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Abstract—Learning robust, winning strategies from previous
opponents in Real-Time Strategy games presents a challenging
problem. In our paper, we investigate this problem by using case-
injection into the teachset and population of a coevolutionary
algorithm. Specifically, we take several winning build-orders we
created through hand-tuning or coevolution and periodically
inject them into the coevolutionary population and/or teachset.
We compare the build-orders produced by three different case-
injection methods to the robustness of build-orders produced
without case-injection and measure their similarity to all the
injected cases. Our results show that case injection works
well with a coevolutionary algorithm. Case injection into the
population quickly influences the strategies to play like some of
the injected cases, without losing robustness. This work informs
our ongoing research on finding robust build-orders for real-time
strategy games.

I. INTRODUCTION

Finding robust build-orders in Real Time Strategy (RTS)
games that defeat multiple opponents presents a challenging
problem. There are several problems that RTS players must
manage in order to win: gathering resources, building infras-
tructure, amassing military forces, scouting concealed areas
for intel on their opponent, expanding control over the map,
and ultimately destroying their opponent’s entire army and
base. Each of these problems present a difficult challenge
on their own, but a player must effectively manage all these
problems simultaneously in order to succeed. In this context,
a build-order is the military forces and infrastructure a player
chooses to build, and the order in which they player choose to
build them. Build-orders that do not choose the most effective
military units for a given opponent, or do not produce the units
when they are needed most, are doomed to failure. We believe
developing RTS game players that solve these problems will
advance computational intelligence (CI) significantly, just as
developing players for chess and checkers did.

In this paper, our overall goal is finding effective RTS
build-orders that incorporate elements from build-orders used
by other players, while remaining robust. Learning to play
like other competent players helps us learn new effective
combinations and learn winning build-orders faster. We plan to
approach this problem by creating a system that continuously
coevolves new strategies by playing against and learning from
new opponents.

With case injection, winning build-orders produced by hu-
man players, coevolution, or other CI methods can be stored

in a case base and injected into coevolution’s population and
teachset at an appropriate time. These cases help coevolution
identify the current opponent’s build-order, find build-orders
that defeat similar opponents, and learn new useful build-
orders. In this paper, we investigate case injection into a coevo-
lutionary algorithm’s population and teachset as a method to
influence coevolving build-orders to learn from other players.

However, several problems make finding effective build-
orders difficult. There are many units and structures to choose
from, each with their own unique cost, prerequisites, strengths,
weaknesses, and special abilities. Deciding which units or
structures to build, what order we should build them in, how
quickly should we produce them, and how much of our time
and resources should we spend on our economy to make that
happen creates a combinatorially explosive number of possible
strategies. No single “First Order Optimal” strategy exists that
beats all other possible strategies; a strategy that works well
against one or more opponent will do poorly against one or
more different opponents. Strategies may also have intransitive
superiority relationships, which the game of ”Rock-Scissors-
Paper” best illustrates [1]. Strategy 1 (Scissors) beats Strategy
2 (Paper), but this does not mean that Strategy 1 is better
overall, since Strategy 2 beats Strategy 3 (Rock), which comes
back around to defeating Strategy 1. In RTS games, it may
also be the case that while Strategy 1 is the best strategy to
defeat Strategy 2, Strategy 1 will not win against any other
strategies. Meanwhile, Strategy 2 may defeat many other oppo-
nents, making Strategy 2 more robust. Intransitive relationships
between strategies makes coevolving strategies particularly
difficult [2]. Additionally, a build-order’s effectiveness highly
depends on a game’s parameters and gameplay mechanics;
what works well in one game may not work in another game.

With such a large number of possible strategies we could
choose from, and an equally large number of opponents we
could be facing, exhaustively searching through the strategy
space is infeasible. Instead, we rely on heuristic search meth-
ods to find robust strategies. Specifically, this paper focuses on
comparing four case-injection methods for a coveolutionary
algorithm: case injection into only the teachset, case injection
into only the population, case injection into both the teachset
and population, and no case injection. Rather than evolving
complete RTS game players, our preliminary work searches
for good build-orders, strategies for what units to build and
the order in which to build them.



