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ABSTRACT
We attack the problem of user fatigue by using an interactive
genetic algorithm to evolve user interfaces in the XUL inter-
face definition language. The interactive genetic algorithm
combines a set of computable user interface design metrics
with subjective user input to guide the evolution of inter-
faces. Our goal is to provide user interface designers with a
tool that can be used to explore innovation and creativity
in the design space of user interfaces and make it easier for
end-users to further customize their user interface without
programming knowledge. User interface specifications are
encoded as individuals in an interactive genetic algorithm’s
population and their fitness is computed from a weighted
combination of user interface design guidelines and user in-
put. This paper shows that we can reduce human fatigue in
interactive genetic algorithms (the number of choices need-
ing to be made by the designer), by 1) only asking the user
to pick two user interfaces from among ten shown on the
display and 2) by asking the user to make the choice once
every t generations.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Theory and methods, Screen design, Style guides;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms, Design, Human Factors

Keywords
Interactive genetic algorithm, User fatigue, User Interface
design

1. INTRODUCTION
User interface (UI) design is an expensive, complex, and

time consuming process usually driven by documented style
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guidelines and design principles. Many of these guidelines
and design principles are difficult to translate into code, and
good UI design is driven in large part by human aesthetics
in their look and feel. Furthermore, “very little knowledge in
design generalizes beyond specific case studies” [13]. Thus
UI designers tend to be guided both by objective measures
gleaned from UI style guidelines and design principles, and
by subjective measures such as the “look” and “feel” of an
interface. Our interactive genetic algorithm combines both
measures in its fitness function and allows the UI designer
to simply and efficiently explore the space of UI designs.

Interactive genetic algorithms (IGAs) differ from GAs in
that objective fitness evaluation is replaced with user eval-
uation. As such, they can incorporate intuition, emotion,
and domain knowledge from the user. However, GAs tend
to rely on the use of large population sizes running for hun-
dreds of generations to achieve satisfactory results [7]. Such
computational dedication cannot be expected from the user
due to psychological and physical fatigue. Thus, although
the use of IGAs presents us with a powerful tool with which
to incorporate subjective evaluation into the GA process,
how best and effectively to incorporate user input remains
a significant research challenge [12].

Our work differs in that we use both a computable fit-
ness criterion and user evaluation to compose a combined
fitness. We encode user interfaces as individuals in an IGA,
and run over a number of generations to help explore the
space of UI designs. Periodically, the UI designer sees the
phenotypes (the UIs) corresponding to a small subset of the
population and picks two - the best and worst looking in-
terfaces. Empirical observations tell us that we should not
display more than ten items to be judged by a user [10], but
the composition of the subset displayed for user evaluation
creates rich dynamics that affect the convergence behavior
of the population in the IGA. We address two issues that
affect convergence behavior. First, should we show the user
the top ten individuals in the population, a mixture of the
ten best and worst individuals in the population, or display
a random set of ten individuals in the population? Second,
how often do we need to ask the user for feedback? Results
show that displaying the top ten individuals results in faster
convergence and better interfaces. In addition, we show that
asking for user input frequently (every generation) results in
the most effective user bias, while asking for user input less
frequently (values of t > 10) introduces noise into the fit-
ness evaluation, degrading the effectiveness of the user bias
in the evolution of UIs.

The remainder of this paper is organized as follows. Sec-
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tion 2 discusses background information in IGAs, the chal-
lenges of UI design, and related work. Section 3 presents
the encoding and representation used for the UI individuals
in the population while the next two sections discuss how
we do subjective and objective evaluations and our experi-
mental setup. The last two sections explain and discuss our
results and present our conclusions and directions for future
work.

2. BACKGROUND
In the following subsections we explore IGAs, the inherent

challenges of UI design, and related work on the topic of UI
design. We also explain our choice of XUL as the target
language for our UIs.

