

Challenges and Opportunities for Improving

Code-based Testing of Graphical User Interfaces

Marcel R. Karam* Sergiu M. Dascalu** Rami H. Hazimé*

* American University of Beirut, Lebanon

Department of Computer Science
11 Bliss St., P.O. Box 11-3246

E-mail: marcel.karam@aub.edu.lb
Phone: +961-1-350 000 ext. 4234

** University of Nevada, Reno, USA

Department of Computer Science and Engineering
1664 N. Virginia St., MS 171

Reno, NV, 89523, USA
E-mail: dascalus@cse.unr.edu

Phone: +1-775-784 4613
Fax: +1-775-784-1877

Corresponding Author: Sergiu M. Dascalu, University of Nevada, Reno,
Department of Computer Science and Engineering

1664 N. Virginia St., MS 171, Reno, NV, 89523, USA
 E-mail: dascalus@cse.unr.edu, Phone: +1-775-784 4613

Fax: +1-775-784-1877

Challenges and Opportunities for Improving

Code-based Testing of Graphical User Interfaces

Marcel R. Karam* Sergiu M. Dascalu** Rami H. Hazimé*

*American University of Beirut, Lebanon

**University of Nevada, Reno, USA

Abstract

The research presented in this paper introduces an execution model for graphical user
interfaces (GUIs) that we have developed and formalized as a sequence of actions and finite
output states. This model has allowed us to investigate the possibility of applying code-based
testing methodologies to testing graphical user interfaces. Our findings highlighted
challenges and revealed opportunities to adapt code-based testing methodology to verify the
correctness of such interfaces. In particular, the “All-OP-DUs” technique provides important
error detection capability and can be applied effectively to test GUIs. This paper also
introduces Xtester, the GUI testing tool we are currently building to empirically evaluate our
proposed testing criteria.

Keywords: Code-based testing, GUI testing, Regression testing, Data-flow testing

1. Introduction

Frameworks and design patterns are typically used in the creation process of complex
Graphical User Interfaces (GUIs). Although the supplied code of underlying frameworks is
error-free, the assembly process of different GUI gadgets can introduce errors and
subsequently the end-results can be incorrect. One way to verify the correctness of the end-
results is to thoroughly test every GUI event and ensure that its results satisfy the
specifications. A GUI event normally consists of an action sequence. There are many action
sequences that one could initiate when interacting with a particular GUI. Every possible
action sequence can potentially result in a different or similar expected GUI state. An
expected GUI state is a legal state that conforms to specification, given a certain action
sequence. An unexpected GUI state is an illegal state or GUI behavior that may render
execution of any further action in a given action sequence useless. Moreover, since action
sequences are interlinked and the effect of a given action in an action sequence may depend
upon the effects of previous actions, resulting states may not be always reached for
verification with the expected legal state. This is mainly due to a possible incorrect GUI
behavior as a result of one action, which may subsequently prevent further actions in the
action sequence from being executed. This implies that after each and every action, during the
testing process, the GUI state should be examined to determine its legality [1, 2]. This of
course requires that the execution process be halted and a thorough examination of the GUI
state be conducted. Once an illegal GUI state or an error is recognized, the execution of a test
case or an action sequence must be terminated, and correction steps must be taken.

Recent work in GUI testing has focused on building test oracles for GUIs [1] and generating
test cases [2, 3] while others focused on deriving and adapting suitable code-based coverage

criteria [4] or developing new techniques for regression testing [5], cost-effective model-
based testing [6] and specification-driven automatic testing [7]. Conventional code-based
coverage [8] may not be entirely applicable for GUI testing since what matters is not the
amount and type of framework code that is exercised, but rather the number of reachable legal
states of the GUI.

Researchers also worked on capture-and-replay tools [1, 2] to facilitate the GUI testing
process. These tools capture the user events and GUI screens during an interactive session.
The recorded sessions are later played back whenever it’s necessary to recreate the same GUI
states.

Other related issues include challenges associated with GUI regression testing and those
pertaining to inconsistencies in the input/output format across different versions of the
software. Possible solutions to answer these challenges are not discussed in this work;
however, in future work we intend to address these issues within the GUI testing framework
presented in this article.

In this paper we introduce a Finite State Machine (FSM)-based graph to represent legal state
transitions in a given GUI. Based on this graph model, we introduce code-based testing
methodologies that best suit the testing process of states in a GUI. Our GUI state graph model
is a variant of the model presented in [3]. We show that our criteria provide an important level
of error detection capability, can be used to detect errors effectively, and offer adequate
support for testing GUIs.

