

Software Tool for Naval Surface Warfare
Simulation and Training

Sergiu Dascalu* Sermsak Buntha* Daniela Saru** Narayan Debnath***

* University of Nevada, Reno, USA

Department of Computer Science and Engineering
1664 N. Virginia St., MS 171

Reno, NV, 89523, USA
E-mail: dascalus@cse.unr.edu

Phone: +1-775-784 4613
Fax: +1-775-784-1877

** University “Politehnica” of Bucharest, Romania
Department of Control and Industrial Informatics

Spl. Independentei 313
Bucharest, Romania

E-mail: saru@aii.pub.ro

*** Winona State University, MN, USA
Department of Computer Science
P.O. Box 5838, 103 Watkins Hall

Winona, MN 55987, USA
E-mail: ndebnath@winona.edu

Phone: +1-507-457-5261

Corresponding Author: Sergiu M. Dascalu, University of Nevada, Reno,
Department of Computer Science and Engineering

1664 N. Virginia St., MS 171, Reno, NV, 89523, USA
E-mail: dascalus@cse.unr.edu, Phone: +1-775-784 4613

Fax: +1-775-784-1877

Software Tool for Naval Surface Warfare
Simulation and Training

Sergiu Dascalu* Sermsak Buntha* Daniela Saru** Narayan Debnath***

* University of Nevada, Reno, USA

** University “Politehnica” of Bucharest, Romania
*** Winona State University, MN, USA

Abstract

Determining optimal operations involves performing complex tasks by navy commanders. In this
paper we present a software tool with four main functions that facilitate commanders’ tasks in
naval surface warfare. First, a human-computer interaction function presents battlefield
information using information-rich graphical symbols. Second, a command and control function
allows commanders to achieve centralized control of naval warfare operation in battlefield
situations. Third, an interception function is available to determine the optimum course for
intercepting a particular enemy target ship. Fourth, an escape route planner can be invoked to
automatically calculate routes that minimize detection by enemy platforms. The paper presents
background information on naval surface warfare, excerpts of the proposed software tool’s model,
and details of the tool’s user interface. A brief survey of related projects as well as several
pointers to future work are also included.

Keyworkds: naval surface warfare, command and control, simulation, training, UML

1. Introduction

Of paramount importance for naval commanders is to gain advantage over hostile forces. This
means the commanders have the major responsibility of clarifying the puzzle of information
collected from various sources and transforming it into a comprehensible image. Frequently, they
have to take optimal decisions based upon limited information available. Typically, the tasks that
support decision making by commanders require numerous staff as well as significant amounts of
time. Large paper navigation maps as well as acetate overlays and tactical boards for pencil
annotations have traditionally been used to display the summary image of battlefields.
Unfortunately, this traditional approach is often inconvenient and can lead to late results, which
are no longer useful for commanders.

The work presented in this paper intends to provide an effective software solution for command
and control in naval task force for surface warfare. Using a systematic software engineering
process [[13]] and the Unified Modeling Language (UML) [1] as major development devices, we
have designed and implemented a prototype of Command, Control and Intelligence (C2I) software
tool that runs on Linux. We have enhanced this system with Human-Computer Interaction (HCI)
features that facilitate software usage and allow rapid access to intelligence functions that
efficiently support commanders in their decision making process. This software tool is designed to
be cost-effective by using Commercial Off-the-Shelf (COTS) technology such as personal
computers. The intended users of the proposed software are fleet commanders, commanding
officers (ship captains), and high-level navy leaders in charge of commanders and commanding
officers. In its current stage, the prototype software presented in this paper can be used for training
and simulation purposes.

1.1 Naval Surface Warfare

Naval surface warfare is an area of naval warfare which involves surface fleet’s ships for
deploying navy companies, controlling sea voyages, and providing support power for on-shore
troops. Naval activities include the typical tasks of naval forces, primarily maintenance,
deployment, attack, and defense. Naval surface warfare encompasses four dimensions of warfare:
anti-air warfare, anti-surface warfare, anti-submarine warfare, and amphibious warfare.

Because they are very important activities in a surface warship, the operations are always
commanded and controlled by the Combat Information Center (CIC). The sequence procedure of
CIC starts from collecting as much data as possible, based on information available from various
kinds of sources. Such sources include surveillance and detection sensors, intelligence agents, and
so forth. Then, the data is processed (analyzed) and displayed to commanders. The commanders
evaluate the situation and then distribute information and dispatch commands. These kinds of
tasks require significant resources in terms of operational personnel and processing time. In
particular, for fast processing, a rather large number of staff is required. However, in more
complex situations, the staff who work to provide information for commanders have difficulty
keeping pace with battlefield dynamics using only conventional methods. Currently, advanced
computer technology can significantly improve traditional methods of surface warfare. The
present paper proposes a solution in this direction.