In our previous research, we compared the robustness of
strategies found by a genetic algorithm (GA) to strategies
found by a coevolutionary algorithm (CA). Our research
indicates that while the GA learns strategies to defeat a set
of known opponents, the GA can be misled to overspecialize
to only defeat one opponent [3], [4], [5]. A CA alone learns
robust strategies, but the strategies are unlikely to defeat the
known set of opponents as well as a GA [4], [6]. However,
injecting cases into the teachset of a CA influenced the CA to
find strategies that defeat the known opponents and are more
robust than strategies produced by the GA [5]. In this paper,
we investigate how injecting cases into the coevolutionary
teachset and/or population affects strategies found by the CA.
Does the CA learn strategies that play like the injected cases?
How similar are the strategies we find to the strategies we
injected? Does learning from these injected cases positively
or negatively impact the robustness of strategies found?

This paper analyzes the results of ten CA runs for each of
our possible injection methods to answer these questions. Our
results show that case injection into the population quickly bi-
ases the population towards finding robust, winning strategies
that play like our injected cases. Additionally, the robustness
of strategies produced from population injection was not
negatively impacted, and had a robustness no less than the
robustness of strategies produced without case injection. This
informs our current research on finding robust RTS strategies
that learn to play like previously encountered opponents.

The following section describes related work in game play-
ers using coevolution, our previous related research, and our
RTS game called “WaterCraft”. In Section III we describe our
CA implementation, our four case-injection methods, and how
strategy fitnesses are calculated. Section IV presents our results
in detail, and analyzes the robustness of our strategies and their
similarity to the injected cases. The final section provides our
conclusion on how the results inform our research, and what
steps we will take next to continue towards our overall goal.

II. RELATED WORK

In the past, board games were popular research platforms
for coevolutionary approaches to designing game players.
Chellapilla and Fogel used coevolution to tune the weights
of an artificial neural network (ANN) to play Checkers [7].
Their method produced an ANN that played competitively
against human opponents, and won most of the games it
played. The most challenging opponent the ANN beat was
a human player who was 24 points away from the “Master”
level and was ranked 98th out of 80, 000 registered players.
Cowling also used coevolution to tune the weights of an
ANN, but trained the ANN to play “The Virus Game” [8].
The best ANN produced played the game well and won
against opponents never encountered during training. Davis
and Kendall used coevolution to tune the weights of an
evaluation function of a player for the game “Awari” [9].
With a population size of 20, after 250 generations the best
player in the population won games on three out of the four
difficultly settings provided in the commercial Aware game

“Awale”. Nitschke used competitive coevolution in a pursuit-
evasion game to create pursuer-players that cooperated with
each other to capture one of the evader-players [10].

More recently, as board games became easier to solve,
researchers turned their attention to computer games which
provide even greater challenges. Cardamone tuned the pa-
rameters of an AI player for the car racing game “TORCS”
using a GA and cooperative coevoluton [11]. Cooperative
coevolution produced more effective parameters than the GA.
In the 2009 TORCS Endurance World Championship, the AI
player using the coevolved parameters made it to 4th place,
against opponents that used human expertise to tune the AI
parameters AND car configurations. Avery and Louis worked
on coevolving influence maps for team strategies which allow
a group of entities to adapt to opponent moves [12]. Keaveney
and Riordan coevolved players that coordinated their move-
ments in an abstract RTS game [13]. They coevolved two
populations of players: one population that only coevolved
players on one map, and another population that coevolved
players on multiple maps. Their results showed that while
the players coevolved on only one map won on maps not
used during training, the player’s coevolved on multiple maps
performed better on the same maps.

