
Noname manuscript No.
(will be inserted by the editor)

A Novel CPU/GPU Simulation Environment for Large-Scale
Biologically Realistic Neural Modeling

Roger V. Hoang · Devyani Tanna · Laurence C. Jayet Bray · Sergiu M.

Dascalu · Frederick C. Harris, Jr.

Received: date / Accepted: date

Abstract Computational Neuroscience is an emerg-

ing field that provides unique opportunities to study

complex brain structures through realistic neural sim-

ulations. However, as biological details are added to

models, the execution time for the simulation becomes

longer. Graphics Processing Units (GPUs) are now be-

ing utilized to accelerate simulations due to their ability

to perform computations in parallel. As such, they have

shown significant improvement in execution time com-

pared to Central Processing Units (CPUs). Most neu-

ral simulators utilize either multiple CPUs or a single

GPU for better performance, but still show limitations

in execution time when biological details are not sacri-

ficed. Therefore, we present a novel CPU/GPU simu-

lation environment for large-scale biological networks,

the NeoCortical Simulator version 6 (NCS6). NCS6 is

a free, open-source, parallelizable, and scalable simula-

tor, designed to run on clusters of multiple machines,

potentially with high performance computing devices

in each of them. It has built-in leaky-integrate-and-fire

(LIF) and Izhikevich (IZH) neuron models, but users

also have the capability to design their own plug-in

interface for different neuron types as desired. NCS6

is currently able to simulate one million cells and 100

million synapses in quasi real time by distributing data

across eight machines with each having two video cards.

L. C. Jayet Bray
Dept. of Computer Science and Engineering
University of Nevada, Reno, NV, USA
Dept. of Bioengineering
George Mason University, Fairfax, VA, USA
E-mail: ljayet@gmail.com

R. V. Hoang · D. Tanna · S. Dascalu · F. C. Harris, Jr.
Dept. of Computer Science and Engineering
University of Nevada, Reno, NV, USA

Keywords NeoCortical Simulator (NCS) · CPU/GPU

Simulation · Leaky Integrate-and-Fire Neurons ·
Izhikevich Neurons · Biologically Realistic · Large-

Scale Modeling

1 Introduction

Many different scales of experiments in neuroscience re-

search attempt to clarify the complex functions of the

nervous system. From the genetics of single molecules to

the behavioral research of cognitive neuroscience, stud-

ies lead to a better understanding of neural networks,

such as the brain. When in vivo and in vitro experi-

ments are impossible to perform due to the complex-

ity of structures, computational neuroscience provides

new opportunities. Its unique access to any brain re-

gion as well as its different levels of abstraction allow
biologically-realistic neural simulations, and thus ad-

ditional neuroscience findings. However, neural simu-

lations have always involved a trade-off between exe-

cution time and biophysical realism. Even as neuron

models are simplified and approximated, the neural re-

gions of interest may require an unreasonable amount

of running time. To further drive computational neuro-

science research, computer scientists and engineers have

created more optimized simulation programs and more

advanced hardware architecture, respectively.

Biologically, most simulation environments already

have built-in spiking neuron models. These models, de-

scribed as hybrid systems, satisfy a set of differential

equations that describe the continuous evolution of sev-

eral state variables and discrete events (Brette and Good-

man, 2012b). The well-known ones are Hodgkin-Huxley

(HH), Izhikevich (IZH), and leaky integrate-and-fire (LIF)

neuron models. The HH model quantifies the process of

spike generation with a set of four differential equations



2 Roger V. Hoang et al.

(Trappenberg, 2010), formalizing their measured find-

ings of the giant axon of a squid. This model uses the

voltage dependence and the dynamics of Sodium and

Potassium channels, which captures many biological

details while losing computational efficiency. The IZH

model is a powerful engine, capable of replicating much

of the dynamics phenomena observed in neurons. It uses

a mathematical formulation derived from the treatment

of a neuron as a dynamical system, resulting in a mem-

brane voltage expression (Izhikevich, 2003). This is an

intermediate model, which is computationally efficient

while still capturing a large variety of response proper-

ties of real neurons. The LIF model is comprised of a

subthreshold leaky-integrate dynamic, a firing thresh-

old, and a reset mechanism, which gives an approxima-

tion of the subthreshold dynamics of the membrane po-

tential with a simple linear differential equation (Trap-

penberg, 2010). It is beneficial for analytic calculations

and is efficient in numerical implementations. However,

the approximation is not sufficient to include most of

the response patterns seen in real neurons.

