

STRATIFIED PROGRAMMING:
TOWARDS A NEW PARADIGM FOR SOFTWARE DEVELOPMENT

Adrian Pasculescu Sergiu Dascalu
Alpas Solutions Department of Computer Science
Toronto, Ontario University of Nevada, Reno
Canada, L5C 1Y1 Reno, NV, 89557, USA
adrianp@alpas.net dascalus@cs.unr.edu

Abstract

 This paper introduces stratified programming, a

novel approach for program construction. In essence,
stratified programming allows the developer to build and
execute software at various levels of abstraction, each
level corresponding to a program stratum that provides a
specific degree of functionality. Although there is a
significant amount of work reported in the scientific
literature on program refinement none of this work, to the
best of our knowledge, has proposed mechanisms for
switching the level of software details at the execution
stage or suggested the use of program strata in a larger
software engineering context. This not only makes the
approach described in this paper highly innovative but
also opens new related research and development
directions across the entire software life-cycle. To
illustrate the approach we present an example focused on
the coding phase of the software process. Several avenues
of further investigation are also indicated and the practical
benefits of stratified programming are discussed in the
context of modern software construction methodologies.

Keywords: stratified programming, program strata,
layered execution, strata-based software construction.

1 INTRODUCTION

Abstraction is a fundamental principle applied
for solving problems, including problems pertaining to the
software engineering domain [1, 2]. Abstraction is
essentially an instrument for dealing with complexity: it
allows us to focus on the most relevant aspects of the
problem and also, by changing the level of abstraction, to
focus on the most relevant aspects of a part of this
problem. Refinement, involving “changing the level of
abstraction,” is probably the most general and powerful
technique for handling complexity, a technique deeply
ingrained in our cognitive profile. High level of
abstraction means “general,” “fundamental,” “most
important,” “on a larger scale,” while low level of
abstraction means “detailed,” “on a smaller scale,” and
sometimes (but by all means not always!) “less
important”. High level of abstraction means seeing the
forest on the horizon line while low level of abstraction
means looking from few yards at one of that forest’s tree

or analyzing under the microscope the delicate nature of
the tree’s leafs.

Abstraction and refinement are embedded in
practically all techniques and tools used in software
engineering. Examples of such techniques are the top-
down approach for software development [3], the defi-
nition of classes and patterns in the object-oriented
technology [4], and the successive refinements of formal
specifications [5]. Tools using various levels of abstrac-
tion and providing mechanisms for switching the level of
detail include file and document management facilities, in
which folders and document contents can be seen either
“collapsed” or “expanded” (e.g., XML documents [6]);
versioning control systems such as the Concurrent
Version System (CVS) [7] or Microsoft’s Visual Source
Safe [8] where, based on incremental updates, various
stages of a project are preserved; and specialized editors
such our own Harmony environment for combined use of
semi-formal and formal notations in software
specification, where the level of on-screen detail of
formal specifications can be adjusted [9].

Although a significant amount of work has been
focused on program refinement (e.g., [10]) none of this
work has either proposed mechanisms for switching the
level of software details at both the build and execution
stages or suggested the use of program strata in a larger,
pragmatic software engineering context. In this paper we
introduce stratified programming (SP), a software
development approach based on the notion of program
strata. Each program stratum corresponds to a layer of
functionality assigned to software, higher the position of
the layer in the strata hierarchy, more general (more
abstract) the functionality provided. Each program
stratum incorporates the functionality of the strata above
it and provides some additional, specific functionality.

The idea of stratified programming has emerged
from our practical software development experience and
has been driven by the goal of accelerating software
production. Thus, we have focused first on the coding
stage and have devised a flexible yet systematic way for
building programs incrementally. This paper presents the
use of program strata at the coding stage, yet a more
precise description would be “between unit design and
unit testing,” with coding activities placed in the centre of
this “window” of the software process. However, SP is
not only about unit design, implementation, and testing.