The rest of this paper is organized as follows. In Section 2 we discuss related work. In Section
3 we describe the set of valid objects, properties, and actions in a GUI, as well as the different
approaches by which these sets can be determined. In Section 4 we introduce our GUI state
model and subsequently introduce our state-based graph, which we then use to represent
control and data-flow information of the GUI state model. In this section we also propose our
control-flow and data-flow GUI testing methodologies. In Section 5 we discuss how state
verification can be achieved and explain how the testing verifications considered can be
applied to our testing techniques. In Section 6 we informally describe Xtester, the GUI testing
tool we are currently building to empirically evaluate our proposed testing criteria. Finally, in
Section 7 we wrap-up the paper with pointers to future work and several concluding remarks.

2. Related Work

Most of the work in GUI testing focused on building test oracles for GUIs [1, 2], generating
test cases [3,4], and automating the testing process [2, 4, 5, 7]. Other work [9] presented a
visual Test Development Environment (TDE) for testing GUIs. The authors indicate the need
to develop a facility for defining result comparison actions in test scenarios, which will give
the test designer the ability to augment test scripts with oracles to check the state of the GUI
as well as the system state and computation results. This work was later completed in [1, 2, 4]
by creating a testing oracle that would essentially generate an expected state of the GUI, pass
it to a verifier along with the output state and pass a verdict of whether the states are identical
or not.

Other recent approaches on GUI testing has been focused on developing new model-driven
testing techniques [6, 10], specification-based automatic testing of GUI-based Java programs
[7], generating test cases for GUI using interaction sequences [11], formal methods for design
and automatic checking of user interfaces [12], and introspective approaches for marking
GUIs [13].

The work presented in [1] and [3] was especially valuable to us since it provided an insight
into both state modeling and finite state automata of GUI specification, respectively.
Furthermore, the work in [1] was also very useful to us in adapting the design of Xtester, our
proposed GUI testing tool. Our prior work on control-flow testing methodologies for visual
dataflow languages [14, 15] also provided a useful basis for tackling the work described in
this paper.

3. GUIs State Values and Actions

At any given time t, a GUI can be thought of as having a particular state. A GUI state can be
represented through its active objects, their values, and the set actions that are allowed on
these objects. Next we discuss each category in some detail.

3.1 Objects and Properties

Consider the GUI presented in Fig. 1. This GUI consists of just one window w1 and the
current set of w1’s properties and their corresponding values: window(w1); background-
color(w1, Grey); and is-current(w1). Note that the state of w1, at any given time t, is
everything that is currently true for w1. Thus, a GUI state is related to the type of all available
GUI objects, as well as all properties related to each one of those objects. An object can have
multiple values. Objects’ properties may be fluents [1]. That is, an object’s properties are
relations that may evaluate to either true or false, depending on the GUI state at time t. Some
fluents may be undefined in some GUI states. For example, if the property of w2 is requested
at time t, where w2 is not an active object at t, the value of w2’s property would be then
undetermined.

There are different approaches to extract objects (windows, labels, buttons, menu-bar, etc.)
and their properties. One approach is to manually examine the GUI and collect all possible
objects, their properties, and actions that can be performed on them [2]. A second approach is
to derive the objects and properties directly from the specifications, which include all possible
combinations whether they are implicitly or explicitly present in the GUI [2]. A third
approach, presented in [4], goes one level above the specification of the GUI and examines
the toolkit used to develop the GUI itself. One important observation to note here is that the
third approach subsumes the second, and the second subsumes the first. The subsume
relationship here is expressed in the completeness of the set of properties an approach covers
or provides. For example, the third approach gives the complete set of properties of a GUI
whereas the others give a subset of these properties or what could be called the reduced set. In
our work we adopt the third approach.

3.2 Actions

Unlike properties, actions are defined to be functions, and have a one-to-one correspondence
among states. An action is normally deterministic and leads to one specific GUI state. More
formally, an action is defined as a function that takes a GUI from CurrentState to
IntermediateState resulting in the tuple <CurrentState, Action, IntermediateState>. An action
sequence starts at the Initialstate and ends with the FinalState. An action sequence example is
depicted in Fig. 2a.

