
Towards Aspect-oriented Model-driven Code Generation in the Formal

Design Analysis Framework

Kendra Cooper

The Univ. of Texas at Dallas

kcooper@utdallas.edu

Lirong Dai

Seattle University

daia@seattleu.edu

Sergiu Dascalu

Univ. of Nevada

dascalus@cse.unr.edu

Nehal Mehta

The Univ. of Texas at Dallas

nehal.mehta@gmail.com

Sujala Velagapudi

The Univ. of Texas at Dallas

k_sujala@yahoo.com

Abstract

Model driven code generation has been investigated

in traditional and object-oriented design paradigms;

significant progress has been made. It offers many

advantages including the rapid development of high

quality code. Errors are reduced and the consistency

between the design and the code is retained, in

comparison with a purely manual approach. Here, we

propose a model driven code generation approach for

aspect-oriented development. The approach has three

main steps. An aspect-oriented design is defined first.

Previous work in the formal design analysis framework

(FDAF) is used; the model is captured using FDAF’s

extended UML notation. Second, the aspect-oriented

visual design model is translated into the formal text

based notation XML. Third, the XML specification is

translated into aspect-oriented code stubs, using the

AspectJ programming language. FDAF has been

extended in this work to support aspect-oriented model

driven code generation. The approach is illustrated

using an on-line banking system.

1. Introduction

The importance of modeling a high quality software

architecture is well recognized in the software

engineering community. The resulting quality of the

implemented system, however, also relies on the

correct and consistent refinement of the software

architecture into code. Model driven code generation

has been proposed as one technique to help accomplish

this. The advantages of model driven code

development include rapid code generation, reductions

in errors, and consistency between the design and the

code. Model driven code generation is within the scope

of the Model Driven Architecture guide [10]. Starting

from a platform independent model (PIM),

transformations lead to platform specific models

(PSMs), which include transformations into code.

Model driven code generation has been investigated

in traditional and object-oriented development. In

traditional development, models have been represented

using formal notations including Petri Nets [10],

Software Cost Reduction (SCR) [12], and SDL [12].

Full code generation has been accomplished;

approaches for generating optimized code have also

been proposed. In object-oriented development, models

represented in UML have been used to generate fully

executable code [6][8][9]. The generation of code

“stubs” is an established feature of currently available

commercial and open source object-oriented CASE

tools, such as the IBM Rational Software Architect [6]

and ArgoUML [1].

Significant progress has been made in automatic

code generation for traditional and object-oriented

development. However, to the best of our knowledge,

model driven code generation in aspect-oriented

development has not been considered. Aspect-oriented

development is a relatively new paradigm, which

provides a way to encapsulate capabilities that would

tend to crosscut many elements in an object-oriented

design, such as security [4]. At the code level, Aspect-

oriented programming languages, such as AspectJ,

provide linguistic mechanisms for separate expression

of concerns (i.e., stakeholders’ interests), along with

implementation technologies for weaving these

separate concerns into working systems. At the design

level, a system’s tangling concerns are encapsulated in

a modeling element called an aspect. Subsequently, a

weaving process is employed to compose core

functionality model elements (those realize the

system’s main functionalities) with these aspects,

thereby generating a complete architecture design.

Here, we propose an aspect-oriented model driven

code generation approach, which automatically

generates AspectJ code stubs from an aspect-oriented

design model. The approach is validated using an on-

line banking system, in which an aspect is used to

realize a security capability, Role-based Access

Control (RBAC), in the design. Tool support has been

developed to automatically generate the AspectJ code

stubs from the input design. The long term goal of this

research is to support full code generation in aspect-

oriented development.

The remainder of this paper is organized as follows.

Background on the Aspect-oriented design framework,

FDAF, and the aspect-oriented programming language,

AspectJ, are presented in Section 2. The code

generation approach is presented in Section 3; it is

illustrated using an on-line banking system.

Conclusions and future work are in Section 4.

2. Background

An overview of the aspect-oriented design framework,

FDAF, and the aspect-oriented programming language,

AspectJ, used in this research are presented in this

section. We recognize that alternative AOD and AOP

techniques can also be used. FDAF has been selected

because it provides a visual, UML based approach, tool

support is freely available, which is based on the

current version of the open source case tool ArgoUML,

and has been validated on two substantial example

systems. AspectJ has been selected because it has an

established and growing user community; the tool

support is well documented and freely available. The

reader is referred to [2] for detailed presentations of

AspectJ and [3][4] for FDAF.

FDAF is an aspect-oriented design and analysis

framework. It supports the semi-formal visual modeling

of an object-oriented (OO) base design and its

subsequent extension with aspects to realize

crosscutting (non-functional) capabilities such as

security performance, etc. The aspect-oriented (AO)

extended design can be used to a) automatically create

formal designs, which can be rigorously analyzed, and

b) automatically create code stubs, i.e., model driven

code generation. The automatic code generation is the

new extension presented in this work.

