

STRATIFIED PROGRAMMING
INTEGRATED DEVELOPMENT ENVIRONMENT (SPIDER)

Sergiu Dascalu*, Adrian Pasculescu**, Josh Woolever*, Eric Fritzinger*, Vivek Sharan*

* Department of Computer Science ** Alpas Solutions

University of Nevada, Reno Toronto, Ontario
Reno, NV, 89557, USA Canada, L5C 1Y1
dascalus@cs.unr.edu adrianp@alpas.net

Abstract

 This paper describes the functionality required for a
development environment that supports stratified
programming (SP), a novel software development method
that we have proposed recently [1, 2]. In this paper we
discuss the case when program strata are controlled
outside the programming language and present the main
features of the SPIDER environment for strata creation
and SP program execution. The central part of the
development environment is a source code editor, whose
specific strata manipulation functions are described in
detail in the paper. An example of stratified XSL/XSLT
code is also included to illustrate the main concepts of
stratified programming.

Keywords: program stratum, layered functionality,
stratified programming, integrated development environ-
ment, source code editor.

1 INTRODUCTION

Abstraction is important at all levels of knowledge
manipulation. In problem solving, abstraction is typically
accompanied by refinement, their combination providing
a powerful means for dealing with complexity. In
software development, abstraction and refinement
(iterations) are omnipresent, incorporated in practically all
software development techniques and tools (e.g., [3, 4,
5]). One such technique is the incremental software
development [6], whose principles are included in our
proposed stratified programming (SP) approach.

As described in [1], what SP proposes is building and
executing programs using a strata structure which, we
believe, allows for both adjustable program design and
adjustable program execution. This supports rapid and
efficient development of flexible programs with layered
functionality in which strata (program layers) can be
easily created and manipulated. This is a novel approach,
since typical incremental or program refinement
approaches [e.g., 7] successively increase the detail level
of a program specification, possibly up to code
generation. In SP, in addition to incremental program

creation, we propose maintaining the correspondence
between design strata and execution strata, the latter being
possibly selected by a user during program operation.
From both development (including specification, design,
coding, and testing) and execution points of view an SP
program can be seen as having different shapes, each
determined by the specific strata configuration considered
in a given context.

Being only recently proposed, SP needs both
theoretical elaboration and, essential from a practical
point of view, appropriate tool support [1]. In order to
supply the latter we have started work on a supporting
environment, tentatively entitled SPIDER (an acronym
from Stratified Programming Integrated Development
EnviRonment). This environment and its main
component, the SP code editor, are presented in this
paper. A brief discussion of the extension of SP to the
more general approach we denoted strata-based software
construction (SSC) [2] is also included.

The paper, in its remaining part, is organized as
follows: Section 2 reviews the main concepts of stratified
programming, Section 3 presents a short example of SP
code, Section 4 describes the design principles of the
SPIDER environment, and Section 5 concludes the paper
with notes on SP-related directions of research and
development.

2 STRATIFIED PROGRAMMING CONCEPTS

 In [1] we have introduced the main SP concepts and
in [2] we have suggested the extension of SP (focused on
unit design and implementation) to SSC (aimed to cover
other phases of the software process, in particular
specification and high-level design). Here, we refine the
definitions presented in [1] and introduce several
additional terms.

There are several possible definitions for program
strata. The one that we use in this paper describes a
program stratum as a portion of a program module that
adds a contribution to the functionality of the module
provided by the previous, higher-level strata. For
example, a new stratum added to an existing program

module’s strata structure (see program shape or program
configuration below) uses a different subspace of the
module’s input space and/or refines the program’s output
space.

Each stratum has a property denoted stratum depth,
which naturally represents the stratum’s position within
the program’s strata structure. Stratum depth is similar to
the isobath parameter in ocean cartography [8] and is
denoted by a natural number, starting from 1. More
precisely, the “surface stratum” of a program module has
depth 1, the next stratum has depth 2, and so forth.

For a given program module, each subset of strata
corresponds to a strata structure denoted program shape
(or program configuration). For instance, strata 1 and 2
make up program shape 2 (denoted program_name_s2),
strata 1, 2, and 3 constitute program shape 3 (denoted
program_name_s3), and so forth.

Regarding strata configuration, for non-procedural
programming languages such as XSLT [9], it is possible
to consider arbitrary combinations of strata such as 1, 3,
and 6, which lead to a program shape with the postfix
s_1+3+6. However, in practice this alternative involves
more complex strata elaboration and manipulation, and
hence we defer for the moment its discussion.