Actions have implicit conditions as well. That is, some specific actions cannot be executed to
transform the GUI from one state to another unless certain conditions are met. For example,
the tuple <Statei, set-background-color (w1, yellow), Statei+1> is not a valid tuple unless the

condition is-open (w1) in Statei evaluates to true. Actions may be extracted based on the
specification of a GUI [1].

Fig. 1: The Edit sub-graph (see also [2] and [3]).

4. GUI State Modeling

Given a software system ! with a graphical user interface ω, developed in a framework F,
we model ω as the tuple <O, ! , A> where, O = {o1, o2... on} is the set of GUI Objects ! ω,
such that each oi ! O is a Window, Menu, Button, Text, or any other GUI element in ! F;
! = {P1, P2... Pn} where each Pi = {p1, p2... pn} !! is the set of properties of each oi ! O,
such that each pi ! PI is any property such as background color, font, is-open, or any other
property provided to oi ! F; and A = {a1, a2... an} is a set of actions that can be applied to pi
! PI of oi.

4.1 A State-based Graph for GUIs

To utilize the GUI state model in a way that allows us to apply code-based testing, we
construct for a given ω a state graph SG(GUI) (ω, Se), such that: each object oi !O ! ω is a
node in SG(GUI), with the sets of its properties and allowed legal actions attached to it; Se = {
se(1) , se(2), …, se(n)} is the set of edges ! SG(GUI), where an edge se(i) is constructed from an
object oi to another object oj iff there is a legal action ai ! A that can be applied to the
property pi ! Pi of oi, such that ai takes ω from CurrentState to IntermediateState resulting in
the tuple <CurrentState, ai, IntermediateState>.

The SG(GUI) is therefore a deterministic finite state automata (FSA). The latter has been
extensively used to model sequential and combinatorial systems, compiler construction, and
GUI specifications and testing [11, 16]. In our work, we construct SG(GUI) by adopting
techniques that are based on the use of formal specifications for construction GUIs [3, 16].

To informally illustrate the construction process of a SG(GUI), consider the GUI example that is
depicted in Fig. 1, and the sub-graph (Edit menu) of its corresponding SG(GUI). The GUI of
Fig. 1 depicts a simplified version of WordPad©. Nodes in the sub-graph represent every
object o ! O of the GUI sub-graph. Nodes in the sub-graph having subscripts are there to
facilitate the discussion and illustration. They are essentially aliases to the same object to
which the capital letter points to. Edges in the sub-graph represent all possible single action
sequences. For example, the edge (I1, H1) is constructed, based on the GUI specification [3,
16], and represents a highlight action, followed by cursor move action. Also an edge can be
constructed from a node to itself. For example, edge (B1, B1) represent two consecutive
clicking actions on the GUI object menu Edit.

4.2 Test Adequacy Criteria for GUIs

In this section we describe the process of adapting control-flow and data-flow code-based
testing techniques [8] to test GUIs.

4.3 Control-flow Testing Methodology

Definition 4.1.1: Given a GUI ω with its state graph SG(GUI), a test (action sequence) as exer-
cises a node n in SG(GUI) if as causes the traversal of a path p through SG(GUI) that includes n.

Analogous to statement coverage [8], a test suite, a set of action sequences As, is node-
adequate for ω iff for each dynamically executable node n in SG(GUI) there is at least one test
in As that exercises n. This defines the all-nodes criteria, and requires that all possible states in
a GUI be covered. This criterion, while weak, ensures that every state can be reached via any
edge. Moreover, once a state is reached, any illegal action can be detected since these nodes
“pack” with them all possible actions.

Definition 4.1.2: A test as exercises an edge (se(i), se(j)) in SG(GUI) if it causes the traversal of a
path in SG(GUI) that includes (se(i), se(j)). A test suite As is edge-adequate for ω iff for each edge
(se(i), se(j)) ! SG(GUI), there is at least one test in As that exercises (se(i), se(j)). This is analogous
to the branch coverage in imperative languages [8]. This criterion is slightly stronger that the
node adequacy criteria described in Definition 4.1.1. It ensures that every state can be reached
via every possible edge or action.