2.1 Interactive Genetic Algorithms
Interactive genetic algorithms fuse the power of evolu-

tionary computation and human subjective evaluation by
providing a mapping from the user’s psychological space to
the parameter space [12]. By doing so, IGAs incorporate
human knowledge, emotion, intuition, and preference into
GAs. Usually we can compute the fitness of individuals in
a GA based on a math equation, some computation, or a
model [7]. However, a user cannot be trivially modeled; user
preferences are relative and subject to change with time and
context. IGAs incorporate user subjective evaluation by re-
placing the fitness evaluation with the user, where the user
provides the fitness to individuals in the population by as-
signing a number on a subjective scale, ranking individuals,
or choosing the best individual from a displayed subset [7,
12]. Because of the nature of IGAs, they have been used for
a variety of applications which incorporate creative human
input, including editorial design, industrial design, image
processing, database retrieval, graphic art and CG anima-
tion, control and robotics, among others [12].

Effective IGAs have to overcome several issues. GAs usu-
ally rely on large population sizes running for many gen-
erations, but asking a user to make hundred or thousands
of choices may be just a little unrealistic. A user would
rapidly fatigue and/or lose interest. Furthermore, because
of the subjective nature of human input, it can lead to users
changing their goals through the IGA run, leading to noisy
fitness landscapes - which coupled with user fatigue can lead
to suboptimal solutions [7].

UI design, discussed more in detail in the next subsection,
is a process which combines objective and subjective heuris-
tics. As such, an IGA is a suitable tool to help guide the
evolution of UI designs.

2.2 User Interface Design
User interface design is a complex process critical to the

success of a software system; designing interactive systems
that are easy to use, engaging, and accessible is a challenging
task. Consequently, the design of a user interface is a costly
part of any software project.

Graphical user interface development toolkits and libraries
help user interface designers to develop graphical user in-
terfaces (GUIs) faster by providing basic widget elements,
such as menus, buttons, and textboxes. Because GUI toolk-
its and libraries facilitate the design activities at too low a
level, they may allow the designer to create a bad or poor de-
sign quickly [6]. UI designers therefore also use style guide-
lines and design principles to guide their designs and this

hopefully leads to more usable interfaces. In addition, such
guidelines and design principles provide a means with which
to evaluate a generated design. Style guidelines not only
define the look and feel of a user interface, but they also ad-
dress the organization of widgets, the use of color, the use
of font, the use of spacing and margins, among other prop-
erties. Some prominent style guidelines are Apple’s Human
Interface Guidelines [1], Microsoft’s User Interface Guide-
lines [8], Sun’s Java Look and Feel Guidelines [11], and the
GNOME Human Interface Guidelines [4]. The problem lies
in that “interpreting the guidelines unambiguously and ap-
plying generic principles to a particular design problem is
itself a major challenge” [6]. There is also the problem that
guidelines are either too specific or too vague, so they do
not always apply to the problem at hand. For example, an
excerpt from Apple’s Human Interface Guidelines specifies:
“use color to enhance the visual impact of your widgets,”
but no detail is given as to which color to use for a given
widget and context [1]. Therefore, user interface designers
are forced into making subjective decisions and evaluations
to fill in the details that guidelines omit.

2.3 Related Work
Our work addresses research challenges from two fields:

the incorporation of user input into IGAs, and the use of
evolutionary techniques for UI design.

2.3.1 Evolution of User Interfaces
The evolution of the appearance and layout of websites

was explored in [9]. The user evolves either the style or the
layout of a webpage; these two optimizations are separated
in order to simplify the evaluation of individuals. The user
guides evolution by picking the individuals the user likes,
then replacing the rest of the individuals by mating and ap-
plying high mutation rates to the user selected individuals.
CSS parameters like font size, font color, font family, link
color, and text alignment were evolved in their experiments.
We expand on this work in two ways: first, our research
incorporates expert knowledge (in the form of style guide-
lines) in addition to incorporating the subjective evaluation
by a user. Second, they used a population size of 12 individ-
uals in order to display and fit all individuals on a screen.
Instead we use large population sizes and display a small
subset of the best 10 individuals, allowing us to sample the
space of UIs more effectively and to present the user with
potentially high fitness individuals.