Computationally, most simulators (e.g. NEURON

(Carneval and Hines, 2012), NEST (Diesmann and Ep-

pler, 2012), GENESIS (Bower and Beeman, 2012a,b),

BRIAN (Brette and Goodman, 2012a)) were designed

to run one or more of these models on a single Cen-

tral processing Unit (CPU). Over the years, they have

evolved to support simulations on multiple CPUs for

extensibility and higher performance. These enhance-

ments, in combination with parallel computing (Migliore

et al., 2006; Bower and Beeman, 2003), have become a

necessity to cope with the higher computational and

the communication demands of neuroapplications. Re-

cently, a number of developers have investigated the

possibility of simulating spiking neural networks on a

single Graphical Processing Unit (GPU) (Bernhard and

Keriven, 2005; Nageswaran et al., 2009a,b; Han and

Taha, 2010a,b; Tiesel and Maida, 2009; Fidjeland et al.,

2009; Fidjeland and Shanahan, 2010; Fernandez et al.,

2008; Bhuiyan et al., 2010; Hoffmann et al., 2010; Nowotny,

2011; Mutch et al., 2010; Igarashi et al., 2011; Ahmadi

and Soleimani, 2011; Scorciono, 2010; Wang et al., 2011;

Yudanov et al., 2010; Thibeault et al., 2011) or on mul-

tiple GPUs (Brette and Goodman, 2012b). All these

current simulators have shown significant improvements

over their CPU only counterparts by integrating the

utilization of GPUs. However, these approaches have

had limitations. Two of the main limitations are that

researchers either utilize an Izhikevich neuron model

while running the simulation on GPU, or if they uti-

lize more than one neuron model (e.g. HH and IZH)

their model focuses on small-scale networks. Addition-

ally, they are not capable of running simulations on

heterogeneous cluster of GPUs.

To reduce execution times without sacrificing bio-

logical details, we have developed a new version of our

brain simulator. Here, we present a new CPU/GPU

Simulation Environment for Large-Scale Neural Mod-

eling, called the NeoCortical Simulator (NCS) version

6. Previous versions of NCS were designed to run on a

CPU or cluster of CPUs. Every version of NCS has im-

plemented a hybrid spiking neuron model. Sub-thresh-

old dynamics are determined by channels that follow
the HH formalism. When the voltage crosses a specified

threshold value, the membrane potential follows a user-

specified spike shape pattern, similar to an LIF neuron.

This hybrid model is referred to as an LIF model in the

rest of this paper. For a detailed history of NCS and re-

lated equations, please refer to our Brain Computation

Laboratory’s website:http://www.cse.unr.edu/brain/. In

addition to the hybrid LIF spiking neurons , NCS6 im-

plements the simplified IZH equations (Izhikevich, 2003)

as a separate neuron type. The Compute Unified De-

vice Architecture (CUDA) by NVIDIA (NVIDIA, 2013)

provides an instruction set and tools to developers to

work in a GPU environment. NCS utilizes CPUs and

CUDA-capable GPUs for simulation. Computationally,

shared-memory multiprocessor architectures and recent

experiments with clustered GPUs indicate that we will

soon be able to simulate a million cells in real time

without sacrificing biological detail. In this manuscript,

Section 2 explains how NCS has been designed, Section

3.1 gives a validation of its implementation, and Sec-

tion 3.2 shows a representation of its high performance.

Furthermore, we provide a brief comparison between

NCS and other simulation environments in Section 3.4.

In Section 4 we conclude with a summary of the paper

and our planned future work.

2 Design

2.1 Simulation Composition

At the detailed level, every simulation is comprised of

four primary types of elements: neurons, synapses, stim-

uli, and reports. Neurons represent the cell body and

must report two values at each time-step: the spiking

state and the membrane voltage. Synapses represent a

unidirectional connection between a presynaptic neuron

and a postsynaptic neuron. When the presynaptic neu-

ron fires, the synapse introduces a synaptic current into

the postsynaptic cell after some specified delay. Stimuli

are connected to a neuron and represent a type of exter-

nal input, able to either clamp the membrane voltage to

some level or inject some amount of current. Reports

connect to a set of elements (e.g. cell group) and are



A Novel CPU/GPU Simulation Environment for Large-Scale Biologically Realistic Neural Modeling 3

Fig. 1: An example of a complete distribution of simulation elements in NCS6. Elements are distributed across devices based
on the devices’ computational power and their dependencies. Synapses and inputs associated with a particular neuron are

linked to it on a device. Within devices, elements are organized into contiguous sections by type that are simulated by
plugins of their specific type.

used to extract output information (e.g. voltage) from

those elements and generate the result to some arbi-

trary data sink.

While each component type has some required con-

straints, the majority of the internal behavior is deter-

mined by the more specific subtype being simulated.

For example, one neuron could be specified to simulate

a LIF neuron while another neuron could be specified to

simulate an IZH cell. The underlying equations govern-

ing the behavior are completely different between the

two, but they can still be used within the same simula-

tion. The only requirements are that they each receive

an external stimulation and/or a synaptic current, and

that they each report a firing state and/or a voltage.

2.2 Simulation Environment and Distribution

To improve the simulation run times, NCS6 is designed

to run on clusters of multiple machines, potentially with

different computing devices in each computer. These

devices include CUDA-capable GPUs, and CPUs. Even

within the same device class, the computational power

of different devices can be drastically different. To bet-

ter facilitate load-balancing, a relative computational

power rating is assigned to each device. The current

method for determining this quantity is to multiply

the device’s clock rate by the number of computational

cores.
After determining the computational power of each

device, a cost estimate for each neuron is computed.

Since the number of synapses outnumbers the number

of neurons and inputs by several orders of magnitude,

we use the number of synapses as the cost estimation.