1.2 Command and Control, and Intelligence (C2I)

Command and Control (C2) are vital, complex tasks involved in military operations. Out of
necessity, C2 has long ago become a significant part of the Navy. C2 plays a critical role in
operating a warship. If we compare a warship to a human body, the C2 system is the equivalent of
the human brain. To gain advantage over enemies, efficient decision-making is essential and hence
sophisticated processes (tasks) are required. These tasks necessitate a considerable amount of staff
support. Therefore, to have an effective “brain” in the scope of naval power, Command Control
and Intelligence (C2I) is needed.

1.3 Paper Structure

The remaining of this paper provides background information on work related to C2I systems and
presents details of developing a C2I support software by using UML as modeling notation. Also,
the paper demonstrates the software prototype (tool) via snapshots of the tool “in action” and
descriptions of its user interface.
More specifically, Section 2 provides background information on several key aspects pertaining to
the proposed software solution. Section 3 describes the mechanisms used for enhancing the
prototype tool from an HCI point of view. Details of the algorithms that support intelligent
functions included in the proposed prototype are also provided in this section. Section 4 presents
excerpts of the UML-based software model of the prototype. Section 5 demonstrates the prototype
built via snapshots of its user-interface. Section 6 contains pointers to future work and a summary
of the paper’s contributions.

2. Background

In this section, background information is provided on: Naval Tactical Data System (NTDS),
Genetic Algorithms (GAs), and the Unified Modeling Language (UML). Work related to our
approach is also briefly surveyed.

2.1 Naval Tactical Data System

Naval Tactical Data System (NTDS) is a shipboard device used in battlefield and training
situations for displaying tactical data [[15]]. With NTDS, combat data obtained from various
kinds of sources is collected. Then, the data is processed by discarding redundant data, correcting
erroneous information, and completing deficient data. The data thus processed is transformed into
a battlefield picture. This picture is important because it allows the commander to evaluate the
situation and decide on tactical actions. Table I presents several symbols used in NTDS.

Table I: Symbols used in NTDS
 Identify
Type Unknown Friendly Hostile Neutral Our ship

Aircraft

Surface ship

Submarine

2.2 Genetic Algorithms

Genetic Algorithms (GAs) constitute a branch of Artificial Intelligence (AI). GAs are search
algorithms based on biological mechanisms of natural evolution and selection. They work with a
set of input binaries (chromosomes) to maximize the value (fitness value) of an unknown function
(fitness function). With three basic operations—reproduction, crossover, and mutation—genetic
algorithms manipulate a set of chromosomes (population) with the goal of generating an
individual chromosome that is characterized by higher fitness [[8]].Figure 1 shows the general
steps of regular GAs. At the initial point, the parents are randomly created. After the parents’
chromosomes pass the process of reproduction, crossover, and mutation, the children are
produced. After that, the children are evaluated and selected by using the fitness function. In this
operation, the survival or death of each child is decided. Those who survive will be the parents of
the next generation. This loop continues until a satisfactory value of a child’s fitness is obtained or
the number of generations reaches the pre-set limitation of the algorithm.

Reproduction

Crossover

Mutation

Parents

Children

Evaluation

High value
children

Low value
children

An operation

Chromosomes

Basic GA diagram

Selection

Satisfied output

Unsatisfied output

The number of
generations reaches the
pre-set limitation

Figure 1: The basic procedure of GAs

1 0 1 1 0 1 0 0

0 1 1 0 1 1 0 1

1 0 1 0 1 1 0 1

0 1 1 1 0 1 0 0

0 1 1 1 0 1 0 0

0 1 0 1 0 1 0 0

(a) Crossover operation (b) Mutation operation

Figure 2: Crossover and mutation operations

The reproduction operator selects some good individual chromosomes from the population to be
the parent chromosomes for the next generation. The crossover operator crosses over among
selected populations to create new offspring chromosomes. Finally, the mutation operator allows
traveling around some areas that have not been explored. Figure 2 illustrates (a) the crossover, and
(b) the mutation operators.

There are many applications that are based on GAs. For example, uses of GAs for military
purposes are described in [11].

2.3 The Unified Modeling Language
Originally introduced in 1997 by Grady Booch, James Rumbaugh, and Ivar Jacobson, the Unified
Modeling Language (UML) has been rapidly and widely accepted by the software engineering
community as “the standard graphical language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive systems” [[1]]. In our work, we have used
diagrams in the UML notation to design the proposed software tool for naval surface warfare. The
nine most important diagrams of UML are [1]: class diagrams, object diagrams, use case
diagrams, sequence diagrams, collaboration diagrams, statechart diagrams, activity diagrams,
component diagrams, and deployment diagrams. Samples of these are shown in Section 4 of the
paper.

