
DuoTracker: Tool Support for Software
Defect Data Collection and Analysis

OLUSEGUN AKINWALE1 SERGIU DASCALU1
1Department of Computer Science and Engineering

University of Nevada
Reno, Nevada, USA

{akinwale, dascalus}@cse.unr.edu

MARCEL KARAM2
2Department of Computer Science

American University in Beirut
Beirut, Lebanon

marcel.karam@aub.lb.edu

Abstract— In today software industry defect tracking tools either
help to improve an organization’s software development process
or an individual’s software development process. No defect
tracking tool currently exists that help both processes. In this
paper we present DuoTracker, a tool that makes possible to
track and analyze software defects for organizational and
individual software process decision making. To accomplish this,
DuoTracker has capabilities to classify defects in a manner that
makes analysis at both organizational and individual software
processes meaningful. The benefit of this approach is that
software engineers are able to see how their personal software
process improvement impacts their organization and vice versa.
This paper shows why software engineers need to keep track of
their program defects, how this is currently done, and how
DuoTracker offers a new way of keeping track of software errors.
Furthermore, DuoTracker is compared to other tracking tools
that enable software developers to record program defects that
occur during their individual software processes.

Keywords—software defects; software anomalies; defect
classification; PSP; CMM; IS0-9001.

I. INTRODUCTION
Consumers of software products expect a certain level of

quality when they purchase computer programs. An example is
in the purchase of a media player software. When consumers
purchase a media player they expect the control symbols for
stopping, recording and playing media files to be similar to that
of an actual CD or DVD player. However, for many software
applications the quality desired by the users is not that obvious.
Software companies gain this information through several
iterations of a product’s development. Then, once a software
company has been able to figure out the need of its customer
base, it must consistently produce products that match the
expectation of its users. Research has convincingly shown that
the only way to consistently produce products that meet the
desire of one’s users is to establish a software process [1, 2].
Once a software process has been instituted in an organization
the effectiveness of the software process will need to be
evaluated frequently. Today, mature software companies
evaluate their process using either the Capability Maturity
Model (CMM) [3] or the ISO 9001 standards [4]. These two
standards define the requirements for an ideal company. A
company’s software process is then compared against the

quality models of CMM or IS0 9001. There are also
improvement methods such as IDEAL [5] and SPICE [6] that
suggest ways for improving the effectiveness of the current
software process of a software company. While the software
engineering literature has shown that the software process does
help improve the quality of software products, researchers have
also noted that the personnel who make up the software
development team also contribute to the quality of a product
[7]. Consequently, there is a need for software engineers to
continuously accomplish their assigned tasks at a level
equivalent or better than their previous work. If engineers
accomplish their tasks with consistent quality, this will make
project assignments easier for software managers and will
reduce the chances of software developers being assigned tasks
for which they are ill prepared for.

Unfortunately, in today’s software industry, software
engineers do not quantitatively assess the quality of their work
in a thorough way. The only assessment they get is from their
bosses (project leaders) during annual reviews. These
assessments are typically subjective and they can give a
software engineer a false idea of his or her skill capability.

A remedy for this situation is the Personal Software Process
(PSP) developed by Watts Humphrey [8, 9]. PSP outlines steps
individual software engineers can use to quantitatively assess
the quality of their work.

PSP requires its users to record the following: (i) the time
spent in each phase of software development, (ii) the size of
program, and (iii) the phase in which a defect was injected and
the phase it was removed. The data is used to generate quality
measures that enable software engineers evaluate the quality of
their work. Currently, there are tools that enable software
engineers to collect data necessary to perform PSP quality
assessment but recent research shows that software engineers
are not using these tools, and the main reason they cite for not
using PSP tools is that data collection process is too
cumbersome [10]. To solve this problem, researchers have
created PSP tools that automate the data collection process, but
so far there is no research paper we could find that shows
software engineers in industry are using the new set of PSP
automating tools such Hackystat [11] and PSPA (Personal
Software Process Assistant) [12].

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

In this paper we present a tool called DuoTracker that
simultaneously collects data needed for both PSP and
CMM/ISO 9001 quality analysis. As such, it represents an
innovative software defect tracking solution that allows
collecting and analyzing software defect data pertaining to both
organization-wide projects and individual software engineering
work.

