

Tools for MDA Software Development:
Evaluation Criteria and Set of Desirable Features

 Tihomir Calic, Sergiu Dascalu, Dwight Egbert
CSE Department, University of Nevada, Reno

 {calict, dascalus, egbert}@cse.unr.edu

Abstract

Model Driven Architecture (MDA) is a new approach
to software development that moves standard code-
centric software development to model-centric
software development. The basic idea is to specify
system functionality with a platform independent
model and then translate this model into platform
specific model(s) and fully executable source code.
MDA provides interoperability capabilities between
different technologies, simplifies the work of software
engineers, reduces software development costs, and
supports adaptation to rapid changes in technology.
Based on the development of a software application, a
Glossary Management Tool, this paper proposes an
evaluation framework for MDA tools and outlines
with a set of software requirements the “portrait” of
an ideal MDA tool.

1. Introduction

MDA is currently one of the most challenging
and innovative areas of research in the software
engineering field. Essentially, the main idea of MDA
is to abstract software applications on a higher level
through visual models. That means that MDA shifts
the traditional code-centric software development
paradigm to the new model-centric software
development paradigm. There are several reasons
behind this initiative, as follows.

Today, in the software industry there is a wide
variety of existing technology platforms that, due to
the rapidly changing technology, become obsolete
over time. Every time a new technology arrives,
software companies have to redesign their business
systems or build them from the scratch. However, this
is expensive, so the problem is to find an approach
that could protect our investments in technology

against its changes. One such approach is the MDA,
which separates system functionality from its
implementation in a specific technological platform
[1]. In order to accomplish this, MDA involves
software modeling and defines two core models: the
Platform Independent Model (PIM), and the Platform
Specific Model (PSM) [1]. PIM models the system’s
functionality, while PSM models the system
implementation details. MDA sees PIM as a universal
and long-lived model that will survive changing
technology and be reused in the future to adapt
existing systems to new technologies. The PIM is used
for the generation of PSM models, from which can be
then generated source code for the target application.
Those transformations are achieved using the MDA
supported tools. The PIM can also be used to adapt an
existing system to other existing platforms, if the
system is initially built or adapted to support MDA
principles.

The other envisioned advantage of using the
MDA approach is increased productivity. Since this
approach can generate a large amount of code from
models, it saves time in the development of a process
and it delivers software solutions faster. Moreover,
MDA tools incorporate the design patterns, templates,
and best practices of leading software experts, which
means that by using the MDA tools it is possible to
produce higher quality code than when applying
traditional software development methods. Finally,
MDA relies on open standards, hence there are no
extra costs for MDA adoption[1].

The remaining of this paper, based on work
presented in [2], is organized as follows: Section 2
provides background information on MDA; Section 3
presents the software specification and design of the
Glossary Management Tool used as case study;
Section 4 proposes a set of evaluation criteria for
MDA tools; Section 5 presents the “portrait” of an
ideal MDA tool; Section 6 outlines related research
work, and, finally, Section 7 contains pointers to
future work and presents the conclusions of the paper.

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.241

44

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.241

44

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.241

44

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.241

44

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.241

44

2. Background on MDA

In 2001, the Object Management Group (OMG)
[1] proposed a new methodology called Model Driven
Architecture (MDA) [3]. The OMG is a non-profit
organization that creates and implements standards for
software product development in the area of object-
oriented technology. Model Driven Architecture is
based on several standards defined by the OMG,
specifically: the Unified Modeling Language (UML)
[4], the Meta-Object Facility (MOF) [5], the XML
Metadata Interchange (XMI) [6], and the Common
Warehouse Metamodel (CWM) [7]. As indicated by
[1], there are many industrial sectors where MDA can
be applied including finance, e-commerce,
manufacturing, healthcare, and other.

MDA relies on the separation of the business
logic of a system from its implementation. To achieve
this, MDA defines two types of models: the Platform-
Independent Model (PIM) and the Platform-Specific
Model (PSM). PIM model captures system behavior
and functionality, while PSM model captures
information about details of system implementation.
Both models should be described with a modeling
language that relies on OMG’s Meta-Object Facility
(MOF) standard. The basic MDA concepts are briefly
presented next, based on information from [1].

