
University of Nevada, Reno
Computer Science and Engineering Department

CS425/625 Software Engineering

Design Document

 Date: Nov 23, 2005.
 Project Title: goSmart.

 Team Name: JFMS.
 Team Members:

• Jim Motta. (Project Manager).
• Fares Qeadan.
• Siraj Malik.
• Muhanna Muhanna.

 Instructor and Advisor: Sergiu Dascalu, PhD.
 External Advisor: Rasoul Baghal, PhD.
 Fred Harris, PhD.

 1

Table of Contents

Introduction .. 3

High Level and Medium-Level Design ... 6
Context Model.. 6
Class Diagram... 8

Detailed Design ... 12
Pseudocode.. 12
Flowchart... 14
Statechart... 15
Data-flow diagram .. 16

User Interface Design ... 17

Glossary... 22

References ... 23

Contributions:... 26

Appendix A – Checklist.. 27

 2

Introduction

 Smarthomes are homes which incorporate various types of technologies into their
design. One such technology is called X10 [see Glossary]. X10 technology gives the user
the ability to control electrical devices within the household via the electrical wiring in the
house. This can be very useful for homeowners of homes that have already been built but
would like to incorporate some new technology into their homes. Our project design will be
to create an interface that will allow the user to wirelessly control these devices within the
house. This will be accomplished using the X10 Firecracker wireless module [see
Glossary]. This hardware is currently on the market with a software package. The existing
software package, however, does not offer any type of scheduling or automation for these
devices. Our software has been designed to be easily learnable by all levels of computer
user. Command button interfaces with icons identifying their use are incorporated
throughout the package. This makes the software easier to use by giving the user the
ability to navigate by text or picture.

 Several revisions have been made to our previous design. These revisions deal
mainly with the user interfaces and their flow. As stated above, our primary concern with
the first part of our project is to create an intuitive interface that will be easy to learn on all
levels while still maintaining its functionality. As a result of this, we have decided to give
the user various routes throughout the interface to achieve (essentially) the same outcome.
This will allow users who want minimal interaction with the software the same control as
those who would like to have full control of the environment. As an example of this we
have decided to integrate “on the fly” control into our interface. This will allow users to
simply control devices by typing in their unique ID and selecting the command. This will
not require any type of device or zone setup. Additionally, we will be retaining the ability
for the user to setup devices and assign them to zones.

 We are currently in our first revision of software with an average amount of
progress made to date. We have instantiated the “x10” class which will handle the control
of our x10 devices, however, there are a few bugs we are still working out dealing with
sending out the command packets. We still need to complete the portion of software that
will control the information being implemented and stored. Discussion is ongoing as to
how we should handle this. We are currently leaning towards storing the information in
files that can be created, accessed and overwritten by the software as necessary. This may
or may not require another class to be created to handle these operations.

 After some additional research we have found several circumstances that can lead
to mixed results using x10. x10 is reliant upon the electrical wiring in a house, therefore, it
is also subject to any disturbances within the electrical system. Additionally, most homes
do not have phase bridges [see Glossary] setup within the electrical system. Both of these
should not affect the operation of our software, however, they could have a vital role in the
testing of our software if we are using test beds (Homes) with electrical problems.

 3

 Product User

This product is intended for use by home owners who would like to add smarthome
functionality to their existing home without incurring a large cost. There is no specific
background or level of training the user must have to use the product. However, it is
recommended that the user have some minimal prior knowledge of x10 technology and for
safety and security reasons users must be of the age 10 or older. Finally, for operating
purposes users should have a basic knowledge of home computers and how they work to be
able to follow the operating instructions of the product.

Social Impact of the Project

goSmart simplifies life and contributes in fulfilling the growing interest in smart
homes. The use of this product is expected to provide better and safer living conditions
leading to an improved quality of life and independent living. Luxury and convenience are
what most people seek. Going wireless in controlling some devices within the house using
the home computer will provide the sense of security and ease of home management. The
social impact of this product is very significant to the general public particularly to both
elderly and disabled people.