2.3.2 User Fatigue in IGAs
Interactive genetic algorithms are a suitable tool for prob-

lems where “there is no clear measure to give the evaluation
of fitness other than the one in the human mind” [2]. This
applies to the evolution of UIs because users will be evolv-
ing UIs based on a mental model. Takagi identifies reducing
human fatigue in the use of IGAs as the major remaining
problem [12]. We show that users can guide the evolution
of user interfaces, and are able to evolve interfaces to their
liking by only selecting the best and worst individuals from
a small subset of the entire population, instead of having to
evaluate or rank all individuals in the population.

In [7] the user picks the best, equality relations are also al-
lowed, from a small subset displayed. The displayed subset
is a tournament used to define partial ordering of solutions;
given s1 and s2 are shown to the user, and the user picks
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s1, then we assume that the fitness of s1 is greater than the
fitness of s2 [7]. The partial ordering of solutions, from the
winners and losers of the tournaments, is used along with the
dominance concepts of multi objective optimization to in-
duce a complete ordering of solutions, which is subsequently
used to train an SVM to learn the user’s preferences [7]. In
our current work we do not attempt to do any user mod-
eling with machine learning techniques. Instead, we use a
simple interpolation based on the user selection of the best
and worst UIs to determine the fitness of every other indi-
vidual in the population. Thus we reduce the user input to
two decisions every generation. Furthermore, as in [5] we
have the user evaluate a subset of the population every tth

generation, putting the user in a supervisory role and thus
reducing the amount of feedback needed from the user. In [5]
the user gives either a promote or demote reaction to indi-
viduals displayed for user evaluation. A validity constraint
is also used to determine viable and meaningful designs to
be displayed to the user. While individuals matching the
validity constraint can be numerous, we instead explore the
effects of displaying a small subset of the population for user
evaluation and how the individuals selected as part of the
subset affect the IGA’s performance. How to choose a good
value for t is addressed in our methodology section.

2.4 XUL User Interfaces
The target language used for the UIs being evolved is

XUL, the XML User-interface Language, a cross-platform
markup language for user interfaces [14]. XUL is a power-
ful and extensive language allowing the defining of widget
appearance through CSS style sheets [14]. XUL was chosen
as the target language because of its flexibility and the ease
with which widgets can be manipulated. The syntax and
structure of XUL allow us to create a wide range of appli-
cations, from a simple layout consisting of two buttons, to
a full fledged application consisting of a menubar, toolbar,
and other common widget elements. Lastly, as a subset of
XML, we can use XML parsers and libraries to handle the
manipulation of our XUL UIs.

3. USER INTERFACE REPRESENTATION
Widgets are laid out on a grid, with a layout being a

permutation of widget identification numbers. Because we
also encode aesthetic properties of widgets (such as wid-
get color) which do not use a permutation encoding, we
use two chromosomes to specify the UI. We assign integer
identification numbers, ranging from 1 up to the maximum
number of widgets in the layout, to every widget. Zero de-
notes blank spaces on the grid. A sample layout and its
encoding is shown in figure 1. In order to preserve this
permutation representation, we use PMX, partial mapped
crossover. PMX keeps crossover from creating individuals
with duplicate genes, which would violate the permutation
property. We also use swap mutation, which randomly picks
two genes in the chromosome and swaps their value. The
second chromosome encodes the characteristics of each wid-
get in a layout; currently this consists of the color of each
widget. The encoding for this chromosome is a bit string - 0s
and 1s. We use single point crossover and bit flip mutation
on this chromosome.

3.1 Widget Layout
We organize the layout of our widgets using a grid based

system. The grid construct is provided by XUL and it allows
us to organize our widgets in rows and columns.

Previously we tried using other layout organizations, in-
cluding absolute positioning and positioning relative to other
widgets. In absolute positioning we encoded the cardinal
coordinates of our widgets, where the coordinates specified
where in the panel the widgets were placed. While this was
simple to implement, it resulted in widgets being placed on
top of each other. This added another level of complexity to
be resolved by the user by providing input into the system
specifying that the UIs the user liked the best were the UIs
with widgets not stacked on top of each other, instead of
having the user concentrate on more useful characteristics,
such as the actual widget organizations and the look and
feel. We may return to this representation in the future.