Model is an abstraction of the functionality and
behavior of a system that we are observing [8].
Representation of a model in MDA must be formal,
which means that it needs to be described by a
language that has a clearly defined syntax [9]. In
addition, that language should be based on OMG’s
MOF standard.

Platform is an environment where models will be
executed. The platform is independent from the
functionality of a system. Examples of platforms are
Java2, CORBA, Microsoft .NET, Web Services, the
operating systems Linux, Solaris, Windows, etc. [10].

Platform Independent Model (PIM) captures the
business logic of the system that we are building and
must be independent of any implementation
technology. Each PIM can be transformed to one or
more Platform Specific Models (PSMs). Any system
can be partitioned into one or more domains that
represent different subject matter areas and each of
them is represented by one PIM model. Since the
same domain can be found in different systems, a PIM
model can be reused with or without modifications in
future modeling problems. This is the main reason
why the MDA approach does not incorporate any
implementation details in the PIM model. In this way,
business logic captured in a PIM model lasts much
longer then the logic expressed by a programming
language that can eventually become obsolete over

time. Furthermore, the platform-independency of the
PIM model provides its portability across many
different platforms and interoperability between
different platforms [3], [8].

 Platform Specific Model (PSM) contains the
business logic that is already expressed in the PIM
model and the information about platform
implementation details. The PSM model is always
generated from the PIM model. There are two basic
types of PSM models: one is a UML model and the
second is a source code. When the PSM model is
expressed in a source code it is called Platform-
Specific Implementation (PSI) [11]. Each time when
business requirements need to be changed, those
changes need to be made in the PIM model, not in the
PSM model, as the PSM models will be regenerated
from the modified PIM.

Mappings between models together with
markings of the models are one of the key features
that MDA tools need to provide to the developer.
MDA mapping is a set of rules and techniques for
translating a PIM model into another PIM model or
into a PSM model. There are several different types of
mapping in MDA [3].

Model transformation in MDA is a process of
conversion of a PIM model to a PSM model. Both the
model type mapping and the model instance mapping
are supported in model transformation. OMG recently
defined the standard for model transformation in
MDA, called Queries/Views/Transformations (QVT)
[12], but that standard is still under development.

Meta-Object Facility (MOF) is an OMG standard
that defines an abstract language used to describe
metamodels [1]. MOF is very important in the MDA
approach, especially in the case of interchanging
models between different vendors’ MDA tools.
Thanks to employing the MOF standard, it is feasible
to manage the same PIM model by different vendors’
MDA tools. Naturally, each MDA tool has to be
MOF-compliant and the language for expressing the
models has to be an MOF-based modeling language
such as the UML. The MOF standard has also a major
role in defining the mapping function between models,
particularly from PIM to PSM.

Common Warehouse Metamodel (CWM) is an
OMG standard that defines modeling metadata in a
data warehouse environment. The main goal of CWM
is to enable the exchange of metadata between data
warehousing tools and data warehousing platforms.
CWM is based on three OMG’s standards: MOF,
UML, and XMI [1]. As an MOF-compliant standard,
CWM can use all OMG specifications that rely on
MOF. One of these specifications is XMI, which
provides interchange metadata expressed using the
CWM metamodel. The basic modeling language for

4545454545

representation of CWM metamodels is UML. In
addition to UML, CWM uses the Object Constraint
Language (OCL) [13] to represent additional
constraints on the CWM metamodel [7]. The CWM
specification covers the full life-cycle of design,
deployment, and management of data warehouse
applications. In MDA, CWM has the most important
role in the mapping from PIM models to database
schemes.

The XML Metadata Interchange (XMI) is an
OMG standard that provides interchange of metadata
information between modeling tools, repositories, and
middleware supporting the MOF metamodel [6]. XMI
is built upon the Extensible Markup Language (XML)
[14], a standard developed by the World Wide Web
Consortium (W3C) that defines data exchange
between distributed environments [15]. In MDA, XMI
is mostly used to interchange UML models between
MDA tools and to map UML models to XML textual
format. To achieve this, each MDA tool needs to
support the import and export of the XMI file format.
There are two kinds of information that need to be
exchanged. One is the information about the elements
that constitute the UML model (classes, attributes,
associations, state transitions etc.) and the second is
how these elements are represented in UML diagrams
(positions of graphical symbols, shapes, colors, fonts,
etc.). The XMI document can also be transformed into
various programming language formats using the
W3C Recommendation called Extensible Stylesheet
Language Transformations (XSLT) [16].