User Accessibility Features

The main functionality and characteristic driving this project is control. The user
interface will be designed to be fully functional with a mouse or text entry via keyboard.
The view screen of goSmart provides a summary of all the defined devices within a house.
From this screen, you can access all of your devices. Each device will have a device name
and the Function buttons [see Glossary] (e.g., ON, OFF, DIM, BRIGHTEN, ALL ON,
ALL OFF, and DISABLE). Commands are issued to the device by selecting the function
and pressing OK. Additionally, the user will be able to enter the device ID by hand in
order to control the device. This will allow for minimal setup in order to use the software.

Challenges

Some of our biggest challenges still facing us for this project will include the
following:

1. Packetizing the command codes.[see Glossary]
2. Finding reliable test beds for our software.[see Glossary]
3. Integration of additional x10 components.
4. Creating a web portal.[see Glossary]
5. Interfacing the SMS text messaging to the software.[see Glossary]
6. Creating a reliable base module for scheduling events.

 4

Professional Growth

This project provides a very viable market solution. We will be able to gain
extensive knowledge on how the market works by utilizing and fulfilling current consumer
requests of other similar products being sold on the market. This could be very beneficial
for us to see how the actual consumer market reacts to various solutions so that we may
anticipate them in the future.

Project Potential

This project has a very large potential within itself. We would like to extend the
architecture to include an SMS server that can accept text messages which will control the
X10 devices. For example, a user will be able to text message that they want a particular
light in the house turned on/off. This project can also be extended into the full X10 home
automation market to control devices for heating/cooling the house, webcams, audio/video
equipment, and much more.

 Ideally, we think that we can modularize the software so that packages can be
included later on. For instance, we can create a module that could control TV
access/recording, or we could create a module that could control an audio/video system to
be used for things like setting wake up alarms, etc. The home automation market is very
large and diverse so the possibilities for the software can become quite large.

 5

6

Owner Settings

Select Zones
Systems

System

Files Database

High Level and Medium-Level Design

Context Model

goSmart System

Control Devices
System

Security System

Schedulers System

Figure 1. The context of goSmart system

Statistics System

Figure 1 is an architectural model that illustrates the structure of the goSmart system. In
this model, you can see that goSmart consists of multiple subsystems, in which the desired
functionalities and tasks are embedded. The control devices subsystem provides the main
functionality which includes the ultimate operations of turning on/off or
brightening/dimming specified devices or lamps. Moreover, the schedule subsystem acts in
parallel to the control devices in terms of functionality, however with the scheduling
attribute for the duration of specified operations. Both the control devices and scheduling
subsystems are capable of enabling or disabling all devices at once for specified zones.
Zones are manipulated and formulated within the select zones subsystems, which is nothing
but a host area for different sections of the house. Zones are statically allocated and
predefined in the goSmart system. Due to the fact that goSmart emphasizes the sense of
security in automating a home, the owner’s information and settings are necessary for this
task and they are implemented and handled by the owner’s settings subsystem. The
owner’s setting subsystem is in charge as well to the login and logout processes in the
goSmart software. In addition to the former subsystem, there exists a completion security
subsystem which acts as an alert to the owner in cases where security is breached. The
security subsystem operation relies on communication with the home owner via email or
phone call. For monitoring and observing the status of each device in terms of being
on/off, scheduled or not, and its brightness/dimness level, goSmart uses a statistical
subsystem that can reveal the indicating information upon request. Given that goSmart
uses a system timer and scheduling procedures, saving information is critical and necessary
for the success of the system. This is why a files database is proposed to take care of such
tasks.

 7

Class Diagram

x10
.UC: string
.HC: string
openCOM(): void
closeCOM(): void
setCOMstatus():void
sendMsg(): bool
setDTR():void
setRTS():void
sendByte():void

Devices
.deviceName: string
.deviceStatus: int
.deviceBrightness: int
.deviceID: int
turnOn(): void
turnOff(): void
allOn(): void
allOff(): void
brighten(): void
dim(): void
testUC_HC(): bool

Owner
.Fname: string
.Lname: string
.Uname: string
.Password: string
.PhoneNum: string
.Email: string
getFname(): void
setFname(): void
getLname(): void
setLname(): void
getUname(): void
setUname(): void
getPassword(): void
setPassword(): void
getPhonenumber(): void
setPhoneNumber(): void
getEmail(): void
setEmail(): void
confirmPassword(): void