Neurons are then sorted in decreasing order of computa-

tional cost and distributed across all available comput-

ing devices in the cluster so the device with the lowest

computational load (total computational cost / compu-

tational power) receives the next neuron. Once all neu-

rons in the simulation are distributed, all contributing

synapses and stimuli are also placed on the same devices

as their targeted neurons. With all elements distributed

across all devices, they are further partitioned by their

subtypes, each of which being managed by a plugin.

Figure 1 shows an example of a complete distribution.



4 Roger V. Hoang et al.

2.3 Data Scopes and Structures

Due to the distributed nature of NCS6, elements may

be referenced in a number of scopes that mirror the

environment’s hierarchy: plugin, device, machine, and

global (cluster). After the distribution is finished, ev-

ery element is assigned a zero-based ID for each scope.

IDs are padded between plugins so that data words for

structures allocated in other scopes are related to only

one plugin. In general, this means that IDs are padded

to a factor of 32 (the number of bits in a word) be-

tween plugins. It is important to note that IDs are only

unique within the same element type; that is, there can

be both a neuron and a synapse with a global ID of 0.

Depending on which elements need access to other

elements, certain key data structures are allocated and

accessed using different scopes. Data that is specific to

an element subtype is stored at the plugin scope. Be-

cause synapses may need to access the membrane volt-

age from their postsynaptic neurons in order to deter-

mine their synaptic current contributions, membrane

voltages are stored and accessed using device level IDs.

The reason is all postsynaptic neurons and their asso-

ciated synapses reside on the same device due to the

way they are distributed. However, because the spiking

state of a synapse depends on the spiking state of the

presynaptic neuron, the spiking state of neurons is ac-

cessed using a global level ID when updating synaptic

spiking states.

2.4 Simulation Flow and Parallelization

The basic flow of a simulation is as follows: for each

time-step, the current from stimuli and synapses is com-

puted and used to update the state of every neuron. The

resulting spiking state of each neuron is then used to

determine the spiking state of their associated synapses

in later time-steps.

To facilitate maximum utilization of computing de-

vices, the simulation is partitioned into several stages

that can be executed in parallel as long as the req-

uisite data for a given stage is ready. Figure 2 illus-

trates this division of work (dark boxes) along with

the required data (light boxes) needed to simulate a

particular stage and the data that is produced once

that stage has been updated. A publisher-subscriber

system is used to pass data buffers from one stage to the

next. During the simulation, a stage attempts to pull

all necessary data buffers from their associated pub-

lishing stages. The stage is blocked until all the data is

ready. Once it obtains all the required data buffers, it

advances the simulation by a single time-step and pub-

lishes its own data buffer while releasing all the oth-

ers that it no longer needs. When all subscribers to a

data buffer release it, the data buffer is added back to

its publisher’s resource pool for reuse. For any given

stage, a limited number of publishable buffers are used

to prevent a stage from consuming all computational

resources and getting unnecessarily ahead of any other

stages. For example, without limiting the buffer count,

because the input update stage requires no data from

any other sources, the stage could simulate all time-

steps before a single neuron update is allowed to occur,

effectively adding a serial time cost to the overall run

time.

Within a single stage, further granularity is gained

by parallelizing across subtypes. As an example, if a de-

vice simulates both LIF Neurons and Izhikevich Neu-

rons, the plugins updating each can be executed in par-

allel. Due to padding from the ID assignments, updates

should affect completely separate regions of memory,

including operations on bit vectors. Exceptions to this,

such as when an input writes to a device-indexed in-

put current for its target neuron, are handled by using

atomic operations or by aggregating partial buffers gen-

erated by each plugin. The method chosen depends on

the type of device and its memory characteristics. While

plugins are allowed to update ahead of one another, the

results for from a stage at a given time-step will not be

published to subscribers until all plugins (in that stage)

have updated up to that time-step.

Input Update. The purpose of the input update stage

is to compute the total input current to each neuron on

the device as well as any voltage clamping that should

be done. The input current is represented by an array

of floating point values, one for each neuron (includ-

ing padding) on the device, initialized to zero at the

beginning of each time-step. The voltage neurons are

clamped and stored in a similar fashion where a bit

vector is used to select which neurons should actually

be clamped.

Inputs are expected to be updated by input plug-

ins designed to handle their subtype. Other than the

device-level Neuron ID for each Input that is statically

determined at the beginning of the simulation, input

plugins rely on no other data from any other stage of

the simulation. As such, they are allowed to simulate

ahead of the rest of the system as long as it has empty

buffers that can be written to and published.

Neuron Update. Unlike the input update stage, the

neuron update stage has two dependencies: the input

current per neuron published from the input update

stage and the synaptic current per neuron published

by the synapse update stage. Given these two pieces of

information, this stage is expected to produce the mem-

brane voltage and spiking state of every neuron on the

device. Like the input current, the membrane voltage



A Novel CPU/GPU Simulation Environment for Large-Scale Biologically Realistic Neural Modeling 5

Fig. 2: Division of work: the dark boxes represent stages
that can run concurrently as long as the necessary data has
been received for a given time step. Each stage produces an
output (denoted by the lighter boxes) that is consumed by

the stage denoted by the dotted arrows.

is represented by an array of floating point values. On

the other hand, the spiking state is represented by a bit

vector.

