
Scripted Artificially Intelligent Basic Online Tactical Simulation

Jesse D. Phillips+∗ Roger V. Hoang+∗

Joseph D. Mahsman+∗ Matthew R. Sgambati+∗ Xiaolu Zhang+

Sergiu M. Dascalu+ Frederick C. Harris, Jr.+∗

Department of Computer Science and Engineering+ CAVCaM∗

University of Nevada, Reno Desert Research Institute

Reno, NV 89557 Reno, NV 89512

{jdp, hoangr, mahsman, sgambati, zhang, dascalus, Fred.Harris}@cse.unr.edu

Abstract

For many years, introductory Computer Science
courses have followed the same teaching paradigms.
These paradigms utilize only simple console windows;
more interactive approaches to Computer Science ed-
ucation are possible. Just as scientific visualization
aides the researcher in drawing new conclusions from
data, a visual tool that allows the visualization of the
execution of code and the effects of that execution
would, at the very least, aide understanding of the
concepts and, at most, provide for better retention of
the concepts. This paper presents details of the idea,
specification, design, and functionality of the Scripted
Artificially Intelligent Basic Online Teaching Simula-
tor (SAI-BOTS), an interactive game that helps rein-
force what is taught in class. Students script vehicles
to fight each other in a three dimensional environment.
In this environment users can play with other people
and learn the basic programming techniques involved
in artificial intelligence. The users navigate through
the 3D world using a third-person camera or blind
mode. This allows the user to take techniques from
lecture and apply them, resulting in strong and imme-
diate reinforcement of skills and concepts.
Keywords: scripting, AI

1 Introduction

Interactive teaching techniques have long since been
acknowledged as a highly effective teaching method in
today’s educational landscape. For many years intro-
ductory Computer Science courses have followed the
same teaching paradigms. However, in a field as in-
herently innovative as Computer Science, we feel that
a great deal of improvement can be made in the way it
is taught. Typical problems experienced by beginning

programming students involve the aridity of the ma-
terial, and frustration when a complex program fails
to perform as desired. With that in mind, this pa-
per presents details of the idea, specification, design,
and functionality of the Scripted Artificially Intelligent
Basic Online Teaching Simulator.

SAI-BOTS is an interactive video game in which
users can write scripts to control vehicles in a three
dimensional environment. It can be used by both be-
ginning and advanced programmers, although its main
utility lies in reinforcing the concepts taught in pro-
gramming classes. Students can immediately use their
newly learned skills and concepts in creative ways, and
observe the results of their own programming reflected
on screen. Interaction is also possible through cooper-
ation or competition between vehicles scripted by mul-
tiple programmers. The advantage of this approach to
teaching lies in its ability to teach basic programming
techniques, and artificial intelligence scripting in an
immersive and interesting manner.

We intend for SAI-BOTS to be not only a useful
educational tool, but also a program that can be used
in the budding area of neuroevolutionary research in
artificial intelligence. Neural networks may be used
to evolve more efficient and advanced scripts, and the
user may write their own fitness functions with in the
program. The implementation of Blind Mode helps
users develop their skills by giving them only com-
puter interpretable information with which to write
their scripts. The ability to control both individual
entities and entire squads of entities lends depth to
the tactical side of the game.

The remainder of this paper is structured as follows:
Section 2 delves into the aspects of video games that
influenced SAI-BOTS, and previous work on the syn-
thesis of games and teaching tools. Section 3 presents
our design and implementation of SAI-BOTS. Sec-



tion 4 details our prototype of the product and the
inner workings of the code and presents the results
of our experimentation. Section 5 concludes with our
results and potential developments.

2 Background

Once the decision was made to create a game, we
derived inspiration for the features we intended to in-
corporate from three game engines: APOCALYX [2],
CryENGINE2 [5], and Unreal Engine 3 [9]. Some key
features include collision detection, pathfinding algo-
rithms [13], and networking subsystems for multiplayer
support. Other features we wanted to integrate into
our software, but which existing game engines do not
support well, included team based AI and the ability
to edit scripts on the fly. Finally, the Unreal Engine 3
provides a well-rounded user interface editor and ex-
tensive content creation capabilities which inspired us
in the creation of our own interface.

An existing game that comes close to our vision is
called GUN-TACTYX [3], developed by the creator
of the APOCALYX engine. The premise of GUN-
TACTYX is for the player to write scripts that dictate
the actions of the bots in the game. In writing these
scripts the player has access to sensor data within the
game, and also basic functions that enable features
such as pathfinding. The player is allowed to change
a few parameters during the execution of the game,
however they cannot change the scripts themselves.