The paper, in its remaining part, is organized as follows:
Section 2 describes the challenges identified in software defect
tracking, Section 3 describes in detail our proposed solution
(the Duo Tracker tool), Section 4 provides a comparison with
related work, Section 5 outlines directions of future work, and
Section 6 presents our conclusions.

II. PROBLEM
Despite the fact that PSP is not been used in industry,

practicing software engineers do see how PSP can significantly
improve the quality of their work. This is especially true for
independent consultants and developers who do not have the
resources to implement a software process that meets the
quality standards required by CMM and ISO 9001.

The reason mostly cited for not using PSP is similar to
those cited in [13]. The common reasons for not adopting PSP
are the time log and defect log associated with PSP. Software
engineers using PSP are expected to record the start and stop
time for a task. They are also expected to record interruptions
that occur in between the start and the stop time of a task.
Interruption is defined as anything that takes one away from the
task at hand, including answering phone calls and other office
activities.

Defect logging is another activity that prevents software
engineers from adopting PSP. PSP requires software engineers
to record every defect found in every phase, including defects
found in the review, inspection, compiling, and testing phases.
These data are recorded in the defect recording logs. Typically,
software engineers find the activity of recording every defect,
particularly compiler defects, excessively time consuming.

From the information provided above one could easily
conclude that the reason software engineers are not using PSP
is related to the intensive manual data entry involved in PSP.

To address this problem, in an effort to solve the manual
entry issue that prevents the adoption of PSP by software
engineers, the software engineering researchers and
practitioners have created tools such as Hackystat [11], PSPA
[12], LEAP System [14] PSP Studio [15], and Dashboard [16].

 Research result from [12] shows that automating PSP data
entry does not result in substantial amount of PSP tool
adoption. The main reason for the low adoption of PSP tools
(despite the automation of the data entry currently available) is
related to the fact that users of tools such as PSP Dashboard,
LEAP system and PSP Studio have to switch often between the
recording tool and their development tool.

Based on the research result of [12], [13], and [17] one can
conclude that the adoption barrier to PSP tools is related to the
following issues:

1. Manual entry of data;

2. Switching between applications;

3. Too rigid data collection.

III. SOLUTION
Current PSP tools view PSP as an independent software

process and, consequently, the tools being created to assist in
the data collection and analysis of PSP are standalone
applications. To be precise, by standalone applications we
mean in this context PSP applications that are not being
integrated into applications already being used by the software
engineers for tasks performed during a particular software
development phase. An example of non standalone application
is the popular IDE (Integrated Development Environment) used
by many developers to develop software products. This type of
integrated tool suite typically contains several other tools that
could be standalone applications by themselves, e.g., editors,
debuggers, compilers and “code beautifiers”.

Inspired by the IDE model, the authors of this paper have
taken a different approach to the issue of PSP adoption. Rather
than creating a standalone application we have integrated a PSP
defect tracking tool into an organization-wide defect tracking
application that can be used by software companies adhering to
the standards of IS0 9001 and CMM.

By doing these, we also achieve the original goal of PSP.
Specifically, PSP was not meant to be an independent process,
but a process that complements the TSP (Team Software
Process) [18] and the CMM.

To demonstrate the proposed approach we designed and
implemented a tool called DuoTracker. DuoTacker implements
the eleven mandatory categories for IEEE Standard 1044-1993
[19, 20]. IEEE Standard 1044-1993 is a Defect Classification
Scheme (DCS). Currently, there are several defect
classification schemes, but we chose to work with the IEEE
Standard 1044-1993 because it satisfies the CMM and IS0
9001 defect tracking requirements and covers the entire
software development lifecycle.

In [19] and [20] software defects are referred to as software
anomalies for semantic reasons. More exactly, references [19]
and [20] define anomaly as “any condition that deviates from
the expected based on requirements specifications, design
documents, user documents, standards, etc. or from someone’s
perceptions or experiences.”

DuoTracker also implements a PSP defect logger similar to
the one described in [21]. The PSP has its own way of
classifying defects, hence DuoTracker collects defect
information from the user in a manner that allows the user to
know where each data set is going to be used.