As regards strata creation, we suggest using a
structuring criterion based on the “expansion/contraction”
of the program module’s input and output spaces. For
example, in the case of a program in which each
additional stratum restricts the type of files admitted for
input (e.g., from any file, to a text file, to a log database
file, etc.) we can speak of a contraction of the input space
along the depth coordinate of the program. (To be more
precise, the input space for the program remains the same;
what changes is the input subspace used in a given
stratum.) Similarly, we can imagine expansion of the
input space as well as contraction and expansion of the
output space. Consequently, in principle strata definition
can follow four approaches, resulting from the possible
combinations of input and output space evolutions
(contraction/expansion). Certainly, the I/O criterion for
strata definition is not the only one that can be used when
structuring a program module in strata; other criteria such
as the set of services provided can also be applied.

From a visual representation point of view —very
important when designing SP supporting tools— the level
of code indentation is used to demarcate strata. Within
each stratum traditional code indentation can be used in a
limited way, but for the sake of simplicity we omit this
detail in the present paper.

Before introducing a short example of SP code, it is
worth noting that in this paper we approach SP from a
language-independent point of view, a point of view in
which strata are defined at a conceptual level, “outside”

the programming language. For example, strata are not
delimited by internal constructs such as a begin_stratum
or end_stratum, and language constructs such as refresh
(V,N) (which allows variable V on stratum M to regain the
value it held on stratum N) are not included. Specialized
SP versions of programming languages constitute the
subject of future research.

3 A BRIEF EXAMPLE

In order to illustrate the main SP concepts, let us
consider a simple module, denoted Config (Figure 1). In
this module an XML configuration file from a web
service for web page changes detection (diffweb) is
updated [10]. Note that from a functional point a view,
this module has a very thin granularity of strata. In
practice, however, “thicker strata” (that is, with more
functionality incorporated) should normally be created.

 1<!—start of level 1 stratum (outermost)-->
 2<?xml version="1.0"?>
 3<xsl:stylesheet version="1.0" xmlns:xsl=
 "http://www.w3.org/1999/XSL/Transform" >
 4
 5<!-- Copyright 2000-2003 ALPAS Solutions -->
 6 <!—start of level 6 stratum -->
 7 <xsl:param name="itemNumber"/>
 8
 9
10 <!—start of level 7 stratum -->
11 <xsl:param name="today"/>
12
13 <!—start of level 2 stratum -->
14 <xsl:template match="*">
15
16 <!—start of level 3 stratum -->
17 <xsl:copy >
18
19 <!—level 4 stratum -->
20 <xsl:for-each select="@*">
21
22 <!—level 5 stratum -->
23 <xsl:choose>
24
25 <!—continuation of level 6 -->
26 <xsl:when test=
 "../@number!=$itemNumber">
27 <xsl:copy/></xsl:when>
28 <xsl:otherwise>
29
30 <!—continuation of level 7 -->
31 <xsl:attribute name="diffDate">
32 <xsl:value-of select="$today"/>
33 </xsl:attribute>
34 </xsl:otherwise>
35 </xsl:choose>
36 </xsl:for-each>
37 <xsl:apply-templates/>
38 </xsl:copy>
39 </xsl:template>
40
41</xsl:stylesheet>

Fig. 1 Config: Example of SP code in XLST

In the Config example shown above:

• Stratum 1 (program shape 1, denoted Config_s1)
defines the style sheet copyright, date and comments. It
simply creates a style sheet transformation that works
with any XML document and extracts all text nodes
from the XML input document.

• Strata 1 and 2 (which make up program shape 2,
Config_s2) define a transformation that generates an
empty XML document.

• Strata 1, 2 and 3 (Config_s3) define a transformation
that extracts only the root node of the input XML
document.

• Strata 1, 2, 3 and 4 (Config_s4) extract all nodes,
regardless of their attributes.

• Strata 1, 2, 3, 4, 5 and 6 (Config_s6) extract all nodes
and attributes for nodes that do not have a specified
value of the @number attribute.

• Strata 1, 2, 3, 4, 5, 6 and 7 (Config_s7) additionally
replace the values of the attributes of nodes that do have
a specified value of the @number attribute.

With the main SP concepts introduced, the characteristics
of the supporting integrated development environment for
our proposed technique are discussed next.