Next we tried using relative positioning, where with each
widget we encoded its position relative to the previous wid-
get on the chromosome. The four positions allowed were left,
right, up, and down. The first widget in the chromosome
was placed on the middle of the panel, with each subsequent
widget being placed relative to its predecessor in the chro-
mosome. Without any bounds or overlap checking, we got
cases where the widgets in the UI would almost line up on a
straight line, resulting on elongated UIs that wasted screen
space. We also encountered the problem that with relative
positioning we still obtained widgets placed on top of each
other, since a widget placed to the left of a widget with a
neighboring widget already on the left results on stacked
widgets.

Although for the two previous representations we expect
a GA to eventually untangle the layout, the permutation
representation seems to be a more effective and elegant so-
lution to the layout of the widgets. By laying out widgets
in rows and columns we are able to avoid the overlapping of
widgets without the l2 computation (where l is the number
of widgets in a UI layout) involved to check the overlap of
widgets.

For the experiments conducted and discussed in this paper
we have fixed the grid size to 10x2, 10 rows and 2 columns.
We chose this grid size because it is similar in dimension
to the available space on the Lagoon UI [3] discussed in
Section 5. Widgets are placed on the grid in a row-major
fashion, with remaining empty cells filled with blank spaces.
Hence, the layout of widgets boils down to a permutation of
widgets and blank spaces, and by shuffling the permutation
we are able to explore different widget layouts.

3.2 Widget Color
We encode the color of widgets on a regular bit string. We

use the RGB color model, where each color is a combination
of various degrees of red, green, and blue. The RGB compo-
nents vary from 0 to 255 respectively. So red is (255, 0, 0),
green is (0, 255, 0), and blue is (0, 0, 255). Hence, we require
8 bits for each of the three main color components, with a
total of 24 bits to represent the color of a single widget. This
representation allows us to explore the 224 space of colors
for each widget.

4. FITNESS EVALUATION
The fitness evaluation of the individuals in the IGA is a

two step process. We first ask the user to provide input,
which constitutes the subjective component of the fitness
evaluation. After recording this user input, we check confor-
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Figure 1: UI encoding consists of two chromosomes.
The widget characteristics chromosome encodes the
color of each widget in a standard bit string. The
widget layout chromosome encodes the position of
the widgets in the grid. Widgets are identified by
integer IDs greater than 0 and empty cells in the
grid are identified with 0s.

mance to a set of objective heuristics taken from style guide-
lines. We then compute the fitness as the linear weighted
sum of objective and subjective components. The corre-
sponding weights can be adjusted by the user and can cause
IGA behavior to range from pure objective evaluation to
pure subjective evaluation. For the experiments and results
discussed in this paper we used equal weights for the objec-
tive and subjective components.

4.1 Objective Evaluation
We compute the objective fitness component by check-

ing how well UI individuals in the population adhere to and
respect coded style guidelines. The two main guidelines cur-
rently incorporated on the objective evaluation are the use
of a high contrast between the background and foreground
color (to ensure legibility), and the use of a low contrast be-
tween widget colors (so that widgets share a similar shade
of color). The grid positioning of the widgets in the layout
implicitly enforces a widget alignment guideline.

We enforce a high contrast between the widgets’ color and
the panel color by taking the euclidean distance between the
panel color of individual i and the color of each widget in
the panel - dist(ei,k, window bgi) - as shown in equation 1.
The fitness reward is directly proportional to the euclidean
distance. M is maximum distance between any two colors,√

2552 × 3 = 441.68 and m is the number of widgets in a
panel. Similarly, to enforce a low contrast between widget
colors we compare the color of each widget with every other
widget, summing up the distance of the colors (see equa-
tion 2). Here the fitness reward is inversely proportional to
the euclidean distance. Finally, we add the objective fitness
components from equations 1 and 2 to obtain the objective
fitness in equation 3.

obj1 =
mX

k=1

M − dist(ei,k, window bgi)

M
(1)

obj2 =
m−1X

k=1

mX

j=k+1

dist(ei,k, ei,j)