4.4 Dataflow Testing Methodology

At any time t, a GUI state is described in terms of the specific objects it currently contains,
and the current values of their properties. Properties of GUIs can assume different values
depending on the object it is referring to. Furthermore, a property is fluent; and can be
undefined at certain times. In other words, a property is a recipient for a certain value, at a
certain point in time t. Thus, the “life” of a property in a GUI, is analogous to the “life” of a
variable in imperative languages, where a variable is first undefined upon declaration, then set
during the program execution, and eventually used. With imperative languages, the procedure
or the scope defines the accessibility of a variable. With GUI however, a GUI object such as
Window, can be referred to as a scope, or a procedure where some properties are defined, or
set (used). This approach of modeling GUI behavior is the basis of our approach in adapting
code-based data-flow testing techniques for testing GUIs. More formally, and as a summary
of the above observations, we define the following elements:

– Objects: Scopes
– Properties: Variables
– Property-values: Values that a variable can take
– Actions: Setting the properties (values) of an object
– Creating/killing objects: Similar to the notion of scopes

Definition 4.1.3: an object property or variable denoted OP is said to be live, if there is a path
in SG(GUI) from the node in which it was first defined to where it is referenced, such that the
GUI object is not killed or no longer available in ω.

Definition 4.1.4: an OP is said to be defined or set, when the scope (object) is first invoked, or
when there exists an action in the action sequence that accesses and changes the value of an
OP; that is if the object is already invoked. Invoking an object in this context would include
actions such as clicking the Edit menu or opening a new window. In the first case, the scope is
the object “Edit menu”. In the second case, the scope is the object “Window”.

Definition 4.1.5: an OP is said to be used, when there exists an action in the action sequence
that implicitly inquires about the value of this property. Inquiring about the value of an OP is
often implicit in an action. For example given the action sequence: <Statei, set-background-
color (w1, yellow), Statei+1>, this action would implicitly inquire whether the property is-
open(w1) evaluates to true. Therefore, such inquiries are regarded as a use of the w1’s current
property. It is important to note that we make no distinction in our definition between a
computational use or c-use and predicate use or p-use [8]. This is mainly due to it’s
irrelevancy in a state graph, since values of properties are consulted for transitions.

Definition 4.1.6: All-OP-Uses criterion. A set P of execution paths ! SG(GUI) is said to satisfy
this criterion iff for any use of an OP, there exists at least one action in an action sequence
(input) that causes the traversal of at least one path which is feasible, and on which a
definition reaches this use.

An infeasible path here is a path that is based on faulty events. This is known as the Oracle
problem [1]. Infeasible paths can be determined by making sure that only appropriate edges
(paths) are traversed in the SG(GUI). Any sub-path that contains edges traversed incorrectly is
considered to be infeasible. An alternate solution for determining infeasible paths is provided
in [3].

This criterion requires that all uses of OP are exercised by testing, and that each and every one
of them falls on at least one path in which there is a definition of this variable.

This criterion catches errors where there is a use of a property of an object when the object is
not defined. To illustrate this issue consider a simple execution of a GUI :

Initialstate
Open-window(w1)
Set-background–color(w1, Blue)
Output state1;
Resize-window(w2, 20, 20)
Output state2;

Here errors like referencing a certain object’s properties when the object was not defined
could be caught. That is, a reference to w2 is considered to be a reference or a use without
having defined the object that owns it. On the other hand, consider the GUI example depicted

in Fig. 2 (a, b and c): Fig. 2a shows the initial GUI state and the action sequence to be
executed; Fig. 2b shows the correct output; and Fig. 2c shows the resulting GUI state after the
execution of the specified action. As depicted in Fig. 2c, the Help menu has disappeared. This
is an incorrect resulting behavior of the GUI under the given action sequence. The All-OP-
Uses criterion would fail to catch such an error. Thus, a more rigorous criterion is required.
We describe this next.

Definition 4.1.7: All-OP-Dus (definition and uses) criterion. A set P of execution paths !
SG(GUI) is said to satisfy this criterion iff for all definitions an OP, and all paths q through
which this definition reaches a use of the object property OP, there exist at least one path p in
P which is feasible and such that q is a sub path of p on which a definition reaches this use.
Consider again the erroneous example of Figure 2. With the All-OP-Dus, such an error is
caught since the path does not match any of the static OP Dus chains.

Fig. 2a: An initial GUI state and an action sequence to be executed

Fig. 2b: Correct GUI behavior.

Fig. 2c: Incorrect GUI behavior

5. State Verification

To determine whether a specific action has lead to a correct behavior, one should not only
examine the output of the GUI (screen shot [1]), but also the state of the GUI as well.
Consider again the GUI example presented in Figure 2. Examining only the output of the
action sequence could render the error undetected since the font of text “This is” in the GUI
was changed to the desired size; however, by examining the GUI state as well, such an error
would be detected. Thus, in our work we not only examine the output but also the GUI states
as well. To do so, we adapt three levels of testing/verification [1] which will be discussed
next.

