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Abstract 

 
Determining optimal operations involves performing complex tasks by navy commanders. In this 
paper we present a software tool with four main functions that facilitate commanders’ tasks in 
naval surface warfare. First, a human-computer interaction function presents battlefield 
information using information-rich graphical symbols. Second, a command and control function 
allows commanders to achieve centralized control of naval warfare operation in battlefield 
situations. Third, an interception function is available to determine the optimum course for 
intercepting a particular enemy target ship. Fourth, an escape route planner can be invoked to 
automatically calculate routes that minimize detection by enemy platforms. The paper presents 
background information on naval surface warfare, excerpts of the proposed software tool’s model, 
and details of the tool’s user interface. A brief survey of related projects as well as several 
pointers to future work are also included. 
 
Keyworkds: naval surface warfare, command and control, simulation, training, UML 
 
 
1. Introduction 
 
Of paramount importance for naval commanders is to gain advantage over hostile forces. This 
means the commanders have the major responsibility of clarifying the puzzle of information 
collected from various sources and transforming it into a comprehensible image. Frequently, they 
have to take optimal decisions based upon limited information available. Typically, the tasks that 
support decision making by commanders require numerous staff as well as significant amounts of 
time. Large paper navigation maps as well as acetate overlays and tactical boards for pencil 
annotations have traditionally been used to display the summary image of battlefields. 
Unfortunately, this traditional approach is often inconvenient and can lead to late results, which 
are no longer useful for commanders. 
 
The work presented in this paper intends to provide an effective software solution for command 
and control in naval task force for surface warfare. Using a systematic software engineering 
process [ [13]] and the Unified Modeling Language (UML) [1] as major development devices, we 
have designed and implemented a prototype of Command, Control and Intelligence (C2I) software 
tool that runs on Linux. We have enhanced this system with Human-Computer Interaction (HCI) 
features that facilitate software usage and allow rapid access to intelligence functions that 
efficiently support commanders in their decision making process. This software tool is designed to 
be cost-effective by using Commercial Off-the-Shelf (COTS) technology such as personal 
computers. The intended users of the proposed software are fleet commanders, commanding 
officers (ship captains), and high-level navy leaders in charge of commanders and commanding 
officers. In its current stage, the prototype software presented in this paper can be used for training 
and simulation purposes.  

 



1.1 Naval Surface Warfare 
 
Naval surface warfare is an area of naval warfare which involves surface fleet’s ships for 
deploying navy companies, controlling sea voyages, and providing support power for on-shore 
troops. Naval activities include the typical tasks of naval forces, primarily maintenance, 
deployment, attack, and defense. Naval surface warfare encompasses four dimensions of warfare: 
anti-air warfare, anti-surface warfare, anti-submarine warfare, and amphibious warfare. 
 
Because they are very important activities in a surface warship, the operations are always 
commanded and controlled by the Combat Information Center (CIC). The sequence procedure of 
CIC starts from collecting as much data as possible, based on information available from various 
kinds of sources. Such sources include surveillance and detection sensors, intelligence agents, and 
so forth. Then, the data is processed (analyzed) and displayed to commanders. The commanders 
evaluate the situation and then distribute information and dispatch commands. These kinds of 
tasks require significant resources in terms of operational personnel and processing time. In 
particular, for fast processing, a rather large number of staff is required. However, in more 
complex situations, the staff who work to provide information for commanders have difficulty 
keeping pace with battlefield dynamics using only conventional methods.  Currently, advanced 
computer technology can significantly improve traditional methods of surface warfare. The 
present paper proposes a solution in this direction. 
 
1.2 Command and Control, and Intelligence (C2I) 
 
Command and Control (C2) are vital, complex tasks involved in military operations.  Out of 
necessity, C2 has long ago become a significant part of the Navy