4 DESIGN PRINCIPLES FOR SPIDER

 The core of the SPIDER environment is, from our
perspective, the editor. For this reason, we focus in this
paper on the editor and only briefly mention other
features that need to be included in the environment. In
particular, besides the editor, SPIDER will incorporate
traditional IDE features that allow program compilation,
debugging, and execution. Additional facilities such as
multiple windows, help system, and add-on tools will also
be considered.

4.1 Lax vs. Rigid Stratification

In practice, a developer might use one of the
following two versions of stratifications, lax stratification
or rigid stratification, as well as a combination of both.
For lax stratification the strata are not nested from the
point of view of the depth. This means that a stratum may
be followed immediately by a stratum at a much deeper
level. For instance, in Figure 2 there is a “jump” from
stratum 2 to stratum 5. In the case of rigid stratification
(Figure 3) all levels are nested and “jumps” possible in
lax stratification are not allowed. This implies that a tree
representation of the code can be used. In practice we can
enforce rigidity using comments, and considering
comments as “neutral code” blocks on intermediary
(“jumped-over”) strata. In Figures 2 and 3 transitions
from a stratum to another are represented with dashed
arrows.

Based on our experience, we notice that stratification
can be applied successfully not only for modules written
in functional (non-procedural) languages such as SQL or
XSLT but also —and especially— for programs written in
assembly languages (e.g., code for microcontrollers used
in robot control), C, Pascal, and so forth.

Fig. 2 Lax stratification

As stated above, combination of approaches can be
used when developing a given program module. For
example in Figure 1, lines 6-12 are written following a lax
stratification approach, while lines 13-41 are created in a
“rigid” way.

Fig. 3 Rigid stratification

4.2 The Editor

 As indicated in section 2, code indentation provides
the easiest discrimination of strata. Starting from this
observation, we focus next on facilities needed in the
source code editor that will be part of SPIDER.

 The editor should have at least the following initial
set of strata manipulation commands:

Presentation commands

• Reveal next stratum. Show the next stratum present in

the module’s code, but not visible on the screen.
• Hide deepest stratum. For example, hide code lines 10,

11, and 30-33 (stratum 7) when the image of the
module shown on the screen is that presented in Fig. 1.

• Show to cursor. Show strata from the outermost stratum
down to the stratum where the cursor is currently
positioned.

• Show from cursor. Show strata down from the cursor,
i.e., the stratum on which the cursor is positioned as
well as all the deeper strata.

• Select stratum. Show the stratum where the cursor is
positioned at a given moment during the code editing.

The above presentation commands should be available
in SPIDER through menu items as well as through toolbar
icons. Toolbar icons corresponding to the five
presentation commands detailed above are shown, in
order, in Figure 4.

Fig. 4 SPIDER-specific toolbar icons

Navigation commands

Vertical arrows will move the cursor inside the
visible code. For example, if a stratum is hidden, the
vertical movements will stay only on the visible strata.
The developer must issue one or more reveal next stratum
commands in order to navigate on hidden strata.

 Line numbering can also give an indication of the
hidden strata. All the lines of the code will be numbered
regardless of the visibility. Optionally, there might be an
additional column that gives the depth number of each
stratum.

We should also have some other way of marking of
the hidden strata. For example one might use “29...”
following the line numbers in lines that precede a hidden
stratum and “…34” for lines that follow immediately after
a hidden stratum.

Other SPIDER commands

• Save down to the deepest presented level. This

operation should prompt the user with a specific
message if discarding changes in lower levels is
involved. For instance, Config_s5.xsl could be the saved
version of the Config program when only the first five
strata of the program are shown.

• Compile/run/debug only the presented code. Compile,
debug, or execute only the source code presented on the
screen. This will ignore the hidden code.

• Search within visible code. Search only in the visible
portion of the program; this is in addition to the default
search on the entire code which requires the presen-
tation of the program’s maximal shape (all strata).

• Replace within the visible code. Similar to the “search
within visible code” command described above.

• Mark areas and select areas of the visible code.

Visual strata presentation enhancements

 The backgrounds of program strata could be
presented in different colors, for example using various
shades of blue, from light to dark, similar to the
representation of an ocean’s depth in marine maps. In
fact, using this metaphor, an “ocean bar” which depicts
the program’s strata organization and indicates the
selected stratum will be attached at the top of the right
pane of the SPIDER window. The main SPIDER window
is presented in Figure 5, while presentation details based
on the “ocean” metaphor are provided in Figures 6 and 7.