2.4 Related Work

For more than a decade, there have been many researchers in the area we also have endeavored to
explore. The vast majority of them have been employed by the Department of Defense (DoD), and
have worked on various projects [2, 3, 4, 6, 7, 9, 10]. The following describes several examples of
related work developed by the DoD or with DoD support.

In 1983, a prototype for naval Battle Group Simulation (BGS) was developed by Jerry Golub and
Willis A. Soper [9]. A simulation prototype was created for evaluating software design, user
interfaces, and other features and details of various models. The BGS prototype was important in
that it offered a development baseline which can be characterized as a single radar and missile
system.

In 1995, Curtis L Blais presented the Marine Air Ground Task Force (MAGTF) Tactical Warfare
Simulation (MTWS) [2, 3]. The purpose of this simulation system was to support the training and
the preparation of the U.S. Marine Corps (USMC) commanders and their staff. Blais proposed the
main mechanisms of the system and indicated ways for improving the simulation [2]. In later
work, published in 1998, Blais presented a prototype system for advanced warfare gaming

capabilities, aimed to be used in the 21st century warfighter [3]. This prototype system, entitled
the Joint Simulation System (JSIMS), was designed for the training of commanders and other
DoD staffs. The main goals of the training with this system were to enhance commander and staff
interaction with the system and to support the development of intelligent military tactics.
Remarkably, the system enabled a smaller number of exercise control personnel to prepare,
organize, conduct, and assess the results of more complex exercises. The system was intended to
support the procedures of the Command Control Communications Computers and Intelligence
(C4I) system, a system that is used in practice by commanding staff in almost all US military units.

In 2001, George F. Stone and Georgy A. McIntyre published their work on the Joint Warfare
System (JWARS) [14], a system that proposes a campaign-level model of military operations.
This system has been developed by the US Office of the Secretary of Defense (OSD) with the
purpose that the results of this project will be used by the OSD, the Joint Staff, and the war
fighting Commands. The JWARS is intended to provide users with a complex representation of
joint warfare, including elements of operational planning and execution. There are three functions
included in the system, dealing respectively with: C4ISR (Command, Control, Communications,
Computers, Intelligence, Surveillance, and Reconnaissance) systems and processes, the impact of
logistics in combat areas, and operational-level aspects of maneuver warfare. However, [14]
emphasizes only top-level concepts and highlights some of the significant problems and
limitations of existing solutions for these types of functions. The JWARS consists of three
software domains, namely problem, simulation, and platform. All three domains are integrated
into a single executable package. Firstly, in the JWARS problem domain, the Battle Space Entities
(BSEs) are assigned as battalion-level for maneuver units, air mission elements for air operations,
ships for maritime assets, and individual platforms for critical ISR systems. One of the most
significant advantages of JWARS is to allow the simulation of forces’ activities before the battle
starts. Secondly, the simulation domain provides a comprehensive range of synthetic theater
environment details such as terrain roughness, weather, movement of infrastructure, wind
conditions, and so forth. Lastly, the platform domain provides details on the JWARS hardware as
well on the system’s human-computer interface.

Because of insufficient technologies and high cost of existing military computers, it becomes
practical and efficient to replace them with COTS. Indeed, there have been several research
attempts to employ COTS computers instead of military-type computers in command, control and
intelligence systems [7, 12].

In 2002, Sushil Louis, a faculty member of the University of Nevada, Reno, in collaboration with
John McDonnell and Nick Gizzi from Space and Naval Warfare (SPAWAR) Systems Center
introduced a dynamic strike force asset allocation using genetic search and case-based reasoning
[11]. The system commands and controls air strike fighters to go through enemy areas so that they
can be close enough to launch missiles at hostile targets. The system supports destruction of
enemy air defenses in real time. The authors applied an advanced genetic search algorithm, called
case injection to bias genetic algorithm, to provide a plan. The basic idea of this genetic search
algorithm is that the system initially searches for pre-selected points instead of random points.

3. Proposed Software Tool

The main functions of the system can be divided into four categories: human-computer interaction
display, command and control center, interception, and escape route planner.

3.1 Human-Computer Interaction Display

Of paramount importance for efficient command and control is to provide valuable information to
commanders who have been invested with central authorities. In warfare conditions, it is necessary
that commanders understand the details of their own forces as well as of the enemy forces.
Furthermore, the information provided to them must be continuously, constantly, and rapidly
updated.