A. DuoTracker Solution to Rigid Data Collection
With respect to time logging, instead of taking the approach

of [21], where only the time spent on each fix is recorded,
DuoTracker provides facilities for more detailed information
gathering. Specifically, the DuoTracker system automatically
enters the date the defect was found based on the time the

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

defect was submitted and allows the user to record the
estimated fix time for a defect as well as the actual fix time for
the defect. The timing parameters recorded by DuoTracker are
similar to the ones collected in Watts’s defect logging form
[21].

Another rigid data collection process is the recording of
compile errors during the development phase. Currently,
DuoTracker allows the user to classify defects as PSP
environment type defects that occurred in the PSP compilation
phase. In DuoTracker we decided not to automate the recording
of compilation errors because of the following reasons:

1. An implementation of automated compile time error
recording feature would be dependent on the tool or
programming language used;

2. It would be difficult to associate compile time errors to a
specific project, as there is no generic standard for
associating source files to a project. The management of a
software organization or the tool vendors typically
determine the structure of the project source files;

3. We believe that compile time errors should be recorded
only when they occur after the development phase. An
example is when a software product fails to compile in its
test phase or deployment phase.

B. DuoTracker Solution to Application Switching
DuoTracker addresses the issue of application switching by

integrating itself into a standard application used for defect data
collection and quality analysis. Most software companies,
regardless of the maturity of their software process, use a
defect tracking tool [1, 3, 13, 21]. This can be easily seen in the
popularity of the Bugzilla tool [22], familiar in many open
source projects. However, open source software engineers are
not known to be the greatest fans of software processes.
Typically, they want a very flexible software process, which
does not restrict their creative abilities.

By integrating a PSP defect tracking tool into an
organization-wide defect tracking tool we allow the software
engineers to seamlessly record PSP data. An example is the
compile error in the test or deployment phase. The software
engineer responsible for a product will typically be notified of a
defect in the product by a defect tracking tool component of a
standard organization-wide defect tracking environment such
as Bugzilla, Tracker [23], Helis [24], or Ozibug [25]. In
DuoTracker, once the individual assigned a defect opens the
assigned defect record for viewing, the tool allows the assignee
to include data needed for PSP quality analysis. The assignee is
not required to fill in PSP data sections and, actually, there is
checkbox an assignee must check if he or she wants an
assigned defect to be used in calculating his or her personal
quality measure.

C. DuoTracker Solution to Manual Data Entry
DuoTracker automates PSP data entry by copying over

defect description fields from the IEEE Standard 1044-1993
data entry form into PSP data entry form. Defect description
fields that are unique to PSP need to be entered manually by
the assignee.

D. Potential Problem
A potential problem with DuoTracker is the security of the

PSP data provided by users. Currently, DuoTracker addresses
this issue by restricting viewing and updating of PSP data
records to assignees.

E. DuoTracker Defect Viewer
DuoTracker’s defect viewer, shown in Fig. 1, allows users

to view all the defect records stored in the DuoTracker system.
The viewer displays five important fields of a defect record, as
follows: (1) project ID, (2) defect record number, (3) the person
to whom the defect is assigned, (4) the submitter of the defect,
and (5) the status of the reported defect. Clicking on an entry
will allow one to view an existing defect record to be displayed
in a dialog box. The name of the logged-on user is shown on
the bottom left corner of the viewer. Additionally, on the left
side of the viewer there is a project directory that allows the
users to quickly view defects associated with a specific project.

F. DuoTracker Updating of an Assigned Defect
Clicking a defect record in the defect viewer will produce a

dialog box similar to the one shown in Fig 2. In this figure, the
PSP tab is visible because the assigned user is the same with
the logged-on user. The highlighted tab in Fig. 2 tells the user
that he or she is filling out the description dialog box.

Figure 1. DuoTracker Defect Viewer

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

Moving the cursor over the dialog box initiates the
displaying of a “tooltip” that describes what the dialog is meant
for. For example, after pressing the PSP tab the user is taken to
the PSP dialog box, as shown in Figure 3. Here, by moving the
cursor over the dialog box a tooltip is displayed telling the user
that the values entered in this dialog box are for classifying the
defect using the standard PSP classification. The checkbox at
the bottom of the dialog box allows users to select their PSP
data records.