In addition to coevolutionary methods, researchers have
used other online and offline methods to find good RTS
strategies, such as case-based reasoning, genetic algorithms,
dynamic scripting, and reinforcement learning [14], [15], [16],
[17], [18]. While some research focuses on producing a player
to manage an entire RTS game, other research focuses on
finding good strategies for specific RTS game elements, such
as combat, positioning, navigation, cooperation and resource
management [19], [20], [21], [22].

In previous research, case injection into a GA’s population
has been shown to help a GA quickly find high quality
solutions [23], [24], [25], [26]. Injecting relevant cases into the
population bias’ the GA towards finding solutions that work
well and resemble the injected cases. Other research on case
injection investigates the question of when to inject cases into
the population and which cases the population would benefit
the most from [23], [27], [28]. While previous work on case
injection focus’ on injecting cases into the population of a GA,
this paper looks at injecting into the population and teachset
of a CA.

Our prior work on finding robust strategies in RTS games
investigated the use of hill-climbers (HC), GAs and CAs. We
started by exhaustively searching the performance all possible
five action build-orders against three hand-tune baselines that
used eight to thirteen actions. This allowed us to know which
build-orders would be the best, and how common the best
solutions actually were. We then used a GA and HC to find
new strategies, and compared them to the best build-orders
from exhaustive search [3]. We extended this study to include
coevolution, first by coevolving five action build-orders to
compare them to our previous results, and then coevolving
thirteen action build-orders to place them on even terms with
our baselines [4], [6]. We then extended our coevolutionary



study to include case injection into the coevolutionary teachset,
and compared the results to the build-orders found by a GA
that trained against the same cases [5].

We developed WaterCraft, seen in Fig. 1, for researching
evolutionary algorithms in RTS games. We wrote WaterCraft
primarily in Python with some C/C++ to speed up physics, and
made use of the popular Python-OGRE graphics engine for the
graphical user interface (GUI) and display output [29]. Water-
Craft’s gameplay and unit properties were modeled around
Blizzard’s popular commercial RTS game “StarCraft” [30].
While WaterCraft lacks some features provided in commercial
games, we have implemented the core elements of an RTS
game. Two players can gather two types of resources (minerals
and oil) in order to build units and structures (with several
different types of units/structures to choose from), with the
objective of destroying their opponent’s base. The two players
in the game can either be AI vs AI, Human vs AI, or Human
vs Human. We made WaterCraft’s GUI resemble and function
like a typical RTS game GUI, so that playing the game our-
selves would be intuitive. We gave WaterCraft a navel theme
instead of StarCraft’s science-fiction theme since our research
interests also involve military and defense applications.

Fig. 1. A Command Center as it produces a new SCV.

In the past, projects similar to WaterCraft have been used for
research involving RTS games. The BroodWar API (BWAPI)
provides an interface to StarCraft that researchers use to
retrieve game-state information and allows game players to
interact with units in real time [31] Stratagus provides a
free, cross-platform RTS engine that researchers use to create
custom RTS games [32]. Wargus, which uses the Stratagus
engine, is a research-oriented RTS game that uses entity data
from the commercial game “Wargus II” [33]. Stargus follows
in Wargus’ footsteps in using the Stratagus engine, but uses
the entity data from StarCraft[34]. Orts, another RTS engine,
provides a graphical client and programming environment tar-
geted towards CI and AI research. While these other projects
are designed for CI and AI research in general, WaterCraft
was designed with our research needs specifically in mind. In
the following section, we describe how we use WaterCraft to

evaluate the quality of a strategy and our methods for finding
new winning strategies.