MDA tools have a major role in MDA-based
software development. They provide development of
software applications by creating a PIM model of a
system and its transformation and mapping it into the
PSM model. MDA tools also provide further
transformation of the PSM model to the fully
executable program code in several programming
languages. Currently, the OMG did not specify a
document that indicates which features a modeling
tool needs to incorporate to be MDA-compliant.
However, according to the OMG website [17] today
on the market there are over fifty MDA tools that
support one or more major features of the MDA
approach. Each of them has different strengths, so it is
up to developers to choose a tool that best fits their
needs.

3. Case Study: Project Glossary
 Management Tool

As a case study for MDA tool exercising we used

a relatively simple web application called Glossary
Management Tool (GMT). GMT is supported by a
database and provides the regular database CRUD
(Create/Report/Update/Delete) functions. By using the
GMT a user can add, delete, search or modify various
terms from the GMT’s database. While universally
necessary and highly practical, the GMT application is
not very difficult to develop using the standard, code-
centric software development techniques, but in our
work it has been developed by using MDA tools only.
Specifically, GMT has been implemented in three
versions using three different MDA software
environments (tools), two proprietary and one open
source. The purpose of this development was to
identify, classify, and evaluate features needed in
MDA tools.

 GMT is based on a three-tier client-server
architecture that consists of three layers: presentation
layer, application processing layer, and data layer
(Figure 1).

Figure 1: GMT architecture

 All these layers are logically separated. The first
layer, the presentation layer, is responsible for
presenting the data to the users and for managing the
interactions with the users. This layer allows the users
(clients) to interact with GMT through any standard
web browser. The second layer, the application
processing layer, is concerned with providing the
business logic of the GMT and is supported by an
application server. The third layer, the data
management layer, is responsible for storing and
retrieving data from the database. This layer is
provided by the database server [18].
 The essential UML class diagram of the GMT is
shown in Figure 2. More details of the GMT software
model and its variant MDA-based implementations
are available in [2].

4646464646

Figure 2: GMT class diagram

4. Evaluation Criteria for MDA Tools

 After the repeated implementation of the GMT
web application using three different software tools
that support the MDA approach we put together a set
of criteria for evaluating MDA software
environments. To achieve this, we combined
evaluation criteria from other reported works [21, 22,
23, 24, 25, 26, 27] and, in addition, we included
several other criteria that we found useful based on
our own experience. As a result, we came up with the
following classification that consists of six main
criteria groups:

1. MDA features - This criteria group evaluates to

what degree MDA tools are compliant with the
OMG’s MDA specification.

2. Tool capabilities - This criteria group evaluates
tool capabilities including the selected tool
features and tool’s environment.

3. Quality - This criteria group evaluates the overall
quality of the MDA tool, including its efficiency,
understandability, ease of implementation, and
other.

4. Usability - This criteria group evaluates the
quality of interaction between users and the MDA
tool.

5. Productivity - This criteria group evaluates to
what degree the expected MDA benefits are
actually achieved by using the MDA tool.

6. Documentation - This criteria group evaluates
the supporting documentation of the MDA tool
such as available tutorials, samples, on-line help,
and other.

Each criteria group is expanded into a set of sub-
criteria. All sub-criteria together with their references,
where applicable, are presented in Table I.

5. Portrait of an Ideal MDA Tool

Based on our research exploration and experience
with MDA tools acquired during the implementation
of the GMT case study application using three
different MDA software environments, below is
outlined the “portrait” of an “ideal” MDA tool. For
this purpose, the concise and practical style for writing
functional requirements proposed in [19] has been
used. The ideal MDA tool shall:

1. Provide a UML graphical editor that supports

UML modeling of all types of UML diagrams.
UML extensions (profiles) shall also be
supported.

2. Provide support for modeling the Platform
Independent Model (PIM) of a system that will
contain only system logic and will not contain
any information about system implementation.
The dynamic behavior of the system shall be
expressed using the supported UML diagrams and
the specific language that describes the system
behavior (such as OCL).

3. Automatically generate a Platform Specific
Model (PSM) for the chosen target platform
directly from the modeled PIM. The tool shall
support the generation of PSMs for all the leading
platforms available on the market and in the open
source community.