While we agree with Beck that “at the end of the
day, it has to be a program” and “nominate coding as the
one activity we know we cannot do without” [11] we are
aware that building software well transcends the coding
phase of the software process [12]. In short, driven by
pragmatic considerations that demand rapid software
production we look in this paper at stratified
programming at the coding (implementation) phase, but
see implementation only as the starting point from which
several new research directions related to strata-based
software construction (SSC) emerge. While focusing on
coding places our approach under the umbrella of new
software methods aimed at increasing the productivity of
software construction (e.g., agile development [13]),
applying the strata-based approach to other phases of the
software process, including requirements specification
and software maintenance, will give our approach the
broader scope of the entire software life-cycle.

We believe that our approach offers an
innovative, pragmatic solution for software development
and opens a number of interesting avenues for further
investigation. The closest approach to ours is probably
program refinement, which starts with a software
specification at the highest level of abstraction and
gradually refines it into more and more detailed
descriptions of the software, possibly up to an executable
program. Our approach, also incremental in nature, is
nevertheless distinct in that it makes use of program strata
during the entire development cycle, including run-time
execution. This, we believe, provides significant flexibili-
ty to both software development and software execution.

This paper, in its remaining part, is structured as
follows: Section 2 presents a very detailed, albeit
simplified example of stratified programming, Section 3
reviews the concepts behind SP and evaluates its merits
and limitations, Section 4 identifies directions of further
research and development, and Section 5 concludes the
paper with a brief summary of our contributions.

2 AN EXAMPLE

2.1 The Problem

To illustrate the concepts of program strata and
stratified programming, let us consider the following
simplified example (Fig. 1) in which a log file from a
database management system has to be analyzed in order
to detect occurrences of specific events. The log file has
an optional header and a number of fixed-format sections,
each section starting from the beginning of the line with a
number followed by “)”. In Fig.1 these sections begin, in
order, with “3)”, “19)”, “20)”, etc. Within each section,
paragraphs are identified by their names, for example
Client Network Name, Type, Start Time, Stop Time, etc. The
goal of analyzing the log file is to identify sections that
include a Text paragraph and extract from them their Text,
Start Time, and Stop Time paragraphs.

EVENT LOG HEADER
 Event Monitor name: PERFDB_MON
 Database Name: PERFDB
 First connection timestamp: 09-05-2002
 10:37:48.255422
 Event Monitor Start time: 05-09-2002
 15:13:48.700463
 --
3) Connection Header Event ...
 Client Network Name: unixi1970
 Connect timestamp: 05-09-2002 12:27:40.073004

19)Statement Event ...
 Record is the result of a flush: FALSE

 Type : Dynamic
 Cursor : SQLCUR4
 Text : SELECT distinct bbp_wire_info_key

 FROM b_w_info WHERE
 (fx_status = ? OR (fx_status = ?

 AND fx_rate_ts <= ?)) AND
 wire_status NOT IN (?,?)

 Start Time: 05-09-2002 15:13:56.565403
 Stop Time: 05-09-2002 15:13:56.575842
 Rows read: 3887

20)Statement Event ...
 Record is the result of a flush: FALSE

 Operation: Static Commit
 Cursor :
 Start Time: 05-09-2002 15:13:56.578378
 Stop Time: 05-09-2002 15:13:56.578429
 Rows read: 0

22)Statement Event ...
 Record is the result of a flush: FALSE

 Type : Dynamic
 Operation: Prepare
 Text : SELECT DISTINCT contract.id FROM
 user, contract, seclink WHERE
 user.id = ? AND user.contract_key
 = contract.contract_key AND
 (user.status = '0' or user.status
 = '2') AND user.deleted_fl <> 'D'

 Start Time: 05-09-2002 15:14:02.394358
 Stop Time: 05-09-2002 15:14:02.395116
 Rows read: 3

Fig. 1 Log File from a Database Management System

For illustration purposes, we assume that the input log file
comes from the standard input and that the coding of the
Log File Analyzer Program (LFAP) is done in Perl. The
following shows the step-by-step creation of LFAP’s
strata.

2.2 Creating Strata

Step 1: The first stratum is defined (Fig. 2). The role of
this program stratum is to do nothing; no input is
necessary and no output is produced. This might seem
odd, but invariants play an important role in mathematics-

based techniques, including formal software specification.
In this example, the general context is declared (Perl used
for coding, strict syntax checking selected) and the
notation rules imposed by the developing company are
followed (input and output specified, development phase
and date indicated). The net result of this unit’s testing
will be a valid program that does nothing.