III. METHODOLOGY

WaterCraft can run either with or without graphics, de-
pending on our needs. Disabling the graphics allows us to
maximize the rate the game plays at, and thus minimize the
time required to evaluate the outcome between two artificial
players (game AI) competing against each other. Enabling
the graphics limits the rate at which the game will execute,
but allows a human player to interact with the game, issue
commands and compete against other humans or game AIs
in real time, or simply observe the outcome between two
game AIs. If a human is issuing commands, the commands are
encoded to a bit-string which represents the player’s strategy,
allowing us to store and use their strategy in a case base.
Matches in WaterCraft are deterministic, meaning that a match
between two specific strategies will always have the same
outcome, regardless of if the graphics are enabled or not. This
allows us to take strategies recorded from a human and quickly
coevolve counter-strategies with the graphics disabled.

Our build-order strategies are encoded as a sequence of
commands. We represent the strategies as a bit string, since
GAs and CAs prefer binary representations because they have
the best pattern-to-schema ratio [35]. We use the same binary
representation for our GA, CA, and baseline strategies so we
can compare strategies produced by different methods and
reuse them in our case injection case base. Every three bits
in a chromosome represents a command, as shown in Table I.
When we send a chromosome to WaterCraft for evaluation, the
game AI will sequentially decode the chromosome and insert
the encoded commands into a First-In, First-Out (FIFO) queue.
When the game AI decodes a command, if any prerequisites
in Table I have not been previously inserted into the queue
before, then the game AI will insert the missing prerequisites
into the queue before the encoded command. Otherwise, if the
prerequisites were inserted into the queue at least once before-
hand, then the game AI will only insert the encoded command
into the queue. We do not allow prerequisites to be explicitly
encoded in order to keep our representation shorter, which
allowed us to exhaustively search build-orders which encode
more combat units. However, we also have some preliminary
research which explicitly encode prerequisites and does not
automatically insert missing prerequisites. These preliminary
results show that a GA and CA will evolve solutions which
encode the required prerequisites before the desired units.

In our previous work we limited ourselves to 15-bit (5-
command) chromosomes to make comparing our results to
exhaustive search feasible [3], [4]. In a later study, we in-
creased the chromosome length to 39-bits (13-commands) to
make them even with our longest baseline [6]. This means
our search space has 239 possible solutions. In this study, we
continue to use 39-bit chromosomes, so we can compare our
results to our previous work.

For our research, we allow players to select from four
different units. For each of these units, we use the same



TABLE I
UNIT ENCODINGS

Bit Sequence Command Prerequisites
000-001 Build SCV None

(Gather Minerals)
010 Build Marine Barracks

011-100 Build Firebat Barracks, Refinery,
Academy

101 Build Vulture Barracks, Refinery,
Factory

110 Build SCV Refinery
(Gather Gas)

111 Attack N/A

strengths and costs as units of the same name in StarCraft,
where the units are balanced against each other. Marines
are the basic offensive unit, and while Marines are not the
strongest unit, they are cheap to build, build quickly, and only
require a Barracks structure to produce. Firebats are offensive
units that are stronger than Marines, but cost more to produce
and require at least one Academy structure in addition to
the Barracks. Vultures are our strongest unit, but take the
longest to produce. SCVs (Space Construction Vehicles) offer
very little in terms of offensive and defensive value, but are
essential for gathering resources and building structures. There
are a total of six actions we can encode, which means we
need at least three bits to encode them. However, since three
bits encodes eight values, we arbitrarily gave two actions
multiple encodings so all three-bit strings encode valid actions.
Since the “Build SCV (Gather Minerals)” and “Build Firebat”
each have two ways of being encoded, our CA’s crossover
and mutation operators are biased towards selecting them
more often than other commands. However, strategies that
are biased towards these commands will quickly go extinct in
the population, since strategies that use their resources more
effectively will have a higher shared fitness.