M
(2)

objective = obj1 + obj2 (3)

4.2 Subjective Evaluation
The user selected best UI and worst UI are used to inter-

polate the fitness of every other individual in the population
based on similarity. We compute the similarity between two
individuals in two steps. In the first step, we calculate color
similarity of the two UIs, in terms of the widgets and the
panel background. To determine color similarity, we calcu-
late the euclidean distance between two colors. We reward
a small distance between the widget color in individual i
and the user selected best individual b. On the other hand,
a large distance between the widget color in individual i
and the user selected worst individual w is rewarded. Next,
we compute widget layout similarity. Here we compute the
hamming distance between the permutation layout chromo-
somes of the two individuals. This fitness is inversely pro-
portional to the hamming distance between individual i and
the user selected best b and directly proportional to ham-
ming distance between i and the user selected worst. Finally,
we scale the subjective component to make it comparable to
the objective component.

We compute similarity between the best individual b and
individual i and between the worst individual w and indi-
vidual i in the population as follows:

bs =
mX

k=1

M − dist(eb,k, ei,k)

M
+ (MH − hamming(b, i))

(4)

ws =

mX

k=1

dist(ew,k, ei,k)

M
+ hamming(w, i) (5)

The term within the summation computes color similarity
while the second term computes layout similarity. bs is the
subjective fitness component computed with reference to the
user-selected best individual while ws computes the subjec-
tive fitness component with reference to the user-selected
worst individual. In the formulas above, M is the maximum
distance between any two colors,

√
2552 × 3 = 441.68 and

dist(eb,k, ei,k) is the euclidean distance between the kth wid-
get of the best individuals and the kth widget of individual
i. MH is the maximum hamming distance (l = 20).

Lastly, we compute the subjective component as the sum
of the color and layout similarity of individual i compared
to both the best individual b and the worst individual w:

subjective = bs + ws

4.2.1 Parasitism
We are evolving and trying to optimize the layout and

the look of the widgets in a panel. Consequently, we have
multiple criteria that we are trying to optimize. This has
led to parasitic behavior on the evolution of UIs. The user
picks the UI the user likes the best and the UI the user
likes the least. However, the user does not specify in terms
of what the selection is being made on (based on color or
layout?). When the user picks a UI as the best, this leads
to the IGA attributing a high fitness to both the look and
the layout of the widgets. For example, if the user picks
a UI because of the vibrant blue colors the widgets have,
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then a high fitness will be attributed to whatever layout
the widgets have. Thus, with our simulated user picking
discussed in the next section, it is assumed that the user
picks the best and worst UIs based on color alone, ignoring
the layout of the widgets. UIs associated with the most blue
widgets, regardless of orderliness, will be given a high fitness
as well.

In the current implementation we have not incorporated
a means with which to prevent the emergence of this para-
sitic behavior. This could be suppressed by fixing either the
layout or the look of the widgets as done in [9], and evolving
the other non fixed parameter. Alternatively, the user could
be asked to select the best UI based on widget layout and
the best UI based on widget look. However, this adds to the
number of selections that have to be made by the user, thus
increasing user fatigue.

5. EXPERIMENTAL SETUP
For the experiments conducted we used a population size

of 100 and we displayed 10 individuals for user evaluation.
We compare two selection methods, roulette wheel selection
and probabilistic tournament selection. For tournament se-
lection we used a tournament size of 4, with 90% probability
of choosing the best individual in the tournament. Four in-
dividuals from the population are randomly sampled to form
a tournament for parent selection. We used 80% crossover
rate and 1% mutation rate.

We used Lagoon, a real-time 3D naval combat simula-
tion game developed at the Evolutionary Computing Sys-
tems Lab (ECSL) at UNR as a platform for AI research [3].
We tested our approach on one of the interaction panels
from the complex Lagoon UI, the “MoveTo” panel that con-
trols combat ships in the game. The widgets in the MoveTo
panel, five text labels, a button, a drop-down menu, a slider,
and two textboxes, were written in XUL and loaded into
the IGA. The MoveTo panel was chosen because it has a
variety of widgets, yet it is simple enough for our initial
experiments. We conducted two experiments; the first to
investigate which individuals to display for user evaluation
and the second to investigate how often we need to ask for
user input. All results reported below are averages from 30
independent runs of the IGA.