4. Support the modification of PSM models in order
to meet specific user requirements.

5. Support the validation and verification of models
in order to check their consistency with the
system specification and to verify the correctness
and completeness of the designed models.

6. Support both model-to-model and model-to-code
transformations via plug-in cartridges. The tool
shall provide a graphical development environ-
ment for the development of new cartridges and
for the customization of existing ones.

7. Include a graphical user interface designer
component that will allow easy development of
the application’s user interface and will be able to
meet the most ambitious user interface
requirementss.

8. Generate the entire application code and project
infrastructure required for running the application.
The tool shall provide the implementation of the
application in any desired programming language.

9. Support the debugging process for both model-to-
model and model-to-code transformations.

10. Provide automatic deployment of the generated
application to all the leading production servers
available on the market and in the open source
community. The tool shall provide testing support

4747474747

for all versions of the leading web and application
servers and databases available on the market and
in the open source community.

11. Support automatic generation of the project
documentation.

12. Support exporting of models into the XMI format
in order to exchange the models with other MDA

and UML tools. The tool shall support importing
of models from all leading MDA and UML tools
available on the market and in the open source
community without losing any information during
the import process.

13. Support reverse-engineering of legacy software
systems in order to create UML models from any

Table 1: Evaluation criteria for MDA tools

 FEATURES REFERENCES

1.
 M

D
A

 F
ea

tu
re

s 1.1 PIM support

1.2 PSM support

1.3 Multiple target platforms

1.4 Marking

1.5 Mapping

1.6 Transformations

1.7 Model import/export

1.8 Reverse engineering

1.9 Standardization

1.10 UML profiles

1.11 UML diagrams types

1.12 OCL support

[3]

2.
 T

oo
l C

ap
ab

ili
tie

s

2.1 UML graphical editor [21]

2.2 Managing model complexity [20]

2.3 Zooming [20]

2.4 Automatic GUI creation

2.5 Modeling GUI

2.6 Validation and Verification of Models [20]

2.7 Defining New Transformations [23]

2.8 Debugging [21]

2.9 Customization of Generated Code

2.10 Protected Areas [21]

2.11 Deployment [20]

2.12 Testing [20]

2.13 Execution of Generated System [22]

2.14 IDE Integration [21]

2.15 Currency of Supported Software

2.16 Automatic Report Generation

[20], [21],

[22], [23],

own experience

3.
 Q

ua
lit

y

3.1 Efficiency [24]

3.2 Simplicity

3.3 Robustness [24]

3.4 Quality of generated GUI

3.5 Understandability [24]

3.6 Ease of implementation [24]

3.7 Completeness [24]

3.8 Ability to produce expected results [24]

[24],

own experience

4.
 U

sa
bi

lit
y 4.1 Learnability [25], [26]

4.2 Visibility [25], [26]

4.3 Feedback [25], [26]

4.4 Constraints [25], [26]

4.5 Mapping [25], [26]

4.6 Consistency [25], [26]

4.7 Affordance [25], [26]

[25], [26]

5.
 P

ro
du

ct
iv

ity

5.1 Reduced development time [27]

5.2 Reduced complexity of implementation [27]

5.3 Reduced level of skills [27]

5.4 Code quality [27]

5.5 Cost effectiveness

[27],

own experience

6.
 D

oc
um

en
ta

tio
n

6.1 Organization [24]

6.2 Samples

6.3 On-line help [24]

6.4 Understandability [24]

6.5 Completeness [24]

6.6 Quality [24]

[24],

own experience

4848484848

legacy application written in any programming
language.

14. Provide integration with all leading programming
software development environments available on
the market and in the open source community.

15. Provide teamwork support to allow multiple users
to work simultaneously on the same project.

16. Include complete documentation and samples that
effectively explain to users how to use the tool.

17. Provide support for maintenance and evolution of
the developed application.

18. Run on multiple operating systems.
19. Have good performance (CPU, memory and disk

usage) on an average PC workstation.