#!/usr/bin/perl –w
use strict;
#######################################
input : STDIN (DB2 log file)
output: STDOUT (xml document)
phase : development
date : 2002-10-25
#######################################

Fig. 2 LFAP: The First Stratum

Step 2: The second stratum is added (Fig. 3). This
stratum’s simple goal is to read the input file. From the
traditional coding perspective the added code should not
be indented deeper. However, indentation here is
necessary because in SP, by definition, code written on
the same indentation level belongs to the same stratum.
From a testing perspective, it makes sense to differentiate
this new stratum because an input file is needed. The
expected result should again be nothing but this time
without an input file the program will wait forever.

#!/usr/bin/perl –w
use strict;

#######################################
input : STDIN (DB2 log file)
output: STDOUT (xml document)
phase : start development
date : 2002-10-25
#######################################

 ## 2nd stratum reads lines from the input
 ## file; no processing
 while (my $line=<STDIN>){
 }

Fig. 3 LFAP: The First and Second Strata

Step 3: The third stratum is created (Fig. 4). In its 3-strata
version, the program identifies the first section of the log
(in the first while loop) and then reads line-by-line the
remaining of file (in the second while loop). As indicated
in section 2.1, LFAP’s goal is to select from the input file
only specific sections of the log, skipping over the
optional header of the file. The third stratum does not
complete the program, yet it extends the existing LFAP’s
functionality, allows further testing, and prepares the
creation of the next stratum. In fact, it needs certain
improvement, as shown in the next step of strata creation.

#!/usr/bin/perl –w
use strict;

#######################################
input : STDIN (DB2 log file)
output: STDOUT (xml document)
phase : development
date : 2002-10-25
#######################################

 ## 2nd stratum reads lines from the input
 ## file; no processing
 while (my $line=<STDIN>){
 ### 3rd stratum reads only ‘sections’
 ### i.e., it skips over front lines
 ### that do not start with numbers
 ### below, it detects the start of the
 ### first section
 if ($line =~ /^[0-9]+\)/){ last; }
 }
 ### read line-by-line the rest of the
 ### input log file for processing on
 ### a deeper stratum
 while (my $line=<STDIN>){
 }

Fig. 4 LFAP: Strata One to Three

Step 4: Changes are made to the second and third strata
and the fourth stratum is added (Fig. 5). The code shown
in Step 3 is inconsistent in that it treats differently the first
and the remaining sections of the log file (the beginning
of the first log “section” is identified in the first loop, the
rest of the log will be processed in the second loop). We
take care of this by making the scalar variable $line visible
in both loops. This is achieved by declaring the variable
line in the second stratum before the first while loop and
by removing the reserved Perl word my (which defines the
scope of a variable) from references to the variable $line in
the conditions of both while loops. An additional change
consists in moving the test condition of the second loop
from the loops’ beginning to its end. Thus, there is a
consistent treatment of all sections. In addition to
modifications to strata 2 and 3, the fourth stratum
(characters in bold) is created. A further step in detailing
the functionality of the program, stratum 4 is composed of
a line of code that simply generates an output copy of the
file. This will be refined in the next steps.

Regarding step 4, we note that changes made in
strata 2 and 3 do not affect the expected results
(input/output pairs) for each of the previous test cases.
More precisely, if we go back to Steps 1, 2, or 3 after
making the changes described above we should get the
same result. In other words, we have made neutral code
transformations relative to our stratification criteria,
which in this LFAP example is “a specific input/output
pair is associated with each stratum”. In practice,
however, different criteria for building strata can be
considered and multiple strata may contribute to the same
input/output pair.