DCB
.DCBlength: int
.fRtsControl: int
.fDtrControl: int
.BaudRate: double
.byteSize: int

Schedule
.startTime: double
.stopTime: double
.currentTime: double
.startDate: int
.stopDate: int

Scheduler
.schdlFreq: int

getSchedule(): Schedule
setSchedule(): bool
scheduleAll(): void

Security
.conflict: bool
.info: Schedule
.location: Zones

testViolation(): bool
verifyViolation(): bool
emailOwner(): bool
callOwner(): bool
restoreSchedule(): bool

Storage
.fileName: string

getFileName():string
setFileName(): bool
createFile(): bool
updateFile(): bool
accessFileInfo(): void

Zones
.zIndex: int
.deviceCount: int
.zoneUsed: bool

Stats
.status: bool
.time: Schedule
.area: Zones
displayStats(): void
getStats(): void
validateStats(): bool

 1 0…16

 0…9 1

 1

 1

 0…9 1

 1
 *

*

 *

 8

Class: x10 The role of the x10 class is to communicate with the firecracker and

generate all needed wireless communication in order to manipulate the
turn on/off and scheduling operations on the specified devices with
respect to the matching pair of unit code and house code (predefined by
user input).

openCOM() This function accepts a COM port, passes it to createFile to assign a port
handler to it for control. It will also set the port state to TRUE. Function then
calls setCOMstatus to attempt to open the COM port. If there is a failure then
closeCOM is called and an error is thrown

closeCOM() Function removes the current port handler and sets the port state to FALSE.

setCOMstatus() This function is in charge of initializing the COM port. The following functions
of DCB (The DCB structure defines the control setting for a serial
communication device) are :
 dcb.DCBlength = specifies the size of the structure

 dcb.fRtsControl = this enables the RTS line and leaves it open
 dcb.fDtrControl = this enables the DTR line and leaves it open
 dcb.BaudRate = specifies the baud rate
 dcb.ByteSize = specifies the byte size

sendMsg() This function accepts a house code, a unit code, and a command. This function
will first force the house code to lowercase and then convert it to use as index
into the houseCodes array. Next it will toggle the DTR and RTS lines to put the
firecracker unit into ready mode. It then uses the sendByte function to send the
first and second byte of the header, as well as, the house code. Next a case
statement is used to determine which command byte to send. Finally, the footer
is sent using the same function.

setDTR() This function accepts the port state that directs a specified communications
device to perform an extended function) to set the DTR line to either high or
low. If it fails then an error is thrown.

setRTS() This function accepts the port state and directs a specified communications
device to perform an extended function) to set the RTS line to either high or
low. If it fails then an error is thrown.

sendByte() This function accepts a Byte value and uses it to send data bit by bit to the
Firecracker unit by toggling the DTR and RTS lines.

 9

Class: Security The role of the Security class services the core concept of the goSmart

software, where security is principle and a main goal. This class is in
charge of detecting any failure or an unexpected status change of devices.
It works as an interrupt and acts as an alarm for the owner of the system.

testViolation() This function will be called each time a device is scheduled for operations done in
both manually or by the system timer to ensure there is no conflict between the
intended operations and the already scheduled ones.

verifyViolation This function will be invoked automatically upon failure of scheduled devices (i.e.
an unexpected change of status). The verification process relies on the
information residing in the Storage class.

emailOwner() This function will also be conducted automatically if violation was found to be
true in the previous function. The concept of emailing owner can be concluded as
an alert of security violation message sent by attachment to predefined email
address (i.e. previously inputted owner email address).

callOwner() This function is similar to the previous function, however security breach can lead
to static phone call notification to the owner’s phone number.

restoreSchedule() This function is activated only if violation was detected. Its role is to restore the
schedule of the devices exactly as it was before the violation occurred.

Class: The role of the Devices class is to execute the desired operation of turn
Devices on/off, brighten/dim, and turn all lights on/off for specified device (or all)

on selected zone. Also, it has the role of testing for possible error where
house codes mistakenly was assigned to more than one unit code.

turnOn() This function accepts a house code and a unit code and passes them to the
sendMessage function. It also these values to the previousHC and previousUC
variables.

turnoff() This function accepts a house code and a unit code and passes them to the
sendMessage function. It also these values to the previousHC and previousUC
variables.

allOn() This function passes the current house code, and the all_on command to the
sendMessage function.

allOff() This function passes the current house code and the all_off command to the
sendMessage function.

brighten() This function passes the current house code, unit code, and the brighten command
to the sendMessage function.

dim() This function passes the current house code, unit code, and the dim command to
the sendMessage function.

testUC_HC() This function tests if the user input for the house code has not been defined
already to multiple unit codes.