Another existing game that provided inspiration
for features was Crysis [8], developed in unison with
CryENGINE2 by Crytek [6]. The basic terrain used in
Crysis is a heightmap system that determines the ele-
vation of the world at certain points. Along with the
heightmap, there is an advanced voxel system that al-
lows for the creation of both interior areas and unusual
shapes that may be placed in the world. This allows
for efficient creation of extremely detailed worlds in
which players of the game may engage in combat. The
highly detailed nature of the world allows for the user
to get immersed in the game while also trying to per-
form simple manuevers, such as taking cover behind a
building. This type of world can, unfortunately, pro-
vide increased difficulty in designing a sophisticated
artificial intelligence scheme. The artificial intelligence
in Crysis was completely designed to be as realistic
and believable as possible. By using some pathfinding
algorithms to get around the world, the artificial intel-
ligence also uses tactical manuevers to attack enemies.
Working as squads to flank enemies as well as hiding
in the world to ambush someone is a common element
Crytek was seeking to acheive. When not in combat,
the artificial intelligence soldiers exhibit scripted life-

like behavior including smoking, yawning, talking, and
a few other actions. The user interface that Crysis uses
is the base version built into CryENGINE2.

Currently, most artificial intelligence is scripted for
the sake of simplicity. The benefits of using a script-
ing language are the ability to change how the artificial
intelligence reacts and the simplification of not need-
ing to recompile the engine source code after modifica-
tions. Unfortunately, most games implement a script-
ing system in such a way that scripts are not able to
be updated while playing the game. Updating scripts
is a beneficial feature. Since scripts do not need to be
compiled, this allows for users to see what new changes
to the scripts do while playing the game.

Since SAI-BOTS is intended primarily to be a teach-
ing tool in the same vein as Alice [4], certain features
normally associated with video games are not neces-
sary, although in the future they may be implemented.
Instead of expending resources in the development of
immersive visual and audio detail, the bulk of our work
revolved around the creation of a flexible, and powerful
script creation interface. The user should be allowed
access to the resources they need to develop and evolve
their bots. The field of neuroevolution is a growing re-
search field within artificial intelligence. The impres-
sive results of the techniques involved in neuroevolu-
tion provided a vision for some of the best features
that should ultimately be implemented in SAI-BOTS.
Although these techiques are not yet utilized, the goal
is to eventually incoroporate them.

Neuroevolution uses genetic algorithms to evolve ar-
tificial neural networks rather than having a person
expend the time to manually train the artificial intel-
ligence. Genetic algorithms use a fitness function to
optimize the output of the neural networks based on
what the user wants to accomplish. This idea allows
for trainable agents that learn what they are supposed
to do faster through offline simulations. The simu-
lations save the highest rated neural networks so the
user can test them out in for future use. Some systems
that use neuroevolution include ANNEvolve [1], an ar-
tificial neural net engine that has been used to train
virtual sailboat navigation systems, and NERO [12],
a game which allows the user to modify parameters
of their own AI agent to combat other neuroevolving
agents.

3 Design

Unlike typical games, SAI-BOTS does not revolve
around wanton destruction. The ability of a player to
load scripts in order to control the behavior of entities
in the game makes it an ideal educational tool for ar-
tifical intelligence courses. A simple use of the game



would be for instructors to arrange competitions in
which students on opposing teams write scripts. Each
script controls a team of robots, and a subsequent bat-
tle between the teams would determine which group of
students wrote the most intelligent script. Realizing
this vision required the following items to be imple-
mented.

3.1 Squad Control

Fundamental to multiplayer games is the ability to
communicate and coordinate maneuvers with team-
mates. In a typical tactical game a player may send
simple commands, and allies are allowed a limited
number of options in response. We propose that users
be allowed to send commands to other units. Com-
mands may be broadcast to an entire team, over spe-
cific team channels, or vocalized so that units in the
vicinity may hear them. Certain units may be des-
ignated solely as receivers that can act on the intelli-
gence provided. Broadcast commands can be used to
form squads. This adds depth to the tactical side of
the game and also adds complexity to the design. We
have decided to allow the user to directly control any of
their vehicles. This will expedite the response should
a vehicle encounter a problematic situation such as an
enemy encounter; it is also useful in a situation requir-
ing precision, such as maze navigation.

3.2 Neuroevolution

This growing area of research within the artificial
intelligence field uses genetic algorithms to evolve arti-
ficial neural networks. Genetic algorithms use a fitness
function to optimize the output of the neural network
based on the goals of the user. The highest-rated neu-
ral networks are saved so that the user may test their
efficacy against other neural networks in the future,
thereby evolving even better systems. Neuroevolution
may be used for creating a plethora of advanced ar-
tificial intelligences; however, we found that previous
game engines were typically limited by the use of only
one fitness function. Our idea is to enable developers
to write fitness functions in Python, thereby allowing
a greater amount of ideas to be developed, as well as
enhancing the ability to evolve certain units as com-
manders, and others as operatives.