The ideal supporting software tool shall depict the curent events of a battlefield on a computer
screen or a projector. In our solution, we have adopted NTDS symbols (which most US Navy
operational personnel are familiar with) as symbols to be displayed on the screen. However, with
modern computer technology available, we have extended the traditional set of NTDS symbols
with several new symbols that allow for real time display and manipulation. Furthermore, in order
to keep the Combat Information Center (CIC) room dark we use a black background screen
instead of a white one. As such, the relevant information and alarm signals that always display
with colorful symbols such as red, white, blue, and green can more easily be noticed. To make the
screen look uncomplicated, the tool usually displays only the platforms’ symbols as well as their
tracks and speed vectors to show current positions, previous positions, and movements. However,
the minute representation details can be accessed with ease via mouse clicks. In addition, zoom-in
and zoom-out options are available to adjust the level of details shown on screen.

3.2 Command & Control Center

One major goal of the software tool we developed has been to centralize combat command and
control. The tool allows commanders to centralize control tactical operations and thus it represents
a command & control center. The commanders can maneuver their own platform and they can
control sensors, weapons, and operation activities by providing fire control to engage weapons or
to operate active sensors. For example, without the fire signal from the system controlled by the
commander, the gunnery officer cannot operate his or her weapons. In addition, the commander
monitoring overall combat conditions can arrange movement of platforms in his or her control to
get advantage over the enemy via the system’s communications.

3.3 Interception

In this section, we illustrate how to determine the optimum course to interception. Interception is
an regular task of both the Officer Of Deck (OOD) and the Tactical Action Officer (TAO) [15].
However, it requires a certain computational time and is sometimes insufficiently accurate. Also,
whenever the course and speed of a target change, recalculation is required. With our system, this
calculation can be done in real time. For the interception algorithm, we use simple vector and
trigonometric operations. Figure 3 illustrates the drawing procedures of vector combination for
interception.

In Figure 3 the following are known:

• |T| = scalar value of target vector T
• |O| = scalar value of real interception vector O
• α, the direction of relative interception vector R
• β, the direction of target vector T

T

R

O

β

θ α

R = relative interception vector
T = target vector
O = real interception vector

|R| = scalar value of vector R
|T| = scalar value of vector T
|O| = scalar value of vector O

α = direction of relative interception vector R
β = direction of target vector T
θ = direction of real interception vector O

Figure 3: Geometrical representation of interception

The objective is to find θ, the direction of the real interception vector O. However, we do not
know |R|, the scalar value of relative interception vector R. To determine θ, we need to determine
|R| first.
From the combination of vectors shown in Figure 3:

0 = R + T (1)
Separate vectors on the vertical and horizontal directions are:
 |O|sin θ = |R|sin α + |T|sin β
 |O|cos θ = |R |cos α + |T |cos β (2)
This yields the scalar equation:
 |O|2 = |R|2 + 2|R||T|cos(α - β) + |T|2 (3)
To determine |R|, we rewrite the equation in the form

|R|2 + {2|T|cos(α - β)} |R| + {|T|2 - |O|2} = 0 (4)

By using the quadratic formula, we determine the positive roots. |R| is the smaller value of two
positive root values, or the positive one if the other is negative or an imaginary number. If both
root values are negative or imaginary numbers, it indicates that interception is impossible.
To determine θ, we substitute |R| in equations (2) and obtain:

 θ = tan-1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
|Τ| +
|Τ| +

βα
βα
 coscos|R|
 sinsin|R|

 (5)

From the above, the angle of interception θ is determined.

3.4 Escape Route Planner

Escape, meaning to move our platform through all hostile forces without detection by enemy
sensors, requires complex plans and calculations. Our intelligent system shall provide an optimum
trajectory for escape function. As in the interception function, whenever the course and speed of
any hostile platforms change, a new plan and recalculation are needed. With current position,
course, and speed of all hostile targets exposed to our sensors, the intelligent system must
determine the shortest and safest escape route and recalculate it in real time when any hostile
target changes its course, speed, or both. Moreover, the escape route is created with the condition
that our platform has to maintain its current speed. Therefore, whenever our platform changes its
speed, the intelligent function must reroute the escape automatically. In Figure 4 an example of
escape trajectory is shown.

Our platform

Hostile platform

Figure 4: Example of escape trajectory

Similar to the method of a robot’s movement to its target destination, the problem here is to avoid
obstacles. The robot’s route is the shortest path avoiding any obstacles. In the case of escape route
planning, there is an analogy between the obstacle and the detection area of hostile sensors.
Instead of obstacles, our platform needs the shortest route to the destination without moving into
any sensor surveillance area, which is assumed circular. However, if it is unavoidable to go
through the hazard area, our platform will minimize its stay in that area to maximize its escape
chances. Unfortunately, the surveillance areas of the enemy sensors are not static. The movement
of hostile platforms with sensors means that enemy surveillance areas move as well. Obviously,
this problem is more complicated than the static obstacle avoidance problem. To solve this
problem, complex mathematics, a good model and a good optimum search method are needed.
Fortunately, we found a search genetic algorithm that does not involve complex mathematics and
solves the problem reasonably well.