 10

Class: Stats The role of the Stats class is to provide the overall state of the devices in

the house within specified zone. This class is very critical to the owner and
plays as a tool to view stored information such as scheduling times, and
device ID numbers, and device settings.

displayStats() This function is to display and reveal a device’s information to the owner of the
system. Such information consists of status of a device, scheduled or not, also if
it was scheduled, the start and end time and date for that scheduling.

getStats() This function gets the information needed for the previous function. Its
information is pulled out of the Storage class and its data member values.

validateStats() This function services the idea of security as well by validating all device
information before displaying it to the user. This function exists to ensure the
pace of time in which a device’s status was modified within a short time more
than once.

 11

 12

Detailed Design

Pseudocode
verify login information
if correct
 proceed to Main Menu
else prompt for user input
 if user wants to use generic login
 proceed to Main Menu
 else return to login screen
wait for user input from Main Menu
Case 1: “Control Devices” button selected
 open new form for controlling devices
 if previous devices were saved
 populate device box
 wait for control selection from user
 verify device selection
 if no device selected
 use default device ID (A1)
 else pass device ID to control function
 if Add device function selected
 open new form for add device
 wait for user input
 if ‘OK’ button selected
 verify information has been entered
 if information is good
 save device information to file
 return to control devices form
 populate device box
 else prompt user and return to add device form
 if ‘Cancel’ button selected
 return to control device form
 if Brightness function selected
 apply brightness command (dim/brighten) to device ID
 return to control devices menu
 if Add device function selected
 open new form
 enter device information
 save information to file
 return to control devices menu
 if set schedule function selected
 enter schedule information
 if information is valid
 return to control devices menu
 else prompt user and return to schedule input
 if logout selected
 exit program
Case 2: “Select Zones” button selected
 open new form for select zones
 wait for selection of zone from user
 if zone is selected
 open form for control devices
 query file for zone information
 if zone information is present in file
 populate device column

 13

 else wait for input
Case 3: “Set Owner Information” button selected
 open new form for owner information
 complete information
 if ‘OK’ button selected
 if owner information completed
 save information to file
 return to Main Menu
 else prompt user and return to owner information form
 if ‘Cancel’ button selected
 return to Main Menu form
Case 4: “Logout” button selected
 exit program

Flowchart

 14

15

State chart

 16

Data-flow diagram

User Interface Design
Figure 1 shows the initial login box the user will be presented with upon execution of the
software. Logins will not be mandatory; however, will be needed to use advanced features
in future revisions of the software.

Figure 1: Login Box

Figure 2 shows the main menu of the software program. Once past the login screen the
user will be presented with interactive dialog. Three main portals are contained within the
main menu to help make a more intuitive interface.

Figure 2: Main Menu

Figure 3 details the Select Zones section of the software. If the user selects this option
from the Main Menu they will be taken here to select zones for controlling. Initially, pre-
defined zones will be provided with the idea that future revisions will provide more
interactive features for zone creation and control.

 17

Figure 3: Select Zones

Figure 4 outlines the Control Devices section of the software. If the user selects this option
from the Main Menu they will be presented with this interface. This interface provides a
quick and easy interface for controlling various devices.

Figure 4: Control Devices

Figure 5 is a representation of the interface that will be used for adding a device to a
selected zone. The interface will address such fields as Device ID (Unit/House code

 18

assigned to device) [see Glossary], Name, Location, and Description of the device. This
interface will also be used as the editing interface for devices.

Figure 5: Add Device

Figure 6 is the default owner (user) profile editing interface. Here the home owner can save
some information related to authentication, like username, password, email address and cell
phone number.

Figure 6: Add User

 19

Figure 7 is a drop down menu of goSmart main menu interface. It allows the user to select
the main features of goSmart. Notice that this drop down menu appears in all sub windows
except the login and error windows.