3.3 Sensors

Because neural networks take their input from sen-
sor data, the use of neural networks to control the ve-
hicles in SAI-BOTS necessitates the implementation
of various sensors. Basic sensors detect the vehicle’s
distance from walls, allies, and adversaries; simpler

sensors that relate to radar are also an option. With
access to sensor data, users now wield more tools with
which to evolve their scripts. The user is also allowed
direct access to all the sensor input, to better decide
how he wishes the script to react.

3.4 Scripting

The advantage of using scripts lies in their ease of
use. We have chosen Python as the language of our
implementation. Since scripts written in Python do
not require compilation, the effects of minute changes
in a script can be immediately evinced. The user gar-
ners feedback quickly as they are playing the game.
Our cross-platform user interface allows the program-
mer to change the artificial intelligence of the applica-
tion without requiring them to exit and recompile the
program, thereby preserving their immersive game ex-
perience. Scripts are also flexible in that they may be
as simple or complex as the user chooses them to be
- entire games may be written using scripts. An addi-
tional feature of ours which most scriptable engines do
not allow is the ability to control an entity themselves.
This feature will lend the user a deeper understand-
ing of how the entity is controlled, and improve their
scripting skills.

3.5 Blind Mode

In Blind Mode the user is shown only a small radar
and sensors - in other words they are given no infor-
mation beyond that which is interpretable by the com-
puter itself. Although this seems like a great limita-
tion, it is entirely possible that, for instance, a script
may be written which will navigate a maze knowing
only the distance of the object from the walls. This
will enhance the user’s ability to write scripts based
on information provided by the sensors. Due to the
complexity of implementing more sensors to each ve-
hicle we are currently developing more efficient ways
of mapping access to all sensors.

3.6 Terrain

There are two different types of terrain in video
games. Deformable terrain is typically used when the
environment is small, and allows the terrain to be
changed or destroyed. Level of Detail terrain, such
as the ones described in [7] and [10], is usually em-
ployed in large environments, and is unchangeable.
SAI-BOTS supports two different types of Level of De-
tail terrain. The first is created from a simple black
and white bitmap of a maze, the second is created from
reading in a digital elevation model of real world data.



Both terrains are generated using a memory efficient
rendering method. First, data is read into a vertex
buffer object. Indices for the data to be rendered are
then set, and a 256 x 256 grid is built, with extra
points on one side. In the rendering process the index
array is loaded and rotated so that extra side points
are created. This is to allow for different levels of detail
in the terrain to be merged. In the interest of speed,
the rendering is executed entirely on the GPU.

4 Implementation

A prototype of SAI-BOTS was developed using
Python as both the implementation and the script-
ing language. The user interface was created us-
ing wxWidgets [14] and is divided into two primary
components: a scripting interface and a game client.
The scripting interface allows the user to manipulate
scripts in a number of text editors (see Figure 1). Once
a script is ready for use, it can be executed through
this interface; additionally, the interface allows for the
user to switch the game client view between an om-
niscient commander view and a more representative
blind mode.

Figure 1: An example script.

Figure 2 depicts the possible paths a user can take
while running SAI-BOTS. One path allows the user
to start a single player game, in which he can enter a
maze game or a combat game. In the maze game the
player must navigate the tank through the maze, while
in a combat game he faces off against an AI opponent.
The other path is to start a multiplayer game where

Figure 2: System activity diagram.

he can start either a client version or a server version.

The game client drives the simulation and visual-
ization of SAI-BOTS in a separate window. The basic
layout of the client system is shown in Figure 3. User-
created scripts are given access to an instance of the
Vehicle class. During any invocation, the script is able
to move the vehicle, fire its weapons, and communi-
cate with other entities through a message-passing in-
terface. To allow for experimentation with ad hoc net-
working and information sharing, the broadcast range
for messages can be adjusted.

Depending on the selected client view, the user is
presented with different representations of the game.
Using the commander mode, a 3D rendering of the
game world is displayed with OpenGL. Visualization
of the maze terrain is done by loading a maze image
such as the one in Figure 4 as a heightfield texture and
using it as input to a GPU-accelerated LOD render-
ing system (see Figure 5). This mode allows free reign
over the camera system, giving the user the ability to
view any part of the battlefield at any time. In con-
trast, blind mode presents the user with a minimalistic
representation of the game world. The clairvoyance of
the commander mode is replaced with a visualization
more akin to what the scripted entity would see: sim-
ple sensor locations and numerical values.