We discussed the genetic search methods in Section 2. At this point, we explain how we apply a
GA to solve the problem of escape planning. We show the representation and evaluation aspects of
this particular problem. Due to search optimizations in GA, we need to represent the search area of
this problem using binary numbers. Because our platform is always a surface ship, the problem is
within on 2D space. Therefore, the trajectory of the escape route can be drawn from the initial
point to the destination. With our design, the trajectory consists of 11 partial straight lines. Each
straight line extends from a minimum of zero to a maximum of the distance between the initial
point and the destination. With this design, the trajectory is constrained with a maximum of 11
turns, which we assume are enough to reach the destination. The maximum number of segments,
11, has resulted from considerations related to the computational power of the computer we use to
develop our prototype software. The number can be larger if a faster processor is used or parallel
processing is performed. The representation of the escape route is shown in Figure 5.

As illustrated in Figure 5, we dedicate the entry combination of 11 segments to the escape route.
We need to indicate 10 information lines, each with course C and distance D shown in the
rectangles and associated with arrows that point to the beginning of each line (for the first 10
segments). For the last segment, we do not indicate this information because the end point of the

10th segment is connected directly with the destination. Therefore, with these characteristics, we
determine the course and distance of the first 10 segments. To transform these linear values into
binary numbers, we represent them with 8 bits for each course and 8 bits for each distance, as
shown in Figure 6.

Destination

Initial point

Line 1
C-100
D-3.4

Line 2
C-100
D-2.7

Line 3
C-113
D-2.4

We will not search for the last line. The end point of the
10th line is connected directly with the destination.

Line 4
C-113
D-4.1

Line 5
C-105
D-2.4

Line 6
C-105
D-2.7

Line 7
C-213
D-2.0

Line 10
C-100
D-3.6

Line 9
C-100
D-3.7

Line 8
C-113
D-3.3

Note:
C is course or direction of lines in degree.
D is distance or size of line in nautical mile.

Figure 5: The representation of the escape route

Representation perspectives

Binary perspectives

8 bits for distance of line 4 8 bits for course of line 4

 . . . C1 D1 C2 D2 C3 D3 C4 D4 D10 C9 D9 D10

1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0

111101002 = 244 010001002 = 68

Representation of the 10 segments; where C is course and D is distance

Figure 6: Transformation of course and distance to binary

In Figure 6, the course and distance of segment 4 are transformed into two 8-bit representations.
The binary representation of C4, in this case 111101002, corresponds to 244 in decimal numbers.
The decimal value of C4 is determined by using the following formula:

256
360

,, ×= icic βα (6)

where αc,i is the decimal course value of segment i [0, 360] and βc,i is the corresponding value on 8

bits (range 0..256). Therefore, in Figure 6, the exact value of C4 is 343
256
360244 ≈× . Next, to

determine the exact value of D4, the following equation is used:

256,,
λβα ×= idid

 (7)

where αd,i is distance value of segment i, in decimal, βd,i is the corresponding value on 8 bits (range
0..255), and λ is the direct distance between the starting and the destination points of the escape
trajectory.

From the above equation, it is obvious that the maximum distance of each straight line is the direct
distance between the start and end points of the escape trajectory. In Figure 6, by assuming λ is
32 nautical miles, then the exact value of D4 is 5.8

256
3268 =× nautical miles.

Next, we shift the description to the evaluation aspect of the solution. As previously mentioned,
this evaluation is key to the process of survival in GA [8]. We determine how good the escape
route reproduced is by using a fitness function. There are two variables involved: the total distance
of the escape route and the total amount of time during which our platform is exposed to hostile
sensors. The objective is to minimize the value of both these variables. However, sometimes the
two variables are conflicting, i.e. the shortest route may lead to longer exposure time to enemy
sensors. We need to weigh which one is of higher importance in a particular situation. The
following is the fitness function of the algorithm used:

 ()[] TxF
T

t

N

i
it νμ −−−Κ= ∑ ∑

= =0 1

3

,30 (8)

 where F = fitness,
 K = a large constant value, for example 3,000,000
 µ = gain of exposed value,
 ν = gain of travel time from starting to ending points,
 xt,i = distance between our platform and hostile platform i at time t;
 (if xt,i < 30; otherwise xt,i = 30),
 T = time our platform travels from the starting to the destination points,
 N = number of hostile platforms.