5.1 Levels of Verifications

We define three levels of state verification: Modified Properties Verification; Relevant
Properties Verification; and Complete Properties Verification. Each level will be explained
next.

1 – Modified Properties Verification. At this level, as described in [1], verification via
comparison is made for only those properties that are expected to change. Although
considered efficient, this level fails to report errors that involve changing the values of
properties that were not expected to change. This was illustrated in the example depicted in
Fig. 2.

2 – Relevant Properties Verification. This level of testing was also described first by [1].
Here, all the properties in the reduced set are examined. This level is more extensive than the
modified-properties described above; however, it fails to detect errors that change the value of
properties not present in the GUI specification. For example, changing the background color
in the GUI of the WordPad© is not part of the specification; however doing so is a part of the
toolkit options in which the GUI was developed).

3 – Complete Properties Verification. This is the most extensive level of testing. Here, a
check is made to all the properties used by a toolkit or language to develop the GUI provides
[1]. It is important to note that testers can choose a hybrid approach by combining these
testing levels. For example, one could choose to apply the modified-properties verification
after every step and the reduced-properties verification after every nth step.

For every testing technique that we defined in Definitions 4.1.1 to Definitions 4.1.6, these
verification levels can be used. For example, in the All-Op-Dus, we can use any verification
level. Using the Complete Properties Verification level would provide a way to check every
state, and thus give a complete and exhaustive testing – however, it may not be very practical.
Using the Relevant Properties Verification level, errors such as the one described in Fig. 2
would not be detected.

6. The Xtester

This section provides a summary description of the Xtester, our proposed GUI testing tool,
depicted in Fig. 3. It is intended to provide the reader with a way to visualize the eventual
testing process and use of the testing criteria we have proposed in this work. The Xtester is
designed to be essentially composed of four basic parts: Glex, Monitor, VirtualX, and
Verifier. Two of Xtester’s main parts, the Monitor and the Verifier, will be adapted from [1]
and modified according to the current and future needs of our approach. More details on
Xtester’s main components are provided next.

Fig. 3: Overview of the Xtester testing tool

The Glex: is essentially a graphical analyzer that accepts as input a GUI model in the format
described in Section 4, a GUI screenshot, and a time t to mark the starting of the analysis of

the GUI. Based on the input, Glex then produces a GUIState. Glex has the following function
prototype: GUIState Glex(Model GUIModel, Time t).

The Monitor: as the name indicates, it monitors the user actions (mouse clicks, resizing,
moving objects, etc.), and transforms them into action sequences, as specified in Section 3.
The transformed action sequences are later outputted to VirtualX. The Monitor also produces
a Log file that contains the set of actions invoked by the user and the sate of the GUI ω after
the execution of these actions. The Monitor has the following function prototype:
ActionSequence Monitor(Run-time information, FILE * logfile, Time timeduration).

The Log file: this is generated by the Monitor, and will have the the following grammar:

Logfile  InitialGUIState; “\n” Block
Block  Action OutputGUIState “\n” Block

The Log file is essentially a file that keeps track of the action that users perform and the
resulting GUI state ω The Log file initially starts with the InitialGUIstate. At the end of the
monitoring session (the duration of the monitoring session could be set by the user as an
argument to the Monitor), the Log file will be later analyzed to extract all instances where
properties are either live, set, or killed.

The VirtualX: This part is essentially a virtual executer that generates the expected-state of a
GUI given an action (or a sequence of actions), and the current state of the GUI. The function
prototype of VirtualX can be seen as: GUIState VirtualX(Action a1, GUIState CurrentState).

The Verifier: This part will pass the verdict as to whether these two states are identical, based
on the level of testing specified. The function prototype of the Verifier can be seen as:
Boolean VirtualX(State S1, State S2, int Leveloftesting).

7. Conclusion and Future Work

In this paper we have identified and described challenges related to testing GUIs and outlined
strategies for tackling them. We have presented a GUI model that represents GUI actions in
terms of their preconditions and effects. Our model represents the execution of a GUI as a
sequence of actions and output states. This model was then incorporated into a state graph that
made it possible to apply code-based testing methodologies to test GUIs. The All-OP-Dus
criterion, in particular was useful, and can provide important error detection ability. We have
also introduced the planned design of Xtester, the GUI testing tool we are currently
developing to empirically evaluate the usefulness of our proposed testing criterion.