#!/usr/bin/perl –w
use strict;

#######################################
input : STDIN (DB2 log file)
output: STDOUT (xml document)
phase : start development
date : 2002-10-25
#######################################

 ## 2nd stratum reads lines from the input
 ## file; no processing
 my $line=””;
 while ($line=<STDIN>){
 ### 3rd stratum reads only ‘sections’
 ### i.e., it skips over front lines
 ### that do not start with numbers
 ### below, it detects the start of the
 ### first section
 if ($line =~ /^[0-9]+\)/){ last; }
 }
 ### read the rest of the input log file
 ### for processing
 do {
 #### stratum 4: generates output (a
 #### simple copy)
 print $line;
 while ($line=<STDIN>);

Fig. 5 LFAP: The Fourth Stratum and Changes to

Strata Two and Three

Step 4bis. Neutral code transformations in stratum four
(Fig. 6). With the notion of neutral code transformations
introduced, we now proceed to make such transformations
to stratum 4 as well. This is shown in Fig. 6, where an if-
then-else construct is inserted to bring the program closer
to its final goal, the complete identification and extraction
of “text” sections. Step 4bis not only further refines the
program and shows how a given stratum can be extended
(“horizontal” extension of the program) but also
illustrates a basic technique used in SP: conditional
statements are introduced to generate new strata (they are,
in a sense, “markers” for new strata).

Step 5: The fifth and final stratum is created (Fig. 7). This
final stratum of LFAP contains the code for detecting the
targeted “text sections” and for extracting (printing) only
their Text, Start Time, and Stop Time paragraphs. Two
observations are necessary regarding this stratum. First,
the last assignment statement of the stratum ($line=””) is
somewhat at odds with the classical programming style.
Normally, the code for printing the targeted paragraphs
would be written using a positive if condition:

if ($textDetected) {
 print $line;
}

However, this would break our SP ad hoc rule for
maintaining the same input/output pair on each stratum.
This is why we use the “cancellation” assignment $line=””
to reach the end of the second while loop with no alteration

of the output. Secondly, the code that prints the desired
result is written on a single line, although it includes an if
statement:

print $fldText.$fldStartTime.$fldStopTime if
($textDetected);

Normally, the if statement would open a new stratum.
However, to save space, we decided to limit the depth of
this program (LFAP) to five strata. However, we believe
that LFAP’s five strata presented in this paper are
nevertheless sufficient to introduce the SP approach and
some of its characteristics.

#!/usr/bin/perl –w
use strict;

#######################################
input : STDIN (DB2 log file)
output: STDOUT (xml document)
phase : start development
date : 2002-10-25
#######################################

 ## 2nd stratum reads lines from the input
 ## file; no processing
 my $line=””;
 while ($line=<STDIN>){
 ### 3rd stratum reads only ‘sections’
 ### i.e., it skips over front lines
 ### that do not start with numbers
 ### below, it detects the start of the
 ### first section
 if ($line =~ /^[0-9]+\)/){ last; }
 }
 ### read the rest of the input log file
 ### for processing
 do {
 #### stratum 4: generates output (a
 #### simple copy)
 if ($line =~ /^[0-9]+\)/) {
 #### here we are at the beginning of
 #### a new “section”
 } else {
 #### here we are inside a “section”
 }
 print $line;
 } while ($line=<STDIN>);

Fig. 6 LFAP: Neutral Code Transformations in

Stratum Four

3 STRATIFIED PROGRAMMING: DISCUSSION

As shown in the previous example, we base our SP
approach one the concept of program strata, each program
stratum being associated with an execution layer. It is
important to stress this association since otherwise SP
may seem to be only a new technique for incremental
software development. Because we envisage separate
layers of execution, SP is more than that. It means, in
essence, that software not only can be developed but also
executed at different levels of abstraction. This, we think,

is a powerful paradigm, which has far reaching conse-
quences, as discussed below.