The genetic search maximizes fitness F but our objective is to minimize the value of the two
variables. Therefore, the fitness involves subtraction of the two parameters from a large constant
value (K). Usually, the longest effective detection range of surface radar is around 30 nautical
miles, so we assume that our platform will be safe when the range is more than 30 nautical miles.
Otherwise, the exposed value will be to the exponential of 3 for the distance that is less than 30
nautical mines. In addition, a user can assign gains of both variables; µ for exposed value and ν for
time of traveling. By default, we assign µ a significant value in order to eliminate the exposure to
enemy sensors.

4. Software Model

The prototype software presented in this paper has been developed using a systematic software
engineering approach [1, 13] and UML as modeling notation. In this section several excerpts of
the main elements of the software’s specification and design are presented. Specifically, examples
of the following are provided: functional and non-functional requirements, use case diagram, and
sequence diagrams. For more details, the reader is referred to [5].

4.1 Requirements specification

The proposed software’s requirements can be classified as functional and non-functional. The
former describe the intended behavior of the system, while the latter specify constraints on its
implementation. In the following, some of the tool’s functional requirements are presented.

Functional requirements

R1. The system shall display on a black screen the current position of our ship as well as the
positions of all detected platforms, represented using tactical symbols and colors that
conform to NTDS.

R2. The system shall continuously calculate the next position of our ship as well as the next
positions of all detected platforms.

R3. The system shall display the time elapsed from the start of the program’s execution.

R4. The system shall allow the user to adjust the time speed for faster than real time
representation.

R5. The system shall provide a function to manually create a target.

R6. The system shall provide a function to manually modify a target.

R7. The system shall provide a function to manually remove a target.

R8. The system shall allow the user to reinitialize the starting position of our ship.

Display position
of targets

Control time
scale

Modify
target

Control time
scale

Change symbol
of target

Display/hide
vectors and trail

Show detail
information

Zoom in/out

Move screen
center

Commander

Interception
a target

Plan an escape
route

<<system>>
Friendly systems

Intelligence system Control and display system

<<exclude>>

<<include>>

<<include>>

Figure 7: Use case diagram of the proposed software tool

4.2 Use case diagram

Figure 7 presents the use case diagram of the proposed software tool. This diagram shows the
relationships among actors involved and the use cases that describe the system’s functionality.
There are two actors and 11 use cases in the software model that we have created.

First, the Commander actor represents the broad kind of tactical commanders that could use the
system, including fleet commanders and commanding officers. This actor plays the most
prominent role in the system. Most of the use cases are created to describe the commander’s
interaction with the system. The commander is in charge of monitoring, understanding all battle
field circumstances, and providing command to his task force.

Second, the Clock actor is included in the system because it needs to provide accurate time for
real-time calculations and displaying of platform positions.

4.3 Sequence Diagrams

Figure 8 shows an example of sequence diagram, namely the sequence diagram for calculating the
positions of the targets. The targets’ information stored in the ListOfTargets can be manually
modified by calling UpdateEvent. The automatically updating procedure starts when the
SystemClock sends a TimeToUpdate signal. The Calculate component fetches information
of the first target from the ListOfTargets and gets current time from System Clock. The
Calculate component determines the new position of the first target and writes over to the
ListOfTargets. The procedure is repeated until the last target in the ListOfTargets is
reached. Then all targets in the ListOfTargets are displayed on screen. Finally, this process
sleeps and waits for the next signals from SystemClock.

Time to Update

System Clock List of Targets Update Event Calculate Display

Modify targets

Current time

Current time

Current time

First target position

Updated position

Next target position

Updated position

Last target position

Updated position

Figure 8: Sequence diagram for calculating the positions of the targets

5 Prototype Details

In this section we present the prototype of the software tool we created on the Linux distribution
of Fedora Core 2, running on a COTS computer (Dell 8052). For illustration purposes, we set the
screen resolution of a 17-inch monitor to 1024x768. This allowed for both satisfactory speed
performance and clarity of information display. The prototype is shown via several snapshots
taken during its operation. More details can be found in [5].

The main screen of the software tool is shown in Figure 9. From the beginning, it is useful to note
that in this system we can run multiple processes that display various areas of the battlefield, each
area in its associated window. We chose a windows-based solution because windows can be
manipulated using a variety of operations: moving, resizing, hiding, and displaying on full or
partial screen. Throughout its entire operation, the prototype retains the same center of the screen,
regardless of window resizing. In addition, resizing does not affect the size of the text and the
symbols shown on the screen.