Figure 2. Defect Recording in DuoTracker Using IEEE Standard
Classification for Software Anomalies (Organization Level)

Figure 3. Defect Recording in DuoTracker Using PSP Defect Classification
(Individual Level)

G. DuoTracker Updating of a Non-assigned Defect
When the logged-on user clicks on a defect record that is

not assigned to him or her the resulting dialog box will not
have a PSP tab (Fig. 4).

Figure 4. Displaying a Non-Assigned Defect in DuoTracker

IV. COMPARISON WITH RELATED PRODUCTS
There are several PSP tools available but only Hackystat and

PSPA (PSP Assistant) have features that are somewhat related
to the ideas demonstrated in DuoTracker.

Hackystat attempts to solve the PSP adoption issue by
creating sensors into development tools such as JBuilder,
Emacs and the testing suite JUnit. It also has sensors for
Bugzilla, arguably the most popular open source defect
tracking tool. The collected defect data from these tools are
sent to a Hackystat server. The server performs analysis on the
received data at regular intervals [11].

Among all the available PSP tools, PSPA [12] is the closest
to DuoTracker. PSPA is a client server system. The client for
PSPA is a plug-in for the Eclipse IDE environment. The PSPA
client user can view non-private PSP data of a team. The PSPA
client allows user to have a dual project schedule view, one
view showing the project schedule assigned by a supervisor
and the other showing a user’s personal project schedule [12].

DuoTracker differentiates itself from PSPA and Hackystat
by not restricting its solution to a specific tool vendor or a
particular programming language. Furthermore, DuoTracker
differs from PSPA by providing a means for recording defects
that occur outside the PSP compile phase. Also, DuoTracker
distinguishes itself from from PSPA and Hackystat by
providing means for filtering out unwanted PSP data. Lastly,
DuoTracker is significantly different from Hackystat and PSPA
in that it allows a user to compare the quality of his or her work
to the quality of the product being produced by an organization.

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

V. FUTURE WORK
Currently we consider four main directions of future

development for DuoTracker, as indicated next.

The first direction consists of developing metrics and
visualization formats that will enable users to see if software
organizations are diminishing or improving the quality of their
work. This will be particularly useful for open source projects
as it will enable volunteers to prevent having their names
associated with a project with little chance of making it in the
software market or contributing to the software development
community.

The second direction for DuoTracker’s future developments
consists of implementing it as a web based client. Given the
accessibility and convenience provided by web applications,
this will most likely increase the usage and effectiveness of the
DuoTracker tool.

The third direction of future work for DuoTracker is to
integrate a database system that prevents unauthorized users
from viewing PSP data through statistical loopholes.

Finally, as the DuoTracker tool has been used so far only in
an academic setting (for graduate projects in software
engineering at the University of Nevada, Reno) we need to
further exercise the tool in more complex applications, better
assess its capabilities, and identify additional needed features
that would increase its usability.

VI. CONCLUSIONS
In this paper we have presented a tool, called DuoTracker,

that allows software engineers collect defect information
needed for analyzing software quality at both the organization
and individual software process levels.

This tool contributes to the field of software engineering by
demonstrating that it is possible to enable developers to
perform software process defect data collection and analysis
activities at both individual and organizational levels.
Currently, defect data collection and analysis tools are made
only for either an organization’s or a single person’s use.

The advantage of having a unique tool that takes care of all
process and quality needs of a software developer comes
primarily from making it easy and straightforward to quickly
identify trends in software defect reporting and fixing.

The paradigm illustrated by DuoTracker can be used in
tools that support either a specific development activity or help
monitor the entire software process.

As far as we see it, the main limitation of this project is
security. Some developers will not feel secure having their
personal data being combined with organizational data, as
people interested in developing applications using this
paradigm will have to show their potential customers that their
data is secured.

The main direction of future work for the DuoTracker
project is the development of metrics and visualizations that
will enable users to accurately assess if a software organization
is diminishing or improving the quality of its work.