The meta-model for the UML extension is defined

in [3]. The extension includes an AspectJClass,

Pointcuts, Advice, etc. For example, the syntax and

semantics for an element called AspectJClass is defined

as part of the extension. This element has a name

(Inherited from ModelElement in the UML core

package), a list of Features (e.g., Attribute, Operation,

Method), a list of Pointcuts, and a list of advice.

The FDAF approach includes an aspect repository, a

set of modules that support development activities, and

a repository to store project artifacts (refer to Figure

1).The aspect repository stores a collection of

Figure 1. Overview of the Formal Design Analysis Framework

Functional and
Non-functional
Requirements

FDAF Project Repository (Software Under Development)

FDAF Development Modules

FDAF Aspect Repository (Re-usable Aspects at Design Level)

Performance Aspects

(AO)

Security Aspects

(AO)

Reliability Aspects

(AO) …

OO UML
Design Modeling

Semi-formal OO Design Models

Semi-formal AO Extended Design Models

AO Extended UML
Design Modeling

Formal AO Design Models and Analysis Results

OO, AO Source Code

Source Code
Generation

Formal AO Design
Generation

predefined aspects. Architects can search the repository

to select the appropriate aspect(s) according to the

system’s non-functional requirements and re-use them

in their design.

The project repository stores the development

artifacts, including semi-formal OO and AO design

models, formal AO design models, and source code.

The OO and AO semi-formal design models are

manually created. Two development modules, OO

UML Design Modeling and AO Extended UML

Design Modeling, support these activities. The formal

AO design models (i.e., translations of the semi-formal

AO design into formal notations) are automatically

created. The formal notations include the architectural

description languages Rapide, Armani, Æmilia, and

Alloy in addition to Promela, the input language for the

well-known model-checker SPIN. Source code stubs in

AspectJ are automatically generated, using the

extended AO design as input. This capability is new in

FDAF.

AspectJ is one aspect-oriented programming

language that is currently available. It is an aspect-

oriented extension to the Java programming language.

A simplified definition of the syntax definition for an

aspect is presented using EBNF (extended Backus-

Naur Form) in Figure 2 [14].

 AspectJ extends Java with support for dynamic and

static crosscutting implementations. The first makes it

possible to define additional implementation to run at

certain well defined points in the execution of the

program. The second makes it possible to define new

operations on existing types, i.e., it affects the static

type signature of the program.

Dynamic crosscutting in AspectJ is based on a small

but powerful set of constructs. Join points are well-

defined points in the execution of the program;

pointcuts are a means of referring to collections of join

points and certain values at those join points; advice

are method-like constructs used to define additional

behavior at join points; and aspects are units of

modular crosscutting implementation, composed of

pointcuts, advice, and ordinary Java member

declarations.

3. Code generation

The model-driven code generation approach has

three main steps. The first step is to define an aspect-

oriented, visual model of the design; this is the input

for the code generation approach. The second step is to

translate the design into a formal, text-based notation

that can be readily processed. The third step is to

transform the formal text based representation of the

visual design model into the target programming

language. Here, we use the FDAF, XML, and AspectJ

notations in these three steps respectively; each step is

described in more detail below. The approach is

illustrated using a banking system example, in which a

security feature Role-Based Access Control (RBAC) is

needed. For illustration purposes, we follow the

transformation of two elements. The aspect name is

followed through the steps by highlighting it in yellow;

the pointcut to the Controller class is highlighted in

blue.

3.1. Define Aspect-oriented Design Model

An aspect-oriented visual design model is defined,

which complies with the meta-model for the FDAF

extension [3]. For this preliminary work, focused on

generating code stubs, only an extended class diagram

modeling the static view (i.e., the structure) of the

design is needed. In the future, when full code

aspect
:: 'ASPECT_NAME' '{' aspect_parts '}'

aspect_parts
:: aspect_part aspect_parts | ε

aspect_part
:: pointcut_def | advice_def

pointcut_def
:: 'POINTCUT_NAME' pointcut_body

pointcut_body
:: selection_expression

advice_def
:: 'POINTCUT_NAME': advice_body

advice_body
:: where_specifier '{'
code_in_programming_language '}'

where_specifier
:: 'BEFORE' | 'AROUND' | 'AFTER'

//CAPITALS – terminals,
lowercase_letters - nonterminals

Selection_expression is a primitive
pointcut chosen from the set of
predefined pointcuts of particular
aspect oriented (AO) programming
language, e.g., call(f), set(v),
meaning call to function f, or set a
value of v, respectively.