Figure 7: Drop Down Menu

Figure 8 is a typical warning message that goSmart generates upon useless manual
operations by the user. The warning in this case reminds the user that turn on operations
have no effect if a device is already on.

Figure 8: Warning Message

 20

Figure 9 is a typical error message that goSmart generates upon invalid input by the user.
In this case the user is trying to access the system with an invalid password. This is an
error message indicating the error and how to recover (i.e. a follow up login dialog box will
be opened automatically if the user clicks “OK” on this error message.

Figure 9: Error Message

 21

Glossary

Automation - The act of using computers to control machinery and processes.

COM Port – The DOS name of the serial ports on PC's.

Device - A device generally corresponds to the model of a physical device, for example, a
receiver. A device can also be a peripheral that can transfer data to and from a computer.

Firecracker - Firecracker is really just a wireless transmitter.

Function Buttons – This refers to the actual buttons the user will see on the user interface.

goSmart - The name of the proposed software to be developed.

goSmart Zones – These are pre-defined areas within a home (i.e. Bedroom, Living Room,
Kitchen, Etc.). These zones will be initially pre-defined; however, will become more
interactive in later revisions.

House Code – Part of a code used to identify the x10 device. The House Code consists of
a letter between A – P. Each House Code has an associated Unit Code to accompany it.
These codes are user defined and programmed on the hardware itself.

Interface - Method or piece of equipment for interconnecting units or systems which may
not be directly compatible.

JFMS - The name of the team that proposed and will be developing the goSmart software.
The composition of the team name is nothing but the abbreviation of the team members’
names.

Packetizing Commands – This refers to the process of creating packets to be sent out on
the wireless transmitter. These packets must be created and assembled in the correct order
if they are to be affective.

Phase Bridges – Phase bridges are devices used to connect both phases of electricity
entering into residential homes. Typically, there are two phases of electricity that enter into
a residential home that can be bridged in order to give a shorter path between the two. This
can also be accomplished by running appliances that operate on 220v.

Smart Homes - The ability of a user to remotely or automatically control lights around
their house. The definition can be extended to adding security to a home by means of using
the technology involved in remotely controlling devices.

 22

SMS – Abbreviation for Short Message Service it is the transmission of short text
messages. Messages must be no longer than 160 alpha-numeric characters and contain no
images or graphics.

Test Bed – For this project, refers to a reliable source of electrical wiring for testing
purposes. Typically, home electrical power consists of two phases which do not bridge
each other. This can cause unexpected results for software testing.

Wireless - Radio-based systems that allow transmission of information without a physical
connection, opposed to transmission systems, which require a physical connection, such as
copper wire or optical fiber.

Unit Code – Second part of a code used to identify the x10 device. The Unit Code consists
of a number from 1-16 and together with the House Code provides a unique ID for an x10
device. These codes are user defined and programmed on the hardware itself.

Web Portal - A web site that provides a starting point or gateway to other resources on the
internet or an intranet.

x10 – A communications “language” that allows compatible products to talk to each other
using the existing electrical wiring in the home. [www.smarthome.com/about_x10.html]

x10 Coding Scheme – Format used to uniquely identify an x10 device. See House Code

and Unit Code for further detail.

Zones - The term zone is applied to a certain division within the house. Each zone
consists of a number of devices configured with x10.

References

1. http://www.nomad.ee/micros/x10faq.html. Oct. 19, 2005.

This article is a simple FAQ. There are many useful questions answered within the

article that address the use and operation of x10 technology. This article is a good

starting point for anyone interested in x10 technology who wants to get an idea of

how the technology works and what they can do with it. However the FAQ is also a

helpful reference to experienced users and developers of x10 technology. For

example, too many drawbacks and unexpected results that might occur using the

wireless approach are explained within some of the answers. More over, a lot of

 23

http://www.nomad.ee/micros/x10faq.html

technical issues are explained in detail in the FAQ which give a step by step

approach to solve such issues in the process.

http://www.smarthome.com/about_x10.html2. . Oct.20, 2005.

This is a general overview article regarding x10 technology. It reviews products

available on the market that are utilizing x10 technology.

3. http://www.x10.com/home.html Oct. 28, 2005.

4. http://www.x10pro.com/ Oct. 28, 2005.

http://www.hackaday.com5. Oct. 28, 2005.