All game AIs follow the same rules for creating and manag-
ing their units. Game AIs sequentially issue commands from
the queue in the order they were inserted, as quickly as they
possible can. If the game AI fails to issue a command due to
lack of resources, the game AI will wait until enough resources
are gathered to issue the command, instead of skipping to an
affordable command. The game AI acts “dumb” in this respect,
and relies on the CA to find an effective order for the com-
mands. When the game AI reaches an “Attack” command, all
completed Marines, Firebats and Vultures are sent to attack the
opponent’s Command Center. SCVs remain behind to guard
their own Command Center and continue gathering resources.
The units sent to attack the Command Center will also attack
any of the opponent’s units or structures encountered along the
way. If one or more units damages the Command Center, the
SCVs allied with the Command Center will stop gathering
resources to attack the aggressors. If the SCVs successfully
destroy all units attacking the Command Center, they return
to gathering resources. Player’s immediately win and end the
game by destroying their opponent’s Command Center.

Once a game has ended, players determine how well they
performed by calculating their score, which we also use as
the strategy’s fitness against a single opponent. We calculate
the score by rewarding features we think are important in our
strategies. We want strategies that spend as many resources as
possible, since the most expensive units and structures tend to
be the most useful in the long term. We also want strategies
that destroy many of their opponent’s units, thereby wasting
the resources their opponent spent on those units and leaving
their army in a weaker condition. Strategies that destroy their
opponent’s structures are truly devastating, since structures
cost more resources and take longer to build than units, and
are required in order to produce new units. In order to find
strategies that contain these features, we calculate fitness as
show in Equation 1.

Fij = SRi + 2
∑

k∈UDj

UCk + 3
∑

k∈BDj

BCk (1)

In Equation 1, Fij is the total fitness of individual i against
individual j. To encourage our first goal, we calculate SRi,
which is the amount of resources spent by individual i. To
meet the requirements of our second goal, we calculate the
sum of destroyed opponent-unit cost, where UDj is the set of
units owned by individual j that were destroyed, and UCk is
the cost to build unit k. Our third goal is rewarded by taking
the sum of destroyed opponent-structure cost, where BDj is
the set of buildings owned by individual j that were destroyed,
and BCk is the cost to build structure k.

A. Coevolution

We use several methods defined by Rosin and Belew in our
CA to evaluate the fitness of individuals in a coevolutionary
population [36]. Every individual in the population must play
against all eight of the opponents in a teachset. We populate
the teachset with opponents from two different sources: four
opponents from the “Hall of Fame” (HoF) and four opponents
from shared sampling.

The Hall of Fame keeps a history of chromosomes that
had that highest shared fitness in each generation. Adding
chromosomes from HoF to the teachset prevents the population
from forgetting how to defeat strategies that no longer exist
in the current population.

Shared sampling allows us to find diverse, challenging
opponents so the population avoids overspecializing while
minimizing the number of opponents the population must
play against [36]. Shared sampling accomplishes this by
seeing which chromosomes in the current population have
been selected so far for the next teachset and tracking which
opponents in the current teachset those chromosome defeat.
The more often an opponent in the current teachset has been
defeated by chromosomes selected for the next teachset, the
less the remaining chromosomes in the current population
have their “Sample Fitness” rewarded for defeating those
opponents, making shared sampling less likely to select them
for the next teachset. Sample fitness must be recalculated each
time we select a new chromosome for the teachset, so that



remaining members of the population that defeat different
opponents are given higher preference.

si =
∑
j∈Di

1

1 + jb
Fji (2)

We calculate the sample fitness using Equation 2, where si
is the sample fitness, Di is the set of teachset members
chromosome i defeated, jb is the number of times j has
been defeated by chromosomes already selected by shared
sampling, and Fji is the fitness of teachset member j against
chromosome i.

We limit our teachset to eight opponents, because that
was the highest number of opponents our population could
evaluate against in a reasonable amount of time. Evaluating
the fitness of all fifty chromosomes in a population against all
eight opponents in the teachset requires 400 evaluations per
generation, which rises to 800 evaluations with CHC selection.