In addition to fully developing and thoroughly exercising Xtester as well as further evolving
the formalism presented in this paper, planned future work includes performing regression
testing on GUIs as well testing GUIs that change over time.

References

[1] A.M. Memon, M.E. Pollack and M.L. Soffa. Automated Test Oracles for GUIs, in Procs.

of the ACM SIGSOFT 8th Intl. Symp. on the Foundations of Software Engineering (FSE-
00), D.S. Rosenblum, editor, ACM Press, 2000, pp. 30-39.

[2] A.M. Memon, M.E. Pollack and M.L. Soffa. Using a Goal-driven Approach to Generate
Test Cases for GUIs, in Procs. of the 21st Intl. Conf. on Software Engineering (ICSE’99),
ACM Press, 1999, pp. 257-266.

[3] B. Fevzi. Finite-State Testing and Analysis of Graphical User Interfaces, in Procs. of the
12th Intl. Symp. on Software Reliability Engineering (ISSRE-2001), IEEE Computer Press,
2001, pp. 34-43.

[4] A.M. Memon, M.E. Pollack and M.L. Soffa. Coverage Criteria for GUI Testing, in Procs.
of the 8thEuropean Software Engineering Conf., held jointly with the 9thACM SIGSOFT
Intl. Symposium on Foundations of Software Engineering (ESEC/FSE-9), 2001, pp. 256-
267.

[5] A.M. Memon and M.L. Soffa. Regression Testing of GUI, in Procs. of the 9thEuropean
Software Engineering Conf., held jointly with the 11thACM SIGSOFT Intl. Symposium
on Foundations of Software Engineering (ESEC/FSE’03), 2003, pp. 118-127.

[6] Q. Xie. Developing Cost-Effective Model-Based Techniques for GUI Testing, in Procs.
of the 28th Intl. Conf. on Software Engineering (ICSE’06), ACM Press, 2006, pp. 997-
1000.

[7] Y. Sun and E.L. Jones, Specification-Driven Automatic Testing of GUI-Based Java
Programs, in Procs. of the 42nd ACM Southeast Conf. (ACMSE’04), 2004, pp. 140-145.

[8] P. Frankl and E. Weyuker. An Applicable Family of Data Flow Criteria, IEEE Trans. on
Software Engineering, 14 (10), 1988, pp. 1483-1498.

[9] T. Ostrand, A. Anodide, H. Foster and T. Goradia. A Visual Test Development
Environment for GUI Systems, in ACM SIGSOFT Software Engineering Notes, 23 (2),
Procs. of the ACM SIGSOFT Intl. Symp. on Software Testing and Analysis, 1998.

[10] M.Viera, J. Leduc, B. Hasling, R. Subramanyan and J. Kazmeier. Automation of GUI
Testing Using a Model-driven Approach, in Procs. of the 1st ACM Workshop on
Automation of Software Test (AST’06), 2006, pp. 9-14.

[11] L. White and H. Almezen, Generating Test Cases for GUI Responsibilities Using
Complete Interaction Sequences, in in Procs. of the 11th Intl. Symp. on Software
Reliability Engineering (ISSRE-2000), IEEE Computer Press, 20010, pp. 110-119.

[12] J. Berstel, S. Crespi Reghizzi, G. Russell and P. San Pietro. A Scalable Formal Method
for Design and Automatic Checking of User Interfaces, in Procs. of the 23st Intl. Conf. on
Software Engineering (ICSE’01), ACM Press, 2001.

[13] G.R. Gray and C.A. Higgins. An Introspective Approach to Marking Graphical User
Interfaces, in Procs. of the 11th Annual Conf. on Innovation Technology in Computer
Science Education (ITiCSE’06), 2006, pp. 43-47.

[14] M.K. Karam and T.J. Smedley. A Control-Flow Testing Methodology for Visual
Dataflow Languages, in the IEEE Symposium on Human Centric Computing, Italy, 2001.

[15] M.K. Karam, Using Visual Augmentations to Test Control Interactions in Visual
Dataflow Languages, in Procs. of the 5th IEEE Intl. Symp. on Signal Processing and
Information Technology (ISSPIT’05), 2005, pp. 639-645.

[16] D.L. Parnas. On the Use of Transition Diagrams in the Design of User Interface for an
Interactive Computer System, in Procs. of the 24th ACM National Conf., 1969, pp. 379-
385.