6. http://www.x10ideas.com/ Nov. 1, 2005

7. http://www.letsautomate.com/ Nov. 1, 2005.

8. Andy L. Jackson, Integrating The Smart Home & Its Owner: Books 1 And 2.

Integratorpro. 2003.

This book is a pseudo abstraction for home automation. It helps to understand how

x10 programming works. It is helpful for the development of goSmart because of its

simplicity and guidance. Modularity is illustrated by practical examples from real

life, which also refers to some hardware parts that are needed for any home

automation system. The approach taken by the author over emphasizes how a user

can save time and money to accomplish an automated system in the house. This

book was specific to our project since it deals with the security aspects of x10

programming which is a fundamental aspect of goSmart. A special chapter of this

book is considered to be the start point of a comprehensive explanation of how x10

programming works.

9. Gordon Meyer, Smart Home Hacks. O'Reilly Media, Inc. First edition. 2004.

Smart Home Hacks offers integrated solutions to enhance safety, comfort, and

convenience in a house. The book is built upon tips and tools for automating your

house. It illustrates the use of the x10 programming throughout numbered

“hacks”. Smart Home Hacks was very helpful in illustrating the idea of automation

and control by clear and concise examples. It’s worth to mention that the meaning

of “hacks” in this book has a positive connotation. Smart Home Hacks is full of

sample user interfaces that inspired us to develop a very concise and custom

interface of our own for goSmart. Some of the hacks in this book get very complex,

 24

http://www.smarthome.com/about_x10.html
http://www.x10.com/home.html
http://www.x10pro.com/
http://www.hackaday.com/
http://www.x10ideas.com/
http://www.letsautomate.com/

however we found them very intuitive and in fact they helped us come up with our

own original ideas.

10. James Gerhart, McGraw, Home Automation & Wiring. Hill-TAB Electronics.

First edition. 1999.

Home Automation and Wiring is a comprehensive guide for installation and

maintenance of control (automation) systems using wiring. It contains concrete

architecture for any generic automated system used. Understanding the use and

implementation of x10 programming in automation via wiring, will make it easy for

us to grasp the new concepts of wireless communication throughout the

development of goSmart. One chapter of this book is very related in its concept to

out project, in particular it examines and investigates the wireless remote control in

automating homes. It talks about the general idea of transmission types and

navigation systems. Reading this small chapter of this book was necessary to our

project due to the fact that goSmart builds upon wireless communications.

11. Technica Pacifica, Easy X10 Projects for Creating A Smart Home. Indy-Tech

Publishing. 2005.

Easy x10 Projects for Creating a Smart Home is a guideline that assists you with

the design and installation of all related x10 devices. We found this book very

useful for our project because it goes step by step with coupled diagrams of the

physical installation of x10 components. More over, this book gives a thorough

description of each device and how it could be expanded to reach a comprehensive

automated system in the house. Similar to other resources that we have

encountered in this project, this book examines the use of x10 programming with

wiring to accomplish a smart home environment. Never the less, our project uses a

wireless approach, the samples in the book were still very useful.

12. Thomas Leonik, Home Automation Basics - Practical Applications Using Visual

Basic 6, Prompt DPI - 8/01. First edition. 2000.

This book shows you how to use Visual Basic 6 in a home monitoring system. Even

though we are using Visual C++ in implementing goSmart, we found this book very

helpful in explaining the programming logic of automation. The natural structure

of Visual Basic 6 syntax, made this book an important resource for developing

 25

goSmart. One of the advantages of this book is that it illustrates the idea of

communication with serial ports. Most if not all, of the examples in this book, have

different concepts than the idea that goSmart entails. However structure of the

provided pseudo code for some of application used in the book, is easy to adapt and

integrate into any new idea of automation.

Contributions:

 Title Page & Logo: (Muhanna)

0. Table of Contents: (Fares)
1. Introduction: (Fares and Jim)
2. High level & medium level design: (Fares, Siraj, and Jim)
3. Detailed design: (Muhanna and Jim)
4. User interface design: (Muhanna)
5. Glossary updates: (Jim)
6. List of References: (Fares and Siraj)
7. Completed Checklist: (Fares and Siraj)
8. Contributions: (Muhanna, Jim, Fares and Siraj)

 26

27

Appendix A – Checklist

Defect Checklist Template for
Technical Artifacts

Team: JFMS

Course: CS425

Project Part: III

Note: The notation <X/Y>, for
example <18/24>, indicates that X
applies to a team of 3 students, while
Y applies to a team of 4 students.