Instead of using real people we used a simulated human
with a preference for the color blue. The simulated human
gives us the leverage to have a tireless user do our prelim-
inary tests and experiments. Given a set of UIs displayed
for user evaluation, we used a greedy approach to simulate
user picking, and the UI with the most blue widgets was
chosen as the best, and the UI with the least blue widgets
was chosen as the worst layout.

We chose to test three methods for selecting our n = 10
individuals that make up the subset displayed for user eval-
uation. The first method displayed the best n individuals in
the population. The second method displayed both the best
n/2 and the worst n/2 individuals in the population. The
last method randomly selected n individuals in the popula-
tion to be displayed for user evaluation.

Instead of using real people we used a simulated human
with a preference for the color blue. Given a set of UIs
displayed for user evaluation, we used a greedy approach
to simulate user picking, and the UI with the most blue
widgets was chosen as the best, and the UI with the least
blue widgets was chosen as the worst layout.

We chose to test three methods for selecting our n = 10
individuals in the population for user evaluation. The first
method displayed the best n individuals in the population.
The second method displayed both the best n/2 and the
worst n/2 individuals in the population. The last method
randomly selected n individuals in the population to be dis-
played for user evaluation.

6. RESULTS
As expected, we found that using tournament selection

with a tournament size of 4 outperformed roulette wheel
selection (see figure 2). The figure shows the best individuals
in the population. Tournament selection’s stronger selection
pressure leads to much quicker convergence to better values.
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Figure 2: Tournament selection versus roulette
wheel selection. The plot shows the best individ-
uals in the population.

6.1 Subset Display Method
We compared three methods of selecting individuals to

be displayed to the user. The three methods are display-
ing the best n individuals, displaying n random individuals,
and displaying the best n/2 and the worst n/2 individuals in
the population. Displaying the best individuals in the pop-
ulation gives the user the opportunity to view individuals
that show the greatest potential by both meeting the objec-
tive and subjective heuristics most effectively. Displaying
random individuals gives the user an unbiased insight into
the current state of the population; it can allow the user
to see the degree to which the population is converging (by
the number of individuals that are similar), but it suffers
because it can present bad UI designs to the user. Lastly,
displaying both best and worst individuals allows the user
to see what the population is converging to and where it is
coming from.

We ran the IGA with each of the three display methods us-
ing tournament selection and plotted the fitness of the best
individuals in the population as shown in figure 3. We can
see that displaying the best individuals in the population for
user evaluation results in the best IGA performance when
compared to displaying random individuals and displaying
both the best and the worst individuals in the population.
Figure 4 also shows that our (simulated) user is able to bias
IGA performance effectively by displaying the best individ-
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Figure 3: Subset composition method comparison.

uals in the population for subjective evaluation. Remember,
blue widgets was the user’s assumed preference. Displaying
the best and worst individuals in the population results in
individuals with blue widgets, but which violate the style
guideline metrics that we are trying to enforce through the
objective evaluation.

6.2 The Power of t
We varied the value of t to explore the effects of user input

every tth generation on IGA performance. That is, the user
was only asked to make a choice once every t generations and
we used that choice for the next t generations to interpolate
individuals’ fitness. Figure 5 compares convergence behavior
for t = 1, 5, 10, and 20, where we have plotted the average
fitness over 30 runs of the best individuals in the population.
We were encouraged to see that varying t, for small values of
t, has little effect on the IGA’s convergence behavior. Next,
to look at the effect of changing t on the subjective fitness,
we plotted the convergence to blue widgets in figure 6 (again
this is average of the best individuals). Note that even a
small change in t results in a drop in convergence to blue
UIs as shown in the figure. With less frequent user input we
get increasingly noisy subjective fitness evaluation.