This tool displays NTDS symbols on a black background. Although we have utilized NTDS
symbols, we also have modified some presentation details. For example, instead of using a white
background, we have a black one to keep the room dark and thus provide better visualization
contrast. More specifically, using colored symbols on black background makes easier the noticing
of alarms and changes. Consequently, the symbols for unknown platforms and for our own
platform have been changed from black to white. The trails of targets are displayed with
combinations of continuous lines. The colors of the lines correspond to their identification status
in real time (for example, one trail can change from unknown to hostile). The speed vector of
each symbol is displayed with continuous dots. Its size and direction correspond to speed and
course, respectively. Its color is the color of the symbol it is associated with.

Also, we deliberately have placed detailed information at the corners of the screen. On the top-left
corner of the screen the points of the compass and a scale are shown. The top of the screen is
always North. The scale information consists of a text and a bar. The text shows the real world
distance that is scaled to display on the screen as the length of the bar. For example, the text “5
NM” indicates that the length of the yellow bar behind the text stands for 5 nautical miles. The
length of the bar is equal to the length of the background grid square.

On the top-right corner of the screen, the tactical time (the time elapsed from the beginning of the
C4I prototype’s operation session) and the time scale (simulated operation speed) are indicated.
Note that the time scale has been included for simulation purposes only. By default, the time scale
is 1:1, which corresponds to the real-time. From this value, it can be increased up to 1:50, which
means that simulation speed is 50 times faster than the speed of real-time events.

On the bottom-left corner of the screen, detailed pieces of information about our own platform
and about the selected target are located. The first information group shows the current
course of our own platform in the navigation system, its speed in knots, and its position in
nautical miles. The second information group is associated with the selected target, a target
that is marked by a small yellow square placed inside the target’s symbol. In this group, besides
the course, the speed, and the position of the selected target, the bearing and the range from our
platform to the selected target are shown as well.

To meet its command and control purpose, the proposed the software tool provides functions for
maneuvering our own platform. After the Maneuver our ship option is selected, a dialog
window (panel) is shown on the screen. The dialog panel consists of four editable entries
(parameters): x-position, y-position, course, and speed. The current values of these four
parameters are provided. To maneuver own platform, the user can enter only the value(s) of those

parameter(s) that he or she would like to update. Figure 10 shows the structure of the dialog for
maneuvering our own platform.

As shown in Figure 11, on the left-hand side of the screen, below the scale bar, the relevant data
involving the target to be intercepted and the user’s own platform are displayed. When the
distance between the user’s own platform and the target is less than three nautical miles, the
remaining distance and remaining time to interception is displayed using red text. To cancel the
interception function, the user needs to click on the Disable submenu of the Interception
option.

Figure 9: The main screen of the prototype software tool

Figure 10: The dialog panel of the ‘maneuver our ship’ option

Figure 11: Example of target interception

Figure 12: Example of escape route planning

Also, when the user activates the Escape route planner function, the interception function is
automatically disabled. Figure 12 shows the escape route plan drawn on the screen as a sequence
of yellow line segments and detailed by descriptive text presented on the left-hand side of the
window, (just below the scale bar). In both figures, the user’s own platform and a hostile ship are
represented. The user’s own ship’s objective is to reach a chosen destination with minimum
chance of detection by the enemies. The user starts the escape procedure by clicking on the
Escape route’s Operate function and then clicking on the screen to specify the desired
destination. Consequently, the software tool computes and provides a plan that brings the user’s
own ship to the destination. The user’s own ship will follow this plan automatically. The escape

route is displayed on the screen in green-yellow color. For instance, we can notice that in the
particular example shown in Figure 12 the route goes down first in order to move away from
hostile platforms.

Whenever any hostile target changes its course, speed, or both, the software tool changes the
escape plan accordingly by providing a new route. To stop following the plan provided by the
software tool, the user has to click on the Disable function of the Escape route option.

6 Future Work and Conclusions

6.1 Future Work

The proposed software tool has been developed in terms of comprehensive software specification,
detailed architectural and GUI design, and operational implementation in C. While the prototype
serves well as a proof of concept and can be used in practice for naval surface warfare training and
simulation purposes, the work presented in this paper can be further expanded in several
directions.

First, the software needs to be completed and enhanced with more functionality and improved
graphical user-interface.

Second, the algorithms underlying the support for command and control could be further
elaborated and optimized. For example, better genetic search algorithms need to be investigated,
evaluated, and applied.

Third, the software solution presented involves the use of a single computer. A networked version
of the program could increase significantly the efficiency of training and simulation via real-time,
multi-user involvement of trainers and trainees.

Fourth, an ambitious goal for this project would be to evolve in a multi-platform version of naval
surface warfare training and simulation (multiple task force system). At this time, only one user’s
own platform can be controlled by the software, but larger and more realistic situations should be
modeled by involving a fleet of user’s own platforms.