Similar to inputs, neurons are expected to be up-

dated by neuron plugins designed to handle their sub-

types. Despite receiving and writing data out into device-

level structures, neuron plugins operate purely in plugin

space. This is possible due to the fact that each plugin

is given a contiguous set of device-level IDs during the

distribution. As a result, device-level data passed into

each plugin is simply offset accordingly to yield the ap-

propriate plugin-level representation.

Vector Exchange. The result of the neuron update

stage is the firing state of every neuron residing on the

device. However, synapses are distributed purely based

on the postsynaptic neurons and as such the presynap-

tic neurons could possibly reside on a different device.

Thus, to determine synaptic spiking, the state of every

neuron in the simulation must be gathered first. Again,

the publisher-subscriber scheme is used to pass data

asynchronously. However, rather than passing data be-

tween stages, it is used to pass data between different

data scopes.

Figure 2 shows the flow of the neuron spiking infor-

mation across a cluster. When the device-level vector

exchanger receives a local firing vector, the data is pub-

lished to the machine-level vector exchanger. Within

this exchanger, the local vector is copied into a global

vector allocated in the system memory. Once all lo-

cal device vectors are copied for a single time-step, the

complete machine-level vector is broadcast to all the

other machines in the cluster. After all machines in the

cluster finish broadcasting, the complete global firing

vector is published back to the device-level vector ex-

changers where it is copied back into the appropriate

type of device memory before being published out to

any subscribing stages.

Firing Table Update. With the firing state of every

neuron in the simulation, a device can determine when

all of its synapses will receive the firing based on a per-

synapse delay value. Given the potential range of de-

lays, this information is stored within a synaptic firing

table. A row of the table is a bit vector representing the

firing state of every synapse on the device. The number

of rows in the table depends on the maximum delay of

all local synapses. When this stage receives the global

neuron fire vector, each synapse checks its associated

presynaptic neuron for a firing state. If it is firing, the

synapse adds its delay to the current time-step to de-

termine the appropriate vector which is then modified

by setting its bit to 1.

After updating the table for a single time-step, the

table row associated to that step can be published.

However, up to N time-steps ahead of the current time

can be published, where N is the minimum delay across

all local synapses. This allows devices to simulate ahead

of one another to a point rather than being completely

locked in step. Additionally, the publication of these

extra buffers at the beginning of the simulation allows

the data to start flowing through the simulation.

Synapse Update. Given the firing state of each synapse

on the device, the synapses themselves can be updated.

Like the input update stage, the synapse update stage

produces the total synaptic current per device-level neu-

ron also represented by an array of floating point values.

In terms of operating spaces, synapse plugins update

synapses that operate at both the plugin and device

levels, reading from the synaptic fire vector while writ-

ing to the synaptic current vector.

Reports. Reports gather information regarding some

aspect of the simulation. They are specified by the user

as a set of elements and values that should be extracted

from them as the simulation progresses. Because these



6 Roger V. Hoang et al.

Fig. 3: LIF Neuron Model: Regular Spiking Firing Patterns Fig. 4: IZH Neuron Model: Regular Spiking Firing Patterns

Fig. 5: LIF Neuron Model: Fast Spiking Firing Patterns Fig. 6: IZH Neuron Model: Fast Spiking Firing Patterns

Fig. 7: LIF Neuron Model: Bursting Firing Patterns Fig. 8: IZH Neuron Model: Bursting Firing Patterns

elements can be scattered across multiple devices and/or

different machines and the data required can reside on

one of several different scopes, every machine, device,

and plugin are given a unique identifier. Following the

distribution, every element that must be reported on

can be located by the appropriate ID based on the data

scope and the identifier within the data source.

With these two values, the appropriate data can be

extracted during the simulation. To accomplish this, a

single reporter is instantiated on each machine, which

contains at least one element that should be collected.

Then, a reporter subscribes to each publisher of the

data through a more generalized publisher-subscriber

interface. This interface allows a reporter to access data

arrays along with the memory type using a string identi-

fier. At each time-step, the reporter extracts data from

all of its subscriptions and aggregates them as neces-

sary. A separate MPI communication group is then used

to further aggregate these data across the entire clus-

ter asynchronously before being written out to a file or

some other data sink.

Instead of using a built-in reporter type, a plugin-

type interface is devised to provide flexibility in terms of

data extraction, aggregation, communication, and out-

put techniques without overly complicating the result-

ing code. For instance, a reporter that counts the num-



A Novel CPU/GPU Simulation Environment for Large-Scale Biologically Realistic Neural Modeling 7

ber of neuron firings may choose to minimize data bus

traffic on CUDA devices by implementing the count

directly on the device and retrieving the single value

rather than by downloading the entire buffer to the

system memory first before operating on it. Implemen-

tations of the reporter interface are given access to an

MPI communication group along with the element IDs

and source identifiers to accomplish the aforementioned

tasks.