#!/usr/bin/perl –w
use strict;
#######################################
input : STDIN (DB2 log file)
output: STDOUT (xml document)
phase : start development
date : 2002-10-25
#######################################
 ## 2nd stratum reads input file - no
 ## processing
 my $line=””;
 while ($line=<STDIN>){
 ### 3rd stratum reads only ‘sections’
 ### i.e., it skips over front lines
 ### that do not start with numbers
 ### below, it detects the start of the
 ### first section
 if ($line =~ /^[0-9]+\)/){ last; }
 }
 ### read the rest of the input log file
 ### for processing
 ##### stratum 5
 ##### define the flags neccessary for
 ##### ‘field’ detection
 my $fldText;
 my $textDetected;
 my $fldStartTime;
 my $fldStopTime ;
 do {
 #### we start generating output (a
 #### simple copy)
 if ($line =~ /^[0-9]+\)/) {
 #### here we are at the beginning of
 #### a new section
 #### that also means the previous
 print "---------------------\n";
 ##### print only desired lines
 print$fldText.$fldStartTime.$fldStopTime
 if ($textDetected);
 ##### initialize/reset ‘field’ detection
 ##### flags
 $fldText =""; $textDetected=0;
 $fldStartTime ="";
 $fldStopTime ="";
 } else {
 #### here we are inside a section
 ##### detect ‘fields’ and set flags
 if ($line =~ /^ Text :(.+)/) {
 $fldText =$1.”\n”; $textDetected=1;}
 if ($line =~ /^ Start Time:(.+)/) {
 $fldStartTime =$1.”\n”; }
 if ($line =~ /^ Stop Time:(.+)/) {
 $fldStopTime =$1.”\n”; }
 }
 $line=””; #### Perl does not accept
 ##### break loop 'next' in this context
 print $line;
 } while ($line=<STDIN>);

Fig. 7 LFAP: Final Form with Five Strata

First, the paradigm allows the creation of

programs with adjustable functionality. In the example
presented, the layers were fine-tuned in a way that meant

successive reductions of the output’s size, towards
reaching a selection goal. In other applications, the
opposite can happen: deeper the stratum, more the details
provided in the program’s output. Yet in other
applications we can image strata having quasi-
independent contents, which implies that lower level
strata would override part of the higher-level strata’s
functionality.

Second, a powerful tool for flexible, rapid software
construction is presented to the developer. SP, similar to
new approaches for efficient software development such
as extreme programming (XP) [11], agile development
methods [13], or rapid application development [14],
focuses on rapid production of quality software. We see
SP as a new technique for evolutionary development,
including exploratory development and rapid prototyping.
The benefits of these types of development, in particular
the early creation of programs that are gradually extended
and enhanced based on users’ feedback, are well
documented in the software engineering literature [1, 12].

Third, being a new approach that offers a new
software construction paradigm, SP brings a number of
new research and development challenges. Some details
on these are presented in the next section, which outlines
specific topics we intend to explore in the near future. In
general terms, however, it is clear that from a coding-
focused technique, SP has the potential to spread across
the entire software life-cycle. The example presented
constitutes an “on-the-fly,” rapid unit (or detailed) design
as well as a basis for unit testing. Evidently, SP’s
principles can be applied to the earlier stages of the
software development process: high-level designs can be
created in terms of strata-based software and, continuing
backwards our “walk” through the phases of software life-
cycle, the specification of the software can be guided by
the program strata (software strata) concepts. But it is not
only towards the earlier phases of the software life-cycle
where SP can be extended; evidently, SP principles and
techniques could affect later phases as well. It is
reasonable to envision that software specified, designed,
and coded according SP principles will also be integrated,
tested, and maintained in accordance with these
principles. Hence, we believe, the SP paradigm can
extend over the entire scope of the software life-cycle.

While some of SP’s benefits are mentioned
above, in particular flexibility and efficiency, the new
approach also brings a number of challenges. At this point
in time, we see as the main challenge for SP the
requirement for a mindset shift entailed by the new
paradigm: both developers and users will need to adapt to
the new paradigm and see software as a set of strata, each
stratum defined by specific characteristics and specific
functionality. All other challenges that we, at present, are
aware of are related to this major challenge and can be
classified broadly in two categories: supporting
methodology and supporting tools. We intend to
approach both these areas, as described next.

4 FURTHER WORK

Our future work on SP will encompass both the
definition of a systematic SP methodology and the design
of a set of assisting tools. In parallel, we intend to extend
the application of the proposed approach to new, more
complex case studies. The next step will be to apply the
SP approach to module design and integration. The same
database management application from which we have
taken the LFAP example to illustrate unit development
will be used in a larger study to exemplify higher level
design and module integration and testing.
 At this time, we think that we need first the
support of certain SP tools, which will reduce the time
needed for applications. We have already started working
on such tools and believe that both exercising SP on new
software development cases and designing supporting
tools will provide us with valuable feedback for necessary
methodological adjustments. Regarding tool support for
SP, specific tools that we are currently working on are:
• An SP code editor, which will allow easy demarcation

and manipulation of strata. In essence, the code editor is
intended to provide: i) automated indentation of strata;
ii) switching mechanisms for on-screen presentation of
program strata; and iii) a “layered” interface with the
compiler;

• An SP flowchart editor, that will provide to unit and
module design a similar type of support the code editor
provides to coding;

• A specialized SP Perl-based language (in the first
instance), which will include simple extensions for
development support at the programming language
level.