6. Related Work

 In order to put together a reasonably
comprehensive set of criteria for evaluating MDA
software environments we first researched several
existing common methods for evaluating software
engineering tools in general. In particular, we found
very useful the research work conducted by Dr.
Barbara Kitchenham at the University of Keele, UK
[24]. Her research project is known as DESMET.
Among nine different types of evaluation that are
identified by DESMET the type named Feature
Analysis Case Study is most similar to the approach
that we used in our work. In her work, Kitchenham
explains how to generate a set of features for a
software tool or a method, and identifies some of the
features common to software tools and methods. In a
similar direction, the research work conducted within
the MODA-TEL project coordinated by Eurescom
identified MDA tool requirements and separated them
into four groups: business modeling, model
transformation, artifact generation, and legacy
integration [21]. The requirements proposed within
the mentioned groups are primarily designed to meet
MDA-specific features and some specific tool
capabilities. Another valuable related research work
was conducted by Tariq and Akhter [22]. Their work
identified features from current MDA specification
and some specific general tool’s features.
Furthermore, research groups at King’s College
London and York University identified sixteen
properties that a tool needs to have to be MDA
compliant [27]. Besides the related works mentioned
above, there are several other sources that we have
consulted [23], [28], [29].
 Based on this work by other researchers, we have
expanded and further organized the evaluation criteria
software professionals are likely to need when
deciding what MDA tools to use. Furthermore, based

on practical experimentation and application of the
criteria, we have proposed a set of desirable features
for MDA tools, as detailed in Section 5 of this paper.
For both classification of evaluation criteria and set of
useful features that we suggested it is important to
point out that specific weights or priorities can be
assigned on case by case, depending on various
factors such as: project goals, project constraints, type
of application, developers’ experience, and project
management priorities and approach.

7. Conclusions and Future Work

 In this paper we have explored the MDA
approach for software development. Our exploration
was meant to investigate the feasibility and usefulness
of the MDA approach. Throughout the process of
exploration we had two major tasks. First, we have
implemented a fully functional web application in
three different versions using three different software
tools that support and implement the MDA approach
and, based on this experience as well as the review of
related literature, we compiled a set of criteria for
evaluating MDA software environments. Second, we
outlined a “portrait” of a most desirable MDA tool. In
addition to proposing a set of evaluation criteria and
suggesting features for an “ideal” MDA tool we also
identified a number of directions of future work that
could be beneficial to pursue. Some suggested areas
for future research and development are as follows:

• Experimenting with a larger number of MDA

environments, both from commercial and open-
source domains.

• Exploration of MDA environments (three or more)
using a more complex case study application than
the Glossary Management Tool used in our
exploration.

• Exploration of MDA environments (three or more)
using an extended version of our set of evaluation
criteria (along the lines indicated in Section 4).

• Specification and design of the proposed “ideal”
MDA tool.

• Building the prototype of the proposed “ideal”
MDA tool.

• Exploration of MDA tool support for PIM and
PSM models on more details.

• Experimentation with customizing and extending
the model transformation rules within existing
particular MDA tool cartridges.

• Development of a new cartridge for a programming
language not currently supported for a particular
MDA tool (e.g. for Python [30]).

4949494949

• User group evaluation of MDA tools that involves
a large group of developers that apply the
evaluation criteria proposed in this paper. The
outcome results will be more objective since they
will result from combining developers’ opinions.

In summary, the main contributions of this paper are
as follows:

• Proposal of an evaluation framework consisting of

six groups of assessment criteria and 54 detailed
criteria.

• Summary of the most relevant and desirable
features of an “ideal” MDA tool.

• Suggestions of several potentially rewarding
directions of future research and development.

• Design and implementation of the Glossary
Management Tool (GMT) web application as a
case study for exercising MDA tools and for
exploring various aspects of software modeling and
implementation using MDA.

References

[1] Object Management Group, accessed September 1,

2007 at http://www.omg.org
[2] Calic, T., Exploration of Model Driven Architecture

Capabilities via Comparative Utilization of MDA
Tools, MS thesis, University of Nevada, Reno, USA.
December 2006.

[3] “MDA Guide Version 1.0.1“, OMG’s website,
published June 2003, accessed September 4, 2007 at
http://www.omg.org/docs/omg/03-06-01.pdf

[4] “Unified Modeling Language (UML), Version 2.0”,
OMG’s website, published August 2005, accessed
September 4, 2007 at http://www.omg.org/technology/
documents/formal/uml.htm

[5] “Meta Object Facility (MOF) Core Specification”,
OMG’s website, published January 2006, accessed
September 4, 2007 at http://www.omg.org/docs/formal
/06-01-01.pdf

[6] “MOF 2.0/XMI Mapping Specification, v2.1”, OMG’s
website, published September 2005, accessed
September 4, 2007 at http://www.omg.org/docs/
formal/05-09-01.pdf

[7] “Common Warehouse Metamodel (CWM)
Specification”, OMG’s website, published March 2003,
accessed September 4, 2007 at http://www.omg.org/
docs/formal/03-03-02.pdf

[8] Mellor, S., Scott, K., Uhl, A., and Weise, D., MDA
Distilled, Addison-Wesley Professional, 2004.