2.5 CUDA Implementation

Every CUDA plugin in any stage of the simulation flow

uses a separate CUDA stream to enqueue work for the

GPU, sleeps while waiting for kernel execution to finish,

and publishes the results to subscribing stages when the

results are ready. Each stream operates independently

on separate pieces of data, allowing the CUDA sched-

uler to execute kernels from different streams concur-

rently in order to maximize hardware utilization.

Unlike the computationally-straightforward Izhike-

vich model, the LIF model as specified by NCS presents

a number of challenges when implementing it in CUDA.

To begin with, LIF neurons can be composed of multi-

ple compartments that affect one another and have dif-

ferent synaptic connections. To maintain minimal data

transfer, all compartments of a single LIF neuron are

decomposed into neuron-like objects that must be dis-

tributed to the same device, localizing cross-compartment

interactions to that device. Since each compartment is

modeled like a neuron, compartment-specific connec-

tions are realized as well.

An additional complexity of the LIF neuron comes

from the ability for a compartment to have one or more

channels that alter its current based on a number of

different attributes. The solution to this comes from

applying the simulation flow breakdown to this smaller

subproblem. Each unique channel type is implemented

as a plugin to the larger LIF plugin in order to minimize

branching within a single kernel. At each time-step, the

channel plugins concurrently modify a current buffer.

This buffer is then published to the compartment up-

dater, which in turn publishes the compartments newly

updated state for use by the channel plugins in the sub-

sequent time-step.

A final challenge to modeling NCS neurons is due

to the behavior of firings. Rather than sending a single

impulse across a synapse when the neuron fires, a wave-

form is sent over a potentially large number of time-

steps. Repeated firings over a short time period pro-

duce multiple waveforms that are summed together. To

enable this memory of firings in CUDA, the synaptic

update plugin behavior is decomposed into a few steps.

A synapse begins by checking the fire table to see if

a firing has been received. If so, it pushes the event

composed of a waveform iterator onto a list. That list

along with the list from the previous update are then

updated, computing the total synaptic current for a

single neuron at the same time. If an event has not yet

iterated across its entire waveform, it is pushed onto a

new list that is published for the next time-step.

3 Results

The results of this manuscript are presented in the form

of: neuron model validation, NCS performance, existing

models using NCS, and a comparison of simulation en-

vironments.

3.1 Neuron Model Validation

The validation of our neuron models is crucial to the

reliability of modeling studies. We have compared mem-

brane potential traces using our two types of neurons

models in response to current injection with electro-

physiological data (Contreras, 2004) and the well-known

Izhikevich firing patterns (Izhikevich, 2003). As exam-

ples, we looked at three major types of neuronal firing

patterns: regular spiking (RS), fast spiking (FS), and

bursting (B). For the LIF neuron model, we used dif-

ferent types of channels and parameters. Channels in-

cluded voltage-dependent and calcium-activated potas-

sium channels. For the IZH neuron model, we used spe-

cific values for the parameters a, b, c, and d, which are

given in Figure 9.

Fig. 9: IZH neuron model: specific values used for
parameters a, b, c, and d.

Figures 3 and 4 show the firing patterns of simulated

regular spiking neurons using the LIF and the IZH neu-

ron models, respectively. Figures 5 and 6 show the fir-

ing patterns of simulated fast spiking neurons using the

LIF and the IZH neuron models, respectively. Figures

7 and 8 show the firing patterns of simulated burst-

ing neurons using the LIF and the IZH neuron mod-

els, respectively. All six figures graph a sample of the

simulation from 100 to 300 msec. Overall, our two neu-

ron models were validated by closely replicating spike



8 Roger V. Hoang et al.

Fig. 10: LIF Neuron Model: 1s Simulation Fig. 11: IZH Neuron Model: 1s Simulation

Fig. 12: LIF Neuron Model: 10s Simulation Fig. 13: IZH Neuron Model: 10s Simulation

shapes and spike frequencies from electrophysiological

data (Contreras, 2004) and the well-known Izhikevich

firing patterns (Izhikevich, 2003) for three major types

of neurons: RS, FS, and B. Note: our two models are

not limited to these three types; all neural patterns can

be replicated.

3.2 NCS Performance

Based on recent development and enhancements of NCS,

we are capable of running large-scale neural models

(100,000 - 1,000,000 neurons) faster than most simu-

lators by distributing data across multiple GPUs. Con-

sidering a synapse to neuron ratio of 100 (e.g. 500,000

neurons and 50 million synapses), NCS runs any mod-

els up to almost 1 million neurons in real-time, for

example, 1s simulation = 1s (IZH) or 2s (LIF) real-

time, as presented in Figures 10 and 11 for the hybrid

and Izhikevich neurons, respectively. In the NCS per-

formance figures, eight machines were used with each

having two video cards (GTX 680s, GTX 480s, GTX

460s, or Tesla C2050s) with a time-step of 1 ms. From

one to ten-second simulations, NCS has shown no loss

of performance over time, as shown in Figures 12 and

13. However, the loss of performance can occur in mod-

els containing more than 50 million synapses due to

the high computation power required by synapses. The

limit in terms of communications occurs when the size

of the neuron vector is too large for the network to han-

dle. In the case of GigE(1000Mbps) simulating at 1 ms

intervals, we have 1 Mb per update, which represents 1

million cells (1 bit per cell). Additionally, there is MPI

packet overhead. Currently, the main reason for loss

of performance in very large models is due to memory

constraints of the GPUs and not due to network limi-

tations.