Figure 2. Simplified Syntax for an Aspect in EBNF [14]

generation is investigated, additional views and

diagrams will be required, e.g., statechart, sequence,

allocation, etc.).

Defining the design is an iterative process, which

involves designing a base design and then extending

the design with cross-cutting aspects. A partial model

for the banking system is illustrated in Figure 3. The

base model uses standard UML class diagram elements

(classes, association, etc.). The aspect oriented

extension uses a new graphic icon, the parallelogram,

to represent the aspect. Here, the aspect is the RBAC

(the name is highlighted in yellow in Figure 3). A new

association is provided to visually represent the

crosscuts from aspects to classes (i.e., pointcuts and

joinpoints). In the example, classes in the base design

including a Controller, Command, and Banking

Servlet. The capabilities represented in the RBAC are

needed (i.e., crosscut) in two places: it crosscuts the

Controller and Command classes. The RBAC aspect is

included in two places in the model to indicate that

different advice is needed in the classes. A variety of

pointcut types are currently supported including call,

execute, this, and handler.

3.2. Transform Aspects in the Visual Model

into XML

An XML schema for the aspect has been defined,

which represents the privilege, name, modifier, and

pointcuts. The tags and organization of the schema

have been derived from the definition of AspectJ

syntax. For example, the AspectJ syntax definition

begins with the production rule for an Aspect; our

corresponding XML schema begins with the tag
<Aspect>, which is composed of tags for pointcuts. Tags

have not been defined for advice, which are the bodies of

the signatures in the aspect, as they are empty in the

design phase.

The data used to populate the XML specification

are extracted from the visual design model using

syntactic analysis. For example, the name of the aspect

in the visual design model is extracted and used to

populate the <name> element in the XML

specification (the string “Aspect” is appended to the

name); the crosscuts in the visual design model are

used to extract the pointcut definition and populate the

pointcut specification, including the expression type of

the pointcut (e.g., simple or a compound expression),

the name of the pointcut (created using the class name

and signature name as a base), the type of the pointcut

(e.g., call, execute), etc. An example of a partial XML

specification for the example banking system is

presented in Figure 4. Here, the name of the aspect is

highlighted in yellow: RBACAspect; a pointcut in

blue. The sample represents the RBAC aspect

crosscutting the Controller class in Figure 3.

3.3. Transform XML into Programming

Languages

The capability to generate Java code stubs from a

UML class diagram is already available in ArgoUML

[1]. Here, we focus on the generation of AspectJ code

stubs. Once the XML specification has been created,

the generation of code stubs is straightforward. The

elements of the specification are retrieved from the

specification (e.g., get the name) and are printed out to

a file, considering the concrete syntax requirements of

AspectJ (e.g., the use of keywords, braces, parentheses,

colons, etc.). An example of the code automatically

generated is presented in Figure 5. Here again, the

name of the AspectJ aspect is highlighted in yellow and

elements of a pointcut in blue. A developer would then

CreateRoleSession(…):void

AssignRoles(…):void
AssignRights(…):void

call

<<after>>

RBAC RBAC

 CheckRolesForActions(…):void

invokes

1
Command

+execute():void

…

Controller

+loginVerify(string usrn, string psd):void

+userRequest(string rqst):void

…

Delete

Account

Add

Account

Fund

Transfer

Update

Account
…

Banking Servlet

call

<<before>>

1

+doGet(HttpServletRequest req,

 HttpServletResponse resp):void

…

Additional classes include bank

database, user session, etc.

The RBAC aspect is repeated in the

visual model to indicate different

advice is needed in the Controller

and Command classes

Figure 3 Banking System Example: FDAF Extended AO UML Design

complete the implementation of the Aspects by

developing the advice code.

 4. Conclusions and Future work

Model driven code generation has a number of

benefits, including the rapid development of source

code and the potential to reduce errors. It has received

a great deal of attention in traditional and object-

oriented development communities. In this work, we

present our approach to model driven code generation

in aspect-oriented software development. To the best of

our knowledge, this has not been presented in the

literature. The approach uses a visual, design model

(UML based extended with aspect-oriented elements)

as input and automatically generates AspectJ code

stubs. The design is translated into an XML

specification using syntactic analysis. The XML

specification is then translated into code stubs.

 The initial results have been very promising. We

plan to validate the approach using additional, publicly

available AspectJ applications. The applications will be

reverse engineered into design models (providing

inputs to test the approach); the complete source code

will be simplified down to code stubs. In combination,

the reverse engineered design and simplified code stubs

will form test cases. In addition, the rigorous definition

of the transformation algorithm and the formalization

of the traceability relationships among the models are

under development.