Figure 3: Game client structure.

Figure 4: A maze created by MazeMaker [11].

5 Conclusions and Future Work

5.1 Conclusions

Due to the success and entertainment value of video
games in today’s society, it was inevitable that video
games would be used to help teach students Computer
Science concepts. In this paper we discussed elements
in current video games and engines and identified a
gap in the bridge between education and video games.

We presented a prototype of SAI-BOTS, a scriptable
game in which the intelligence governing the entities
in the game is immediately mutable. Our prototype
allows for scripts to be loaded during execution, mak-
ing it applicable for teaching. It provides the func-
tionality to allow for customized fitness functions to
be used, creating a more evolved AI compared to a
static fitness function. The squad control allows for
the improvement of network programming skills and
more complex AI schemes. Introducing various types
of sensors presents a neuroevolution problem in deter-
mining which sensors are of the greatest use to the
AI.

Figure 5: Maze rendered in commander mode.

5.2 Future Work

Although SAI-BOTS presents a proof-of-concept,
several improvements must be made in order to make
this an effective teaching tool. To begin with, as SAI-
BOTS was implemented in Python, the speed of the
engine itself can be considerably increased through the
use of a compiled language such as C or C++. Python
or any other interpretted language can still be used as
a scripting language for SAI-BOTS, as long as an in-
terface exists for the script to access game elements
such as the vehicles.

In addition to the maze walls, other obstacles such
as buildings and chasms should be added. This will not
only introduce new pathing and line-of-sight problems
but also allow AI programs to possibly evolve sophisti-
cated strategies that take advantage of these features.
These improvements can be further enhanced by caus-
ing entity actions to actively modify the game world.
Blasting craters into the terrain can not only make it



difficult for other vehicles to traverse the game world
but also provide tactical hiding points. The dynamic
nature of the world will also test an AI’s ability to
adapt to a range of variable situations.

To further increase the potential complexity of the
user AI, the ability to script the behaviors of the sen-
sors can be added. Limitations added to the sen-
sors such as broadcasting power and limited energy
resources present new challenges like determining the
importance of particular information and creating ef-
ficient communication pathways to relay this data to
the appropriate entities.

From an educator’s stance, several pieces of func-
tionality would better facilitate SAI-BOTS use in a
classroom setting. One of these would be an observer
mode that would allow spectators to study a game
without actively participating in the event. Addition-
ally, a replay feature would allow the instructor to cri-
tique the effectiveness of students scripts.

References

[1] ANNEvolve. ANNEvolve :: Evolution of Ar-
tificial Neural Networks. http://annevolve.

sourceforge.net/. Accessed March 10th, 2008.

[2] Leonardo Boselli. APOCALYX. http://

apocalyx.sourceforge.net/. Accessed March
10th, 2008.

[3] Leonardo Boselli. GUN-TACTYX. http:

//gameprog.it/hosted/guntactyx/. Accessed
March 10th, 2008.

[4] S. Cooper, W. Dann, and R. Pausch. Teaching ob-
jects first in introductory computer science, 2003.

[5] CRYTEK. CryEngine 2 and Sandbox 2 Tutorials.
http://www.cryengine2.com/. Accessed March
10th, 2008.

[6] CRYTEK. Welcome to Crytek. http://www.

crytek.com/. Accessed March 10th, 2008.

[7] E. Danovaro, L. De Floriani, E. Puppo, and
H. Samet. Multi-resolution out-of-core modeling
of terrain and geological data. In In Proceedings

of the 13th ACM International Symposium on Ad-

vances in Geographic Information Systems, pages
200–209, Bremen, Germany, November 2005.

[8] EA and CRYTEK. EA : Crysis. http://www.ea.
com/crysis/. Accessed March 10th, 2008.

[9] Epic Games. Powered By Unreal Technol-
ogy. http://www.unrealtechnology.com/html/

technology/ue30.shtml. Accessed March 10th,
2008.

[10] William E. Brandstetter III. Multi-Resolution
Deformation in Out-of-Core Terrain Rendering.
Master’s thesis, University of Nevada, Reno , De-
cember 2007.

[11] John Lauro.
Maze Maker. http://hereandabove.com/maze/

mazeorig.form.html. Accessed March 10th,
2008.

[12] Austin University of Texas. nerogame.org. http:
//nerogame.org. Accessed March 10th, 2008.

[13] Patrick Henry Winston. Artificial Intelligence.
Addison-Wesley, third edition, 1993.

[14] wxWidgets. wxWidgets.
http://www.wxwidgets.org/. Accessed March
10th, 2008.