For each check,
answer YES or
NO

Design Requirements Version

no.
Requirements Version
no.

 Internal reviews
added here

Requirements
Version no.

Requirements
Version no.

External
reviews
added here

 Review date: Review date: [optional] Review date: Review date: [optional]

 Internal Review no. Internal Review no. External Review
no.

External
Review no.

The Design Document...

…has a cover page… YES
…with appropriate information on

university, department, course, project
title, project part, team name, team
members, instructor, and date.

YES

…has all pages numbered. YES
…has a table of contents… YES

…that shows page numbers for all
sections and subsections. YES

…has an Introduction. YES

 …that consists of between 400 and
800 words. YES

 YES
…that gives a precise account of

progress made since the submission of
the Specification report.

28

…that indicates
changes/refinements to the project. YES

…that indicates the current status
of the project, as a whole. YES

High- and Medium-Level Design…

…is represented by at least one
system-level diagram that… YES

…reflects and illustrates the
system's organizational structure ... YES

…is formatted as either…
…a context model. YES
…a block diagram. NO
…a behavioral model. NO
…a data model. NO
…another system-level model. NO

…is accompanied by a description. YES
…is represented in terms of program

units which… YES

…are represented graphically by
either…

…object-oriented units (e.g.
classes)… YES

…that number 7 or greater. YES
…that show… YES

…attributes. YES
…operations. YES
…relationships. YES
…multiplicity constraints. YES

…that are accompanied by a
description. YES

…that include brief
descriptions of, in total, <15/20>
operations.

YES

…abstracted, non-object-oriented
program units (e.g. modules, functions,
procedures, subroutines, etc.)…

NO

…that number at least
<12/16>. NO

 …that illustrate the
organization of the system. NO

 …each of which consists of…

29

…an appropriate name. NO
…a description. NO
…an indication of the higher-

level unit (parent). NO

…inputs. NO
…outputs. NO
…other units utilized. NO
…exceptions/interrupts. NO
…additional comments

(optional). NO

…details the structure of database
tables used (if any)... NO

…by indicating the fields. NO
…by indicating the primary key(s). NO
…graphically representing the

structure of the table columns. NO

Detailed Design…

…reflects low-level design of the
system. YES

…consists of <3/4> examples
which… YES

…are each accompanied by a
description. YES

…must be represented in at least
two of the following ways… YES

…pseudocode. YES
…flowcharts. YES
…statecharts.
…data-flow diagrams.

User Interface Design…

…is represented by <6/9> snapshots
which… YES

…are each accompanied by a
description. YES

…illustrate report/statistics reports,
if applicable. YES

…illustrate user messages. YES
…illustrate a penultimate interface

design with appropriate details. YES

30

References…
…number <4/6> or more. YES
…are formatted using a standardized

style (i.e. MLA, APA, etc.) YES

…each include a description of 100-
200 words describing how the reference
relates/contributes to the project.

YES

The Design Checklist (this one!) …

…has been fully completed with "Yes"
or "No" responses to all entries YES

…has undergone at least one internal
review. YES

…is included with the Design
document. YES

Contributions of Team Members …

…are included in a separate section
of the Design document. YES

…list every team member… YES
…with each section/subsection to

which they contributed. YES

…with each responsibility they
shoulder for the development of the
project.

YES

 …with any additional contributions
they have made. NO

Glossary Updates (optional)…

 YES …include additions to the project
glossary.

	Introduction
	
	
	
	
	
	
	
	
	
	
	
	High Level and Medium-Level Design
	Context Model
	
	Class Diagram
	Detailed Design
	Pseudocode
	
	Flowchart
	
	State chart
	Data-flow diagram

	
	User Interface Design
	Figure 1 shows the initial login box the user will be presented with upon execution of the software. Logins will not be mandatory; however, will be needed to use advanced features in future revisions of the software.
	Glossary
	References
	Contributions:
	Appendix A – Checklist