3.3 Existing Models using NCS

For details regarding existing models using NCS,

related research projects, and publications please re-

fer to our Brain Computation Laboratory’s website:

http://www.cse.unr.edu/brain/.

3.4 Comparison of Simulation Environments

As every simulation environment have their own ad-

vantages and disadvantages, we have compared NCS

with three well-known simulators, NEURON, GENE-

SIS, and NEST. This comparison, presented in Figure

14, can be useful for scientists to decide which simu-



A Novel CPU/GPU Simulation Environment for Large-Scale Biologically Realistic Neural Modeling 9

Fig. 14: Simulation Environments Comparison

lator is better suited for their modeling experiments.

Specifically, it describes the four simulation environ-

ments’ features, such as platforms, back-end language,

front-end coding style, GUI, appropriate applications,

supported neuron models, type of parallel computation,

and possible python version. Overall, NCS is currently

well suited for large-scale neural networks and average

biological details which can be simulated with LIF and

IZH models. The input language for NCS is a text file

and it requires minimum computer programming expe-

rience.

4 Discussion and Future Work

NCS6 is a new, free, open-source, parallelizable, and

scalable simulator, designed to run on clusters of mul-

tiple machines, potentially with high performance com-

puting devices in each of them. Simulator, tutorial slides,

models, documentation, and conference posters are avail-

able for download at http://www.cse.unr.edu/brain/ncs.

It has built-in LIF and IZH neuron models that repli-

cate biological neural firing patterns based on experi-

mental data (Contreras, 2004). All firing patterns can

be reproduced with realistic spikes shapes and spikes

frequencies. If users are not satisfied with these avail-

able models, they also have the flexibility to design their

own plug-in interfaces for different neuron types. NCS6

is currently able to simulate one million cells and 100

million synapses in quasi real time by distributing data

across these heterogeneous clusters of CPUs and GPUs.

A variety of models have been created and simulated

with NCS, and they have shown interesting findings on

high-level behaviors (e.g. navigation). The advantages

of using NCS6 are its computational power, its biolog-

ical capabilities at multiple levels of abstraction, and

its minimum computer programming demand. NCS6’s

main limitations include its lack of biophysical parame-

ters, its only availability on LINUX platforms, and the

absence of a GUI. Therefore, our current work con-

sists of increasing the biological details behind NCS6

without affecting simulation time. NCS6 should be soon

available on Windows, and be able to run on openCL-

capable devices. Additionally, our main focus has been

on developing a real-time visualization and analysis tool

to make the use of NCS6 convenient to a broader com-

munity.



10 Roger V. Hoang et al.

Appendix

NCS Cell Equations

At a cellular level, NCS solves a limited and slightly re-
ordered form of the Hodgkin-Huxley model that is similar
to equation (1). However, during the numerical integration a
constant membrane leak is added. This is explained further
below.

CN
dV

dt
− IM − IA − IAHP − Iinput − Isyn + Ileak = 0 (1)

The currents expressed in this equation fall into several
different categories that are only briefly explained here. To be-
gin, both IM and IAHP contribute to the membrane voltage
by controlling spike-frequency adaptation. These are small
ionic currents that have a long period of activity when the
membrane voltage is between rest and threshold. IM is the
Noninactivating Muscarinic Potassium Current and is defined
by

IM = ḡMSmP (Ek − V ) (2)

Where S is a non-dimensional strength variable added to NCS
and P is the power that the activation variable m is raised
to. This is essentially decreasing the slope of the activation
variable. The change of that activation variable is defined as

dm

dt
=
m∞ −m

τm
(3)

Where

τm =
ε

e

V − V1/2

ω


+ e
−

V − V1/2

η



m∞ =
1

1 + e
−

V − V1/2

ξ


ε is the scale factor.
V1/2 satisfies the equation m∞(V1/2)=0.5.
ω,η, and ξ are slope factors affecting the rate of change

of the activation variable m.

Notice that (2) is different from the traditional equation shown
below in equation(4). This reverse of the driving force ex-
plains the sign changes in equation (1).

IM = ḡMmm (V − EK) (4)

IAHP is the current provided by the other small spike-
adaptation contributing channel. These are voltage indepen-
dent potassium channels that are regulated by internal cal-
cium.

IAHP = ḡAHPSm
P (EK − V ) (5)

Where S is a non-dimensional strength variable added to NCS
and P is the power that the activation variable m is raised
to. The change of that activation variable is defined as

dm

dt
=
m∞ −m

τm
(6)

τm =
ε

f(Ca) + b

m∞ =
f(Ca)

f(Ca) + b

Where
ε is a scale factor.
b is the backwards rate constant, defined as CA Half Min

in the NCS documentation.
f(Ca) is the forward rate constant defined by (7).

f(Ca) = κ [Ca]αi (7)

Internal calcium concentrations are calculated at the com-
partment level in NCS. Physiologically the calcium concen-
tration of a cell increases when an action potential fires. Af-
ter the action potential has ended the internal concentra-
tion of calcium will diffuse throughout the cell where it is
taken up by numerous physiological buffers. In NCS this dif-
fusion/buffering phenomena is modeled by a simple decay
equation defined by equation (8).