We increased the value of t to 20, 40, and 80 generations
to assess the effect on IGA performance. Figure 7 shows
the fitness plot of the best individuals in the population.
We can see the step-like increase of fitness corresponding to
the generation when our user makes a selection. Figure 8
shows the fitness plot of the average individuals in the pop-
ulation. The sharp decrease in fitness in early generations
corresponds to the generation in which the user makes the
second picking, since the first user picking is done upon pop-
ulation initialization. We then see a slow increase in fitness.

We also plotted the convergence to blue UIs, which was
the user assumed preference. Figure 9 shows the “blueness”
of the best individuals in the population. From the figure
we see that increasing values of t leads to decreasingly blue
UIs. Thus, as expected, less user input results in a less
effective subjective bias on the population. Finally, figure 10
shows the average blueness of individuals in the population
indicating that the average performance correlates well with
best performance.

6.3 User Interfaces Generated
Figures 11 and 12 show a subset consisting of the 10 best

 0

 500

 1000

 1500

 2000

 2500

 0  50  100  150  200

B
lu

en
es

s

Generations

Best
Random

Best and Worst

Figure 4: Subset composition method comparison
on convergence to blue widgets.
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Figure 5: Effect of varying t on IGA performance.
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Figure 6: Effect of varying t on convergence to blue
UIs.
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Figure 7: Degradation on the IGA performance
(maximum) for high t values.
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Figure 8: Degradation on the IGA performance (av-
erage) when using high t values.
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Figure 9: Degradation in the convergence (maxi-
mum) to blue UIs when using high t values.
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Figure 10: Degradation in the convergence (aver-
age) to blue UIs when using high t values.

individuals in the population at generations 0 and 200, re-
spectively. In generation 0, widgets start with random posi-
tions and random colors. In generation 200, the UIs shown
all have blue widgets, which was the user assumed prefer-
ence. The UIs at generation 200 both respect the metrics
enforced on the objective evaluation: 1) widgets should all
have a similar shade of color, and 2) there should be a high
contrast between foreground and background colors.

7. CONCLUSIONS AND FUTURE WORK
We have presented an IGA that combines both computable

metrics, taken from guidelines of style, as objective heuris-
tics and human subjective input to guide the evolution of
UIs. Guidelines of style and a human sense of aesthetics
are part of the UI design process, making our approach a
suitable and promising application. We have also explored
methods by which to reduce user fatigue in IGAs by 1) dis-
playing a subset from the population that yields the best
IGA performance, 2) asking the user to select the best and
worst UIs from the subset displayed for user evaluation, and
3) assessing the effects of limiting user input by having the
user pick every t generations.

We first compared selection methods in order to find the
one that yielded the best IGA performance. We found tour-
nament selection’s high selective pressure to yield better and
more robust IGA results. Next we compared three subset
display methods, where each method resulted in a different
composition of the subset displayed for user evaluation. Our
results indicate that displaying the best individuals for user
evaluation results in better and faster convergence of the
population, when compared to displaying a random subset
and a subset consisting of the best and the worst individuals
in the population. We also found that we can get reasonable
convergence to well laid out blue (our preferred color) inter-
faces for small values of t. High values of t can reduce human
fatigue considerably, but at the cost of increased noise in the
subjective fitness landscape.

We believe that the work presented in this paper lays a
good foundation for future research and development. For
example, we are considering changing the value of t over the
course of evolution. One idea is to let the user pick more of-
ten in early generations than in later generations when the
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Figure 11: Displaying the best 10 individuals for
user evaluation at generation 0.

Figure 12: Displaying the best 10 individuals for
user evaluation at generation 200.

population nears convergence. We may also want to give
users more control. First, widget encoding can be expanded
to support coupling between widgets and high level spa-
tial relationships with other widgets and the parent panel.
We also plan to incorporate more heuristics from the vari-
ous style guidelines into the objective evaluation component.
User studies also need to be conducted to assess the type of
UIs that can be evolved, and to evaluate how well a human
user can guide and bias the evolution of UIs. Last, we plan
to further explore genetic and color representations and op-
erators that can yield more natural transitions in the color
space.

The long-term goal of this evolutionary approach to UI
design is to streamline and help reduce the complexity as-
sociated with the generation and the fine-tuning of UIs.
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