Once all individuals in the population have a fitness against
all opponents in the teachset, we calculate shared fitness [36].
Usually, only chromosomes that defeat many opponents have
a high fitness. However, fitness sharing gives a high shared
fitness to individuals that defeat opponents few other indi-
viduals in the same population can defeat. If an individual
defeats only one opponent, and no other chromosome in the
same population defeats that opponent, then that individual
contains important new information on how to win that we
want to share with the population. We also multiply the shared
fitness by the score the individual got against each opponent.
If two individuals defeat the same opponents, but one of the
individuals gets a higher score against at least one of the
opponents, we give the individual with the better performance
a higher shared fitness.

We calculated fitness sharing as shown in Equation 3.
Where fshared

i is the shared fitness of chromosome i, Di is the
set of teachset members chromosome i defeated, j a teachset
member in Di, Lj is the number of times j lost against all
chromosomes, and Fij is the fitness of chromosome i against
teachset member j.

fshared
i =

∑
j∈Di

1

Lj
Fij (3)

Lj is the total number of individuals that teachset member
j lost to in the current population. We calculate Lj using
Equation 4, where P is the set of all chromosomes in
a population, and i is an element of P . GameResult is
a function that returns 1 if teachset member j lost against
individual i, and returns 0 if teachset member j won against
individual i, as shown by Equation 5. Since Equation 3 only
takes the sum of teachset members that were defeated Lj can
never be 0, since if a teachset member j was never defeated
j would not be in set Di.

Lj =
∑
i∈P

GameResult(j, i) (4)

GameResult(j, i) =

{
0, Fji >= Fij

1, Fji < Fij

}
(5)

Once we calculate shared fitness for the entire population,
we use linear fitness scaling with a factor of 1.5. This pre-
vents an exceptionally good individual from suddenly taking
over the population. We even out the selection pressure by
adjusting the shared fitness of each individual accordingly, so
we produce more diverse children. The strongest individuals
still are selected more often, but only to a certain threshold.

With the shared fitness of each individual appropriately
scaled, we produce a population of child chromosomes us-
ing roulette wheel selection, uniform crossover with a 95%
occurrence, and a .1% chance of each individual bit in a
chromosome mutating. Our experimental results showed that
these parameters gave us the best results. These parameters
allow our CA to explore many new strategies, while exploit-
ing the progress made by current strategies. We repeat this
process until the child population contains the same number
of individuals as the parent population. We then play the child
population against the same opponents the parent population
played against, and give each child a shared fitness. Finally,
we use CHC selection to select the best chromosomes from the
child and parent population, to produce our new population for
the next generation [37]. This prevents valuable information
in the parent population from being lost if our CA produces
many unfit children.

B. Case Injection

We use four different case injection methods with our
CA: case injection into only teachset, case injection into
only the population, case injection into both the teachset and
population, and no case injection. Our no case-injected method
serves as a baseline to compare the influence of the other
case injection methods on the coevolutionary population. We
use the same case base as the source of the injected cases
for all case injection methods. The case base contains five
strategies from our previous work that were either hand-tuned
or evolved. Some of the selected strategies were robust and
defeated many possible opponents, while the other selected
strategies were specialized and defeated only a few of the
“best” robust strategies we had previously evolved.

Teachset case injection randomly selects two individuals
from the case base every generation and injects them into the
teachset. The two injected cases replace the last chromosome
selected from shared selection and one randomly selected
HoF chromosome, keeping the teachset size to eight. This
influences the CA to prefer strategies that defeat the injected
cases, while the remainder of the teachset keeps the strategies
robust and prevents them from overspecializing for defeating
the injected cases.