[9] Dascalu, S., Combining Semi-Formal and Formal
Notations in Software Specification: An Approach to
Modelling Time-Constrained Systems, PhD thesis,
Dalhousie University, Halifax, NS, Canada, 2001.

[10] Arlow, J., and Neustadt, I., Enterprise Patterns and
MDA: Building Better Software with Archetype
Patterns and UML, Addison-Wesley, 2004.

[11] Raistrick, C., Francis, P., Wright, J., Carter, C., and
Wilkie I., Model Driven Architecture with Executable
UML, Cambridge University Press, 2004.

[12] “Meta Object Facility (MOF) 2.0 Query/View/
Transformation Specification”, OMG’s website,
published November 2005, accessed September 17,
2007 at http://www.omg.org/docs/ptc/05-11-01.pdf

[13] “Object Constraint Language Specification”, OMG’s
website, published May 2006, accessed September 17,
2007 at http://www.omg.org/docs/formal/06-05-01.pdf

[14] “Extensible Markup Language (XML) 1.0 (Third
Edition)”, W3C’s website, published February 2004,
accessed September 17, 2007 at http://www.w3.org/
TR/2004/REC-xml-20040204/

[15] “W3C”, World Wide Web Consortium website,
accessed September 17, 2007 at http://www.w3.org

[16] “XSL Transformations (XSLT) Version 1.0”, W3C’s
website, published Nov. 1999, accessed Sept. 17, 2007
at http://www.w3.org/TR/1999/ REC-xslt-19991116

[17] “Committed Companies and Their Products”, OMG’s
website, published May 2006, accessed Sept. 17, 2007
at http://www.omg.org/mda/committed-products.htm

[18] Sommerville, I., Software Engineering, Addison-
Wesley, 2004.

[19] Arlow, J., and Neustadt, I., UML and the Unified
Process: Practical Object-Oriented Analysis and
Design, Addison-Wesley Professional, 2001.

[20] “Model Driven Architecture (MDA)”, OMG’s website,
published July 2001, accessed October 8, 2007 at
http://www.omg.org/docs/ormsc/01-07-01.pdf

[21] Renuncio, L.,E., MODA-TEL (Deliverable 3.4) MDA
Foundations and Key Technologies, MODA-TEL
Consortium, July 2004.

[22] Tariq, N. A., Akhter, N., Comparison of Model Driven
Architecture (MDA) Based Tools, MS thesis, Royal
Institute of Technology, Stockholm, Sweden. 2005.

[23] Janssen, J. W., Evaluation of current tool support for
the Model Driven Architecture, MS thesis, University
of Twente, Enschede, Netherlands. January 2004.

[24] Kitchenham, B., DESMET: A Method for Evaluating
Software Engineering Methods and Tools, Technical
Report TR96-09, University of Keele, UK. 1996.

[25] Norman, D., The Design of Everyday Things, Basic
Books, 2002.

[26] Preece, J., Rogers, Y., Sharp, H., Interaction Design,
Wiley Publishing Inc., 2002.

[27] “An Evaluation of Compuware OptimalJ Professional
Edition as an MDA tool”, King’s College London and
University of York, published September 2003,
accessed October 8, 2007 at http://www.lcc.uma.es/~av
/MDD-MDA/publicaciones/P_13kings_mda.pdf

[28] Najim, M., A Study of Model Driven Architecture
Approaches, MS project, University of California,
Riverside, Riverside, US. June 2005.

[29] Chatterjee, S., “MDA Tools Evaluation”, Jax
Magazine, published February 2006, accessed October
15, 2007 at http://www.jaxmagazine.com/itr/column/
psecom,id,4,nodeid,354.html

[30] “Python Programming Language”, Python official
website, accessed Oct. 2007 at http://www.python.org/

5050505050