[Ca]i (t+ 1) = [Ca]i (t)

(
1 −

dt

τCa

)
(8)

Where
dt is the simulation time step.
τCa is the defined time constant for the Ca decay.
When an action potential fires in NCS the internal cal-

cium concentration is increased by a static value specified in
the input file.

The third and final channel type modeled in NCS is the
transient outward potassium current or Ka. This channel re-
quires hyperpolarization for its activation; meaning that the
channel will open during inhibitory synaptic input. This is
defined by (9).

IK = ḡMSmPhC (EK − V ) (9)

Where as before S is a non-dimensional strength variable
added to NCS, P is the power that the activation variable
m is raised to and C is the power that the inactivation vari-
able h is raised to. The change of activation and inactivation
variables is defined by (10) and (11).

dm

dt
=
m∞ −m

τm
(10)

dh

dt
=
h∞ −m

τh
(11)

Where

m∞ =
1

1 + e
−

V − V1/2m

ξ





A Novel CPU/GPU Simulation Environment for Large-Scale Biologically Realistic Neural Modeling 11

V1/2m satisfies the equation m∞(V1/2m) = 0.5.
ξ is slope factor affecting the rate of change of the acti-

vation variable m.

h∞ =
1

1 + e
−

V − V1/2h

η



V1/2h satisfies the equation h∞(V1/2h)=0.5.
η is slope factor affecting the rate of change of the inac-

tivation variable h.
τm and τh are voltage dependent. NCS allows this depen-

dence to be defined using an array of values for both voltages
and time constants. This is defined by (12).

τ (V ) =



τ (1) if V < V(1),

τ (2) if V < V(2),
...

τ (n) if V < V(n)

τ (n+ 1) else

(12)

The leakage current is voltage-independent and is modeled
by (13). Notice that the driving force is expressed using the
normal convention. This is the reason the leakage current
is subtracted in the membrane voltage equation rather than
added, as seen in the traditional membrane voltage equations.

Ileak = gleak (V − Eleak) (13)

The synaptic currents are calculated by

Isyn = ḡsynPSG (t) (Esyn − V ) (14)

The numerical integration scheme employed by NCS is sim-
ilar to an Eulerian method. However, as mentioned above a
constant leak term is added to the discretized form of (1). To
begin the current values defined above are summed

ITotal = IM + IA + IAHP + Iinput + Isyn − Ileak (15)

The new voltage is then calculated as a combination of
the defined membrane resting potential, the previously calcu-
lated membrane potential, the membrane resistance, capaci-
tive time constant and total currents.

V (t+ 1) = Vrest + (V (t) − Vrest)

(
1 −

∆

τmem

)
+∆

ITotal

Cn
(16)

Rearranging for clarity

V (t+ 1) = V (t) + (Vrest − V (t))
∆

τmem
+∆

ITotal

Cn
(17)

Where
Cn= τmem

Rmem
Rmem is the defined resistance of the membrane.
τmem is the defined capacitive time constant of the mem-

brane.

Notice the form of (1) in a simple Eulerian integration scheme
would be

V (t+ 1) = V (t) +∆
ITotal

Cn
(18)

The addition of the middle term in Equation (17) nu-
merically drives the membrane voltage of the cell back to a
predefined resting potential.

When the voltage crosses a specified threshold value vthreshold,
the membrane potential follows a user-specified spike shape
pattern. During this time, the internals of each channel are
updated; however, they have no effect on the value of the
memberane potential. At the end of the pattern, calculations
resume using Equation(17).



12 Roger V. Hoang et al.

References

Ahmadi A, Soleimani H (2011) A GPU-based simulation of
multilayer spiking neural networks. In: Proceedings of the
19th Iranian conference on Electrical Engineering (ICEE),
Tehran, Iran, pp 1–5.

Bernhard F, Keriven R (2005) Spking neurons on GPUs.
Tech. rep., Ecole Nationale des Ponts et Chaussées, Paris,
France

Bhuiyan M, Pallipuram V, Smith M (2010) Acceleration of
spiking neural networks in emerging multi-core and GPU
architectures. In: Proceedings of the 2010 IEEE Interna-
tional Symposium on Parallel and Distributed Processing,
Atlanta, Georgia, pp 1–8.

Bower JM, Beeman D (2003) The Book of GENESIS, Second
edition. Chapter 21: Large-Scale Simulation Using Parallel
GENESIS.

Bower JM, Beeman D (2012a) GENESIS 2.3. Avail-
able at http://www.genesis-sim.org/GENESIS/, (Re-
trieved September 24, 2012).

Bower JM, Beeman D (2012b) GENESIS 3. Available at
http://www.genesis-sim.org/, (Retrieved September 24,
2012).