We have observed that the automatic code

generation of code stubs is helpful, but a substantial

amount of manual development is left to the

programmers. Our long term research goal is to extend

the approach to support full code generation. This will

require the use of syntactic and semantic analysis

techniques, which have been successfully applied in

traditional and object oriented code generation

research. As shown in the literature, full code

generation techniques based on UML require the use of

additional diagrams such as statechart, activity,

sequence and, for distributed systems, allocation

diagrams [6][8][9]. We propose the use of the extended

activity diagram from FDAF to support the full code

generation for non-distributed systems. Distributed

systems will require the extension of the FDAF to

include allocation diagrams.

The formal verification of the generated AspectJ

code (stubs or full code) with respect to the UML

model is an important issue. This requires a formal

semantic definition of the AspectJ language, which is

currently under investigation in the AspectJ

community. When this definition is available, the

formal verification of the code generated by the

approach can be done.

<Aspect>

 <isPrivileged>false</isPrivileged>

 <name>RBACAspect</name>

 <packagename />

 <modifier>public</modifier>

 <PointCut>

 <PointCutExpr>

 <exprType>simple</exprType>

 <pCutName>ControllerLoginPointCut

 </pCutName>

<pCutType>call</pCutType>

<memberModifier />

 <memberClassTypePattern>Controller

 </memberClassTypePattern>

 <memberNamePattern>loginVerify

 </memberNamePattern>

 <methodReturnType>void

 </methodReturnType>

 <fieldTypePattern />

 <parameterList>

<parameter>

<parameterType>String</parameterType>

<parameterId />

 </parameter>

 <parameter>

 <parameterType>String</parameterType>

<parameterId />

 </parameter>

 </parameterList>

 </PointCutExpr>

 </PointCut>
…

 Figure 4 XML Representation of RBAC Aspect

public aspect RBACAspect{
 pointcut ControllerLoginPointCut():
call(void
Controller.loginVerify(String,String));

pointcut CommandExecutionPointCut():
call(void Command.execute());

after() : ControllerLoginPointCut()
 {
 }

before() : CommandExecutionPointCut()
 {
 }
}

Figure 5 Example of Automatically Generated AspectJ

Code Stub for the RBAC Aspect

References

[1] ArgoUML homepage, available at:

http://argouml.tigris.org/

[2] AspectJ homepage, available at:

http://www.eclipse.org/aspectj/downloads.php

[3] Dai, L., “Formal design analysis framework: an

aspect-oriented architectural framework”, The

University of Texas at Dallas, Ph.D. Dissertation,

2005.

[4] Dai, L. and Cooper K., “Modeling and

Performance Analysis for Security Aspects”,

Journal of Science of Computer Programming,

Volume 61, 2006, pp. 58 – 71.

[5] Filman R., Elrad T., Clarke S., and Aksit M., Aspect-

Oriented Software Development. Addison Wesley

Professional, 2005.

[6] Ho, W., Jézéquel, J., Le Guennec, A. and Pennaneac'h.

F., “UMLAUT: An Extendible UML Transformation

Framework,” in Proceedings of the 14th IEEE Int'l

Conf. Automated Software Eng. (ASE '99), Oct. 1999.

[7] IBM Rational Software Architect, available at: www-

128.ibm.com/developerworks/rational/ products/rsa/

[8] Long, Q., Liu, Z., Li, X. and Jifeng, H., “Consistent

code generation from UML models”

in Proceedings of the Australian Software Engineering

Conference, Mar. 29-April 1, 2005., pp. 23-30.

[9] Mellor, S. and Balcer, M., Executable UML: A

Foundation for Model Driven Architecture. Addison-

Wesley, 2002.

[10] OMG Model Driven Architecture Guide V1.0.1,

June 12, 2003, available at www.omg.org

[11] Philippi, S., “Automatic code generation from

high level Petri Nets for model driven systems

engineering”, Journal of Systems and Software,

Oct. 2006, vol. 79, no. 10, pp. 1444-1455.

[12] Rauchwerger, Y., Kristoffersen, F., Lahav, Y.,

Cinderella SLIPPER: An SDL to C-Code

Generator, Lecture Notes in Computer Science,

Volume 3530, 2005, pp. 210-223.

[13] Rothamel, T., Liu, Y.A., Heitmeyer, C.L.,

Leonard, E.I. “Generating optimized code from

SCR specifications”, Proceedings of the

ACM/SIGPLAN/SIGBED Conference for

Languages, Compilers, and Tools for Embedded

Systems, 2006, pp. 135-144.

[14] Tóth, M. and Beličák, M., “Dynamic

Restructuralization of Software Systems using

Aspect-oreinted Programming”, Slovakian-

Hungarian Joint Symposium on Applied Machine

Intelligence and Informatics January 25-26, 2007,

pp. 457-468.