Finally, the ideal accomplishment of this project would be to be used in real-world navy
applications, not as a training or simulation tool, but as an effective, real-time solution for
supporting actual combat operations. For this, in addition to the enhancements suggested above,
interfacing with navy detection sensors and maneuvering equipment is necessary.

6.2 Concluding Remarks

The main goal of the work presented in this paper has been to develop a prototype software tool
that provides support for centralized command and control in naval surface warfare. To build this
prototype, we have defined the modes of operation for the tool and have designed algorithms
needed for its implementation. These algorithms include intercepting an enemy target platform
and calculating an escape route. A detailed GUI interface with easy-to-use options facilitates the
interaction with the computer by navy commanders and tactical action officers. Currently, the
system is operational for training and simulation in naval surface warfare. Also, it provides a basis
for more complex research and development.

The software was designed and developed using a systematic engineering approach, supported by
the modern modeling notation UML. Four main functions have been incorporated in the prototype

of the software tool. First, an HCI function depicts the battlefield information using NTDS
graphical symbols and enhances the use of computers by commanders via detailed graphical
interfaces. Second, a command and control function provides support to commanders for
centralized control of the battlefield situation. Third, an interception function calculates an
optimum course for intercepting a particular enemy target. Fourth, an escape route planner
provides a route characterized by minimum chance of detection by hostile platforms.

Furthermore, we have used a personal computer as hardware equipment on which our software
tool executes. This is important, because with this approach both the development costs and the
expenses associated with the tool’s use are substantially reduced.

References

[1] ARLOW, J. and NEUSTADT, I., UML and the Unified Process: Practical Object-
Oriented Analysis and Design, ADDISON-WESLEY, 2002.

[2] BLAIS, C.L., Scalability Issues in Enhancement of the MAGTF Tactical Warfare
Simulation, Procs. of the 1995 Winter Simulation Conference, Dec. 1995, pp. 1280-1287.

[3] BLAIS, C.L., Prototyping Advanced Warfare Gaming Capabilities for the 21st Century
Warfighter, Procs. of the 1998 Winter Simulation Conference, Dec. 1998, vol.1, pp. 841-
848.

[4] BOWDEN, F.D.J., GABRISCH, C, and DAVIES, M., C3I Systems Analysis Using the
Distributed Interactive C3I Effectiveness (DICE) Simulation, Proceedings of the IEEE
International Conference on Computational Cybernetics and Simulation, Oct 1997, vol.5,
pp. 4326 – 4331.

[5] BUNTHA, S., Command Control Communications Computers and Intelligence Software
for Naval Surface Warfare, Master thesis, University of Nevada, Reno, December 2004.

[6] CERUTI, M.G., Challenges in Data Management for the United States Department of
Defense (DoD) Command, Control, Communications, Computers, and Intelligence (C I)
Systems

4

, Procs. of the Computer Software and Applications Conference (COMPSAC
'98), Aug. 1998, pp. 622 – 629.

[7] GOLD, H., and SUGGS, C., Implementing Commercial off-the-shelf (COTS)
Technologies into a Navy Tactical Display Communication System, Proceedings of the
IEEE Military Communications Conference, Oct. 1998, vol.3, pp. 929-933.

[8] GOLDBERG, D. E., Genetic Algorithms in Search, Optimization, and Machine
Learning, ADDISON-WESLEY, 1989.

[9] GOLUB, J. and SOPER, W.A., Prototyping for Naval Battle Group Simulation
Development, Proceedings of the 16th Annual Symposium on Simulation, March 1983.

[10] JEDRYSIK, P.A., MOORE, J.A., STEDMAN, T.A., and SWEED, R.H., Interactive
Display for Command and Control, Proceedings of the IEEE 2000 Aerospace
Conference, Mar 2000, vol.2, pp. 341 – 351.

[11] LOUIS, S. J., MCDONNELL J., and GIZZI N., Dynamic Strike Force Asset Allocation
Using Genetic Search and Case-based Reasoning, Proceedings of the Sixth Conference
on Systemics, Cybernetics, and Informatics, Orlando, Jul 2002.

[12] MCKENNA, L.H. and LITTLE, S., Developing Tactics Using Low Cost, Accessible
Simulations, Proceedings of the 2000 Winter Simulation Conference, Dec 2000, Vol.1,
pp. 991-1000.

[13] SOMMERVILLE, I., Software Engineering, ADDISON-WESLEY, 2004.
[14] STONE, G.F. and MCINTYRE, G.A., The Joint Warfare System (JWARS): A Modeling

and Analysis Tool for the Defense Department, Proceedings of the 2001 Winter
Simulation Conference, Dec. 2001, vol.1, pp. 691-696.

[15] SURFACE WARFARE OFFICERS SCHOOL COMMAND, Useful Information,
accessed March 2006 at: http://www.swos.navy.mil