Population case injection randomly selects two individuals
from the case base every five generations, which replace the
two lowest shared fitness chromosomes in the population. This
influences the population to play like the injected cases, while
the teachset continues to encourage the strategies to remain
robust. We limit ourselves to injecting only two cases to
prevent the CA from being overly biased towards the injected
cases, and narrowing the search space explored by the CA too



Fig. 2. Avg. Hamming Distance of best chromosome to Training Case #1.

quickly. Opponents in the teachset change as coevolution finds
new strategies, which means the effectiveness of an injected
solution changes depending on when we inject the case. We
do periodic case injection every five generations to allow
the injected cases a chance to demonstrate their effectiveness
against different solutions in the teachset.

When we inject into both the population and teachset, we
use both of the above methods without any modifications,
since they do not interfere with each other. We selected the
frequency and number of injections based on what worked
experimentally well, but future work may look at finding
optimal values.

IV. RESULTS

For our current work, we ran each of our four injection cases
ten times with a population size of 50 for 50 generations with
a chromosome length of 39-bits(13-commands). We measure
the robustness of the strategies produced by comparing them
to five test cases that are never seen during training. These
test cases are different from the cases used for case injection,
but were also produced from hand-tuning or coevolution in
our previous studys and were either robust or defeated our
best evolved strategies. Measuring the robustness of every
chromosome in every population would take excessively long,
so we limit ourselves to testing the “best” chromosome (the
chromosome with the highest shared fitness) in the population
for every generation. We measure robustness by examining
the average score and number of wins against all five testing
cases. We also measure the Hamming Distance of the best
chromosome to each of the five injected cases [38]. We
compare the all bits of two chromosomes, and for each bit-
position if the bit-value in one chromosome does not match the
bit-value in the other chromosome, we increase the Hamming
Distance by one. This means that the higher the Hamming
Distance between two chromosomes, the less similar they are
to each other. Conversely, the lower the Hamming Distance
between between two chromosomes, the more similar they
are to each other. This tells us how much case injection
has influenced the population to play like the injected cases.
Finally, our results are calculated by taking the average of the
best chromosome for each generation across all ten runs.

Fig. 3. Avg. Hamming Distance of best chromosome to Training Case #2.

Fig. 4. Avg. Hamming Distance of best chromosome to Training Case #3.

Our results show that the influence of case injection on a
population varies based on the cases and injection methods.
Due to space limitations, we limit ourselves to showing the
similarity to only three of the five injected cases. We select
these three cases because they exemplified the results of the
remaining two. Our figures show that without case injection,
that the best chromosomes tends to become less similar to
Training Case 1 (Fig. 2), more similar to Training Case 2
(Fig. 3), and have little change in Hamming Distance to
Training Case 3 (Fig. 4). Injecting cases into only the teachset
has little to no effect on influencing the best chromosome to
play like the injected cases.you All three figures show that
the best chromosomes produced from teachset injection have
almost the same Hamming Distance as chromosomes produced
without case injection. When we inject chromosomes into
only the population or into both the population and teachset,
the results vary a bit more. Fig. 2 shows that after we inject
our first chromosomes into the population at generation 5,
over time the best chromosomes tend to become more similar
to Training Case 1 than the chromosomes produced without
case injection. On the other hand, Fig. 3 shows the opposite
effect. While the best cases produced without case injection
tend to become more similar to Training Case 2, the best cases
produced from population injection tend to become less similar
over time. However, when we look at Training Case 1 and
Training Case 2, we see that with a Hamming Distance of 32
(out of a maximum of 39) from each other these two cases
are dissimilar. As one of these cases begins to influence the



Fig. 5. Avg. Score of best chromosome versus all Testing Cases.

population to play in a similar manner, then naturally that
means the population begins to play less like the other case.
We see happening in Fig. 2 and Fig. 3 , since the results
in each almost perfectly mirror each other. Training Case 1
builds two SCVs, ten Marine, then attacks, while Training
Case 2 builds ten Vultures instead of Marines. The coevolved
solutions that are similar to Training Case 1 replaces three
of the Marines with an additional two SCVs at the beginning
and a Firebat towards the end, allowing for an earlier attack
that is successful against opponents that produce units slowly.
Coevolved solutions similar to Training Case 2 replaced one
SCV and the attack command with a Firebat and additional
Vulture, allowing for a stronger defense force that takes longer
to produce. Finally, while Training Case 1 influences the best
cases to play in a similar manner, Fig. 4 shows this does not
affect the best cases’ similarity to Training Case 3, which has
a Hamming Distance of 19 to Training Cases 1 and 2.