From a methodological point of view, we have two major
objectives. First, we aim to define a systematic procedural
framework for strata-based software construction in
terms of steps, deliverables, and guidelines for applying
the SP principles across the software life-cycle, from
specification, through design, implementation,
integration, and testing to maintenance/evolution. Second,
we intend to develop a formalism for software strata and
strata-based software construction that would allow us to
reach the more demanding areas of safety- and security-
critical systems. We also consider other research
directions, in particular the application of program strata
to object-oriented development.

5 CONCLUSIONS

We have introduced in this paper a new software

construction approach, denoted stratified programming
(SP). The concepts on which SP is based, program
stratum and program execution layer were also described,
and the approach itself was illustrated with a simplified,
yet detailed example. A discussion on the potential
benefits of the new approach was also included and the

main challenges raised by SP were overviewed. Potential
extension of SP to the more general approach of strata-
based software construction (SSC) was also indicated and
a number of research and development topics, including
specialized methods and tool support, were described.
 We believe that building and executing programs
using strata not only proposes a novel, innovative
software engineering approach particularly suitable to
rapid and efficient construction of flexible software, but
also provides the seeds of several very interesting and
challenging research and development topics pertaining to
the software engineering spectrum.

REFERENCES

[1] Ghezzi, C., Jazayeri, M., and Mandrioli, D.,

Fundamentals of Software Engineering, 2nd Ed.,
Prentice-Hall, 2002.

[2] Meyer, B. “Software Engineering in the Academy,”
IEEE Computer, 34 (5), p. 28-35, May 2001.

[3] Wirth, N., “Program Development by Stepwise
Refinement,” Comm. of the ACM, 14 (4), pp. 221-
227, April 1971.

[4] Shalloway, A., and Trott, J. R., Design Patterns
Explained: A New Perspective on Object-Oriented
Design, Addison-Wesley, 2001.

[5] Fidge, C., Kearney, P., and Utting, M., “A Formal
Method for Building Concurrent Real-Time Soft-
ware,” IEEE Software 14 (2), pp. 99-106, 1997.

[6] The XML Epic Editor, Arbortext web-site,
http://www.arbortext.com/html/ee_close-up.html,
accessed Nov. 14, 2002.

[7] CVS, Concurrent Versions Systems web-site,
http://www.cvshome.org/docs/manual/cvs.html,
accessed Nov. 14, 2002.

[8] Microsoft Visual Source Safe web-site, series of
technical articles, accessed Nov. 14, 2002,
msdn.microsoft.com/ssafe/technical/articles.asp,

[9] Dascalu S., and Hitchcock, P., “Harmony: An
Environment for the Combined Use of UML and
Z++ in Software Specification,” in J. Parsons and
O. Sheng (editors), Procs. of the 11th Workshop on
Information Technologies and Systems, New
Orleans, LA, pp. 103-108, Dec. 2001.

[10] Cavalcanti, A., and Naumann, D., “A Weakest
Precondition Semantics for Refinement of Object-
Oriented Programs,” IEEE Trans. on Software
Engineering 26 (8), pp. 713-728, Aug. 2000.

[11] Beck, K., Extreme Programming Explained:
Embrace Change, Addison-Wesley, 2000.

[12] Pressman, R., Software Engineering: A Practi-
tioner’s Approach, 5th Ed., McGraw-Hill, 2001.

[13] Highsmith, J., and Cockburn, A., “Agile Software
Development: The Business of Innovation,” IEEE
Computer 34 (9), pp. 120-122, Sep. 2001.

[14] McConnell, S., Rapid Development, Microsoft
Press, 1996.

