accurately, such as determining where to move units or which

opponent units to attack. This would allow us to encode better
human strategies as injectable cases. We also believe this
will allow us to find more robust strategies that can react
to the current opponent’s actions. We also intend to research
how to identify the possible strategies the opponent might
be planning and what strategy the game AI should use to
defeat the strategies available to the opponent. Finally, we
plan to maintain a case-base of strategies used by players and
coevolution, and inject cases into coevolution’s population and
teachset while perpetually running coevolution and finding new
effective strategies.
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[16] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “Case-based planning
and execution for real-time strategy games,” in Proceedings of the
7th international conference on Case-Based Reasoning: Case-Based
Reasoning Research and Development, ser. ICCBR ’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 164–178. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-74141-1 12

[17] C. S. Huat and J. Teo, “Online evolution of offensive strategies in real-
time strategy gaming,” in Evolutionary Computation (CEC), 2012 IEEE
Congress on, 2012, pp. 1–8.

[18] S. Wender and I. Watson, “Applying reinforcement learning to small
scale combat in the real-time strategy game starcraft:broodwar,” in
Computational Intelligence and Games (CIG), 2012 IEEE Conference
on, 2012, pp. 402–408.

[19] J. Hagelback, “Potential-field based navigation in starcraft,” in Com-
putational Intelligence and Games (CIG), 2012 IEEE Conference on,
2012, pp. 388–393.

[20] G. Synnaeve and P. Bessiere, “Special tactics: A bayesian approach
to tactical decision-making,” in Computational Intelligence and Games
(CIG), 2012 IEEE Conference on, 2012, pp. 409–416.

[21] D. Churchill and M. Buro, “Build order optimization in starcraft,”
in Artificial Intelligence and Interactive Digital Entertainment (AIIDE
2011), 10/2011 2011.

[22] S. Louis and J. McDonnell, “Learning with case-injected genetic
algorithms,” Evolutionary Computation, IEEE Transactions on, vol. 8,
no. 4, pp. 316–328, 2004.

[23] J. Amunrud and B. A. Julstrom, “Instance similarity and the
effectiveness of case injection in a genetic algorithm for binary
quadratic programming,” in Proceedings of the 8th annual conference
on Genetic and evolutionary computation, ser. GECCO ’06. New
York, NY, USA: ACM, 2006, pp. 1395–1396. [Online]. Available:
http://doi.acm.org/10.1145/1143997.1144212

[24] R. Drewes, S. J. Louis, C. Miles, J. McDonnell, and N. Gizzi, “Use of
case injection to bias genetic algorithm solutions of similar problems,”
in Evolutionary Computation, 2003. CEC’03. The 2003 Congress on,
vol. 2. IEEE, 2003, pp. 1170–1177.

[25] S. Louis and C. Miles, “Playing to learn: case-injected genetic algo-
rithms for learning to play computer games,” Evolutionary Computa-
tion, IEEE Transactions on, vol. 9, no. 6, pp. 669 – 681, dec. 2005.

[26] Torus Knot Software Ltd, “Ogre - open source 3d graphics engine,”
February 2005. [Online]. Available: http://www.ogre3d.org/

[27] Blizzard Entertainment, “Starcraft,” March 1998. [Online]. Available:
http://us.blizzard.com/en-us/games/sc/

[28] “Bwapi: An api for interacting with starcraft: Broodwar.” [Online].
Available: http://code.google.com/p/bwapi/

[29] M. J. V. Ponsen, S. Lee-urban, H. Muoz-avila, D. W. Aha, and
M. Molineaux, “Stratagus: An open-source game engine for research
in real-time strategy games,” Naval Research Laboratory, Navy Center
for, Tech. Rep., 2005.

[30] The Wargus Team, “Wargus,” 2011. [Online]. Available:
http://wargus.sourceforge.net

[31] “Stargus,” 2009. [Online]. Available: http://stargus.sourceforge.net/
[32] M. Buro, “Orts - a free software rts game engine,” 2005. [Online].

Available: http://skatgame.net/mburo/orts/
[33] D. E. Goldberg, “Genetic algorithms in search, optimization, and

machine learning,” 1989.
[34] C. D. Rosin and R. K. Belew, “New methods for competitive

coevolution,” Evol. Comput., vol. 5, no. 1, pp. 1–29, Mar. 1997.
[Online]. Available: http://dx.doi.org/10.1162/evco.1997.5.1.1

[35] L. J. Eshelman, “The chc adaptive search algorithm : How to have
safe search when engaging in nontraditional genetic recombination,”
Foundations of Genetic Algorithms, pp. 265–283, 1991. [Online].
Available: http://ci.nii.ac.jp/naid/10000024547/en/