Brette R, Goodman D (2012a) Brian: The Brian spik-
ing neural network simulator. Available at http:/http:

//briansimulator.org/, (Retrieved October 12, 2012).
Brette R, Goodman D (2012b) Simulating spiking neural net-

works on GPU. Network 23(4):167–182.
Carneval NT, Hines ML (2012) NEURON for empirically-

based simulations of neurons and networks of neurons.
Available at http://www.neuron.yale.edu/neuron/, (Re-
trieved September 24, 2012).

Contreras D (2004) Electrophysiological classes of neocortical
neurons. Neural Networks 17(5–6):633–646.

Diesmann M, Eppler JM (2012) NEST initiative. Available at
http://www.nest-initiative.org/, (Retrieved Septem-
ber 24, 2012).

Fernandez A, San Martin R, Farguell PG E (2008) Cellular
neural networks simulation on a parallel graphics process-
ing unit. In: Proceedings of the 11th International Work-
shop on Cellular Neural Networks and Theire Applications
(CNNA), Santiago de Compostela, Spain, pp 208–212.

Fidjeland A, Shanahan M (2010) Accelerated simulation of
spiking neural networks using GPUs. In: Proceedings of the
2010 International Joint Conference on Neural Networks
(IJCNN), Barcelona, Spain, pp 1–8.

Fidjeland A, Roesch E, Shanahan M, Luk W (2009) Nemo:
a platform for neural modelling of spiking neurons using
GPUs. In: Proceedings of the 20th IEEE International
Conference on Application-specific Systems, Architectures
and Processors (ASAP), Boston, MA, pp 137–144.

Han B, Taha T (2010a) Neuromorphic models on a gpgpu
cluster. In: Proceedings of the 2010 International Joint
Conference for Neural Networks (IJCNN), Barcelona,
Spain, pp 1–8.

Han B, Taha TM (2010b) Acceleration of spiking neural net-
work based pattern recognition on nvidia graphics proces-
sors. Applied Optics 49(10):B83–B91.

Hoffmann J, El-Laithy F, Gttler F, Bogdan M (2010) Sim-
ulating biological-inspired spiking neural networks with
openCL. In: Proceedings of the 20th international confer-
ence on Artificial neural networks: Part I (ICANN), Thes-
saloniki, Greece.

Igarashi J, Shouno O, Fukai T, Tsujino H (2011) Real-
time simulation of a spiking neural network model of the
basal ganglia circuitry using general purpose computing on

graphics processing units. Neural Networks 24(9):950–960.
Izhikevich EM (2003) Simple model of spiking neurons. IEEE

Transactions on Neural Networks 14(6):1569–1572.
Migliore M, Cannia C, Lytton WW, Markram H, Hines ML

(2006) Parallel network simulations with NEURON. Jour-
nal of Computational Neuroscience 21:119–129.

Mutch J, Knoblich U, Poggio T (2010) CNS: a gpu-based
framework for simulating cortically-organized networks.
Tech. rep., Massachusetts Institute of Technology, Cam-
bridge, MA.

Nageswaran JM, Dutt N, Krichmar JL, Nicolau A, Veiden-
baum A (2009a) Efficient simulation of large-scale spik-
ing neural networks using CUDA graphics processors. In:
Proceedings of the 2009 International Joint Conference on
Neural Networks (IJCNN), Atlanta, Georgia.

Nageswaran JM, Dutt N, Krichmar JL, Nicolau A, Veiden-
baum AV (2009b) A configurable simulation environment
for the efficient simulation of large-scale spiking neural net-
works on graphics processors. Neural Networks 22(56):791–
800.

Nowotny T (2011) Flexible neuronal network simulation
framework using code generation from NVidia CUDA.
BMC Neuroscience 12(Suppl 1.)

NVIDIA (2013) CUDA 5. Available at http://www.nvidia.

com/object/cuda_home_new.html/, (Retrieved August 5,
2013).

Scorciono R (2010) GPGPU implementation of a synaptically
optimized, anatomically accurate spiking network simula-
tor. In: Proceedings of the Biomedical Sciences and Engi-
neering Conference (BSEC), Oak Ridge, TN.

Thibeault CM, Hoang RV, Harris, Jr FC (2011) A novel
multi-GPU neural simulator. In: Proceedings of the 3rd
Conference on Bioinformatics and Computational Biology
(BICoB 2011), New Orleans, LA, pp 146–151.

Tiesel JP, Maida AS (2009) Using parallel GPU architecture
for simulation of planar i/f networks. In: Proceedings of In-
ternational Joint Conference on Neural Networks (IJCNN),
Atlanta, GA, pp 754–759.

Trappenberg TP (2010) Fundamentals of Computational
Neuroscience, Second edition. Oxford University Press,
USA.

Wang M, Yan B, Hu J, Li P (2011) Simulation of large
neuronal networks with biophysically accurate models on
graphics processors. In: Proceedings of the International
Joint Conference on Neural Networks (IJCNN), San Jose,
CA

Yudanov D, Shaaban M, Melton R, Reznik L (2010) GPU-
based simulation of spiking neural networks with real-time
performance and high accuracy. In: Proceedings of the In-
ternational Joint Conference on Neural Networks (IJCNN),
Barcelona, Spain