Fig. 5 SPIDER’s main window

 Regarding the contents of the SPIDER main window
shown in Figure 5, we note that in the window’s left pane
program strata are shown in the top compartment in a
graphical form that allows direct manipulation, in
particular stratum selection (Figure 6). Based on this
initial “cartographic representation” of the code various
strata manipulation features can be designed. In the lower
compartment of the main window’s pane a brief
description of the selected stratum can be incorporated to
remind the developer of the criteria used for that stratum’s
definition. Finally, in the right pane of the SPIDER
window the selected stratum is highlighted. For example,
in Figure 5 the selected text belongs to stratum 6, and this
fact is indicated using the same color (teal) in the “ocean
bar” shown in Figure 7.

Fig. 6 SPIDER left upper pane

Fig. 7 SPIDER “ocean bar” (top of right pane)

Internal structures

One distinction between usual text (code) editors and
stratified editors is that moving vertically might involve
jumping over several hidden lines of code. The position of
the cursor is important for inserting new text. One
possible implementation will keep two temporary areas
and a number of indicators (flag). For example:

• Max_depth_visibility := a number equal to the number
of visible strata.

• Upper_file_object := the file content up to the current
position of the cursor, including the line where the
cursor is currently located.

• Lower_file_object := the content of the source file,
below the cursor’s current location.

• Visibility_strata_set := array with the indexes of visible
strata.

The above objects should maintain information about
each line (for example the current depth). Once the cursor
is moved up, portions of the Upper_file_object are move
to the Lower_file_object. Evidently, these are only small
parts of an implementation solution that is expected to be
significantly more complex than that of a regular source
code editor. This is, in fact, the price we are willing to pay
in order to support a software development approach that
promises not only significant increase in the program-
mer’s productivity but also greater flexibility in the
structuring and execution of programs.

5 CONCLUSIONS

SP is a new software development approach that we
have recently proposed. Starting from unit design,
implementation, and coding, we envisage extending SP to
other phases of the software process, in particular to
specification and higher-level design. SP and its extended
version SSC provide the premises of several very
interesting research and development directions in the
software engineering domain. We have indicated
elsewhere [1, 2] that the main challenge of the new
approach is the requirement for a mindset shift (paradigm
shift in software construction) for both software
developers and software users. Both developers and users
have to learn to “think in strata” and see programs
organized in layers of functionality built according to
various structuring criteria.

In terms of needed developments, SP requires both
methodological refinement and tool support. To address
the latter, we have presented in this paper the design of
the SPIDER environment which, when fully functional,
will allow us to experiment with the SP approach and will
provide valuable feedback for necessary methodological
adjustments. In parallel, we have started work on the
theoretical foundation of the approach, in particular on the
formalization of strata and on the definition of a set of SP-
specific programming constructs.

Work on SPIDER’s implementation has also been
started in the Computer Science Department at the
University of Nevada, Reno, in collaboration with Alpas
Solutions, Toronto.

REFERENCES

[1] A. Pasculescu and S. Dascalu, “Stratified Program-

ming: Towards a New Paradigm for Software Deve-
lopment,” Proceedings of the 18th Intl. Conference on
Computers and Their Applications (CATA-2003),
Honolulu, Hawaii, pp. 263-268, 2003.

[2] A. Pasculescu and S. Dascalu, “Strata-based Software
Construction,” accepted at the 7th Intl. Conference on
Systemics, Cybernetics, and Informatics (SCI’2003),
Orlando, Florida, July 2003.

[3] D. Sotirovski, “Heuristics for Iterative Software
Development,” IEEE Software, 18(5): 66-73, 2001.

[4] P. Koppol, R.H. Carver, and T. Kuo-Chang,
“Incremental Integration Testing of Concurrent
Programs,” IEEE Transactions on Software
Engineering, 28(6): 607-623, 2002.

[5] XML Epic Editor, Arbortext web-site, accessed
February 10, 2003,
http://www.arbortext.com/html/ ee_close-up.html

[6] N. Wirth, “Program Development by Stepwise
Refinement,” Communication of the ACM, 14 (4), pp.
221-227, 1971.

[7] C. Fidge, P. Kearney, and M. Utting, “A Formal
Method for Building Concurrent Real-Time
Software,” IEEE Software 14 (2), pp. 99-106, 1997.

[8] Forthright's Phrontistery web site, maintained by S.
Chrisomalis and J. Chrisomalis, Isolines page,
accessed February 12, 2003,
http://phrontistery.50megs.com/ contour.html

[9] E.M. Burke, Java and XLST, O’Reilly and
Associates, Inc., 2001.

[10] Diffweb web site, Alpas Solutions, accessed
February 12, 2003, http://www.diffweb.com