While our CA manages to learn new strategies from in-
jecting cases into the population, we also want our coevolved
strategies to defeat a wide variety of opponents. We test the
robustness of the strategies the CA produces by playing them
against five chromosomes we had previously hand-tuned or
coevolved and that were never seen during training. Our results
show that while case injection into the population increases
the score against unknown opponents in early generations,
strategies produced in the long term score only slightly higher
than our other injection methods, as shown in Fig. 5. Fig. 6
also shows that over time our coevolved strategies win against
more of the opponents. While Fig. 2 shows us that population
injection influences our best chromosomes to play like some
of the injected cases, Fig. 5 and Fig. 6 show us that our
best solutions continue to be at least as robust as coevolution
without case injection.

V. CONCLUSION AND FUTURE WORK

In this paper we want to find robust, winning strategies for
Real-Time Strategy games. We also want these strategies to
incorporate knowledge from winning strategies other players
have used. We believe we can accomplish these goals by using
case injection with a coevolutionary algorithm. Case injection
takes strategies contained in a case base, and injects them
into our coevolutionary algorithm’s population or teachset.

Fig. 6. Avg. # of Wins of best chromosome versus all Testing Cases.

There are four case injection methods that we examine: case
injection into only the population, case injection into only the
teachset, case injection into both the population and teachset,
and no case injection. We used each of these methods ten times
with a population size of 50 for 50 generations, and took the
average across all ten runs for the best chromosome at each
generation. When we do case injection into the teachset, every
generation we select two random strategies from our case base
and put them in the teachset. With case injection into the
population, every five generations two random strategies are
selected from our case base to replace the two lowest shared
fitness chromosomes in the population. There are five winning
strategies contained in our case base that were produced from
hand-tuning or coevolution.

Our results show that while injecting into only the teachset
does not affect the similarity to the injected cases, injecting
cases into the population had different effects. We measured
the similarity by calculating the Hamming Distance from
chromosomes in the population to each of the five cases in our
case base [38]. Some injected cases affected the population
more than others, influencing the chromosomes to play like
some injected cases while also influencing to play unlike
other injected cases. For other cases, there seems to be no
change in Hamming Distance to the population. This shows
that a coevolutionary population can be influenced to play
like injected cases, but some injected cases may have more
influence than others. However, we do not want chromosomes
that learn to play like someone else, to also inherit their flaws
and lose robustness.

We tested the robustness our results by playing the best
chromosomes against five chromosomes never seen during
training. These testing chromosomes are different from the
chromosomes used for case injection, but were also produced
from hand-tuning and coevolution. Our results showed that
although injecting cases into the population influenced the
best chromosomes in the population to play like the injected
cases, these new chromosomes did not lose robustness, and
defeated at least as many opponents as strategies produced
from coevolution without case injection.

These results indicate case injection into a coevolution-
ary population will influence coevolution to quickly produce
similar winning strategies, while maintaining robustness. This



informs our research into adapting new strategies from pre-
viously encountered opponents. In our future research, we
would like to investigate new methods for determining which
cases in a case base would be the most beneficial to inject
into a coevolutionary population and/or teachset and at what
time/frequency we should do the injection. We also intend
to research methods for examining an opponent’s actions
during a game, comparing them to cases in our case base,
and determining if our game AI should change strategies
to something else in our case base. Finally, in the long-
term we plan to maintain a case base of strategies used by
human players and coevolution, and inject these cases into a
perpetually running coevolutionary algorithm that finds new
effective strategies as more people play.
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