REFERENCES
[1] Sommerville, I., Software Engineering, 7th Edition, Addison-Wesley,

2004.
[2] Pressman, R., Software Engineering: A Practitioner’s Approach, 6th

Edition, McGraw-Hill, 2004.
[3] Paulk, M., Curtis, B., Chrissis, M., and Weber, C., “Capability Maturity

Model for Software (version 1.1),” Carnegie Melon University, Software
Engineering Institute, CMU/SEI-93-TR-024, 1993.

[4] International Organization for Standardization, ISO-9001, accessed June
10, 2006 at www.iso.org

[5] McFeeley, R., IDEAL: User Guide for Software Process Improvements,
CMU/SEI-96-HB-001, 1996.

[6] SPICE: Software Process Improvement and Capability Determination
website, Software Quality Institute, Griffith University, Australia,
accessed June 10, 2006 at http://www.sqi.gu.edu.au/spice/

[7] Fuggetta, A., “Software process: a roadmap,” in Proceedings of the
Conference on the Future of Software Engineering, 2000, pp. 25-34.

[8] Humphrey, W.S., Personal Software Process (PSP), Carnegie Melon,
Software Engineering Institute, Pennsylvania, USA, Technical Report
ESC-TR-2000-022, December 2000.

[9] Börstler, J., Carrington, D., Hislop, G., Lisak, S., Olson, K., and
Williams, L. “Teaching PSP: challenges and lessons learned,” IEEE
Software, vol. 19, no. 5, 2002, pp. 42-48.

[10] Humphrey, W. S. “The Personal Software Process: status and trends,”
IEEE Software, vol. 17, no. 6, 2000, pp. 71-75.

[11] HackyStat Development Site, accessed June, 2006 at
http://www.hackystat.org/hackyDevSite/home.do

[12] Sison, R., Diaz, D., Lam, E., Navarro, D., and Navarro, J., “Personal
Software Process (PSP) Assistant,” Proceedings of APSEC, 2005, pp.
687-696.

[13] Johnson, P.M., Kou, H., Agustin, J., Chan, C., Moore, C., Miglani, J.,
Zhen, S., and Doane, W. “Beyond the Personal Software Process:
metrics collection and analysis for the differently disciplined,”
Proceedings of the International Conference on Software Engineering,
2003, pp. 641-646.

[14] Moore, C.A., “Lessons learned from teaching reflective software
engineering using the Leap toolkit,” Proceedings of the IEEE
International Conference on Software Engineering (ICSE-2000).

[15] PSP Studio Page, University of Montana, Dept. of Computer Science,
accessed June 2006 at http://www.cs.umt.edu/RTSL/dsstud/psp/psps.htm

[16] The Software Process Dashboard Initiative, SourceForge.net, accessed
June 2006 at http://processdash.sourceforge.net/

[17] Sillitti, A., Janes, A., Succi, G., and Vernazza, T., “Collecting,
integrating and analyzing software metrics and Personal Software
Process data,” Proceedings of EUROMICRO, 2003, pp. 336-342.

[18] Humphrey, W.S., “Pathways to process maturity: the Personal Software
Process and Team Software Process,” SEI Interactive, vol. 2, no. 2,
1999.

[19] IEEE Std 1044-1993, IEEE Standard Classification for Software
Anomalies, 1993.

[20] IEEE Std 1044.1-1995, IEEE Guide to Classification for Software
Anomalies, 1995.

[21] Humphrey, W.S., Introduction to the Personal Software Process: A
Discipline for Software Engineering, Addison-Wesley, Reading, Mass.,
1996.

[22] The Mozilla Organization, Bugzilla, accessed June 2006 at
http://www.bugzilla.org/

[23] PrimaSoft PC Software, Bug Tracker Deluxe, accessed June 2006 at
www.primasoft.com/deluxeprg/bugtracker_software_overview.htm

[24] Helis 1.0.3 Alpha, accessed June 2006 at
linux.softpedia.com/get/Programming/Bug-Tracking/Helis 962.shtml

[25] Ozibug: A Web-based Bug Tracking System, accessed June 2006 at
www.ozibug.com

0-7695-2703-5/06/$20.00 (c) IEEE

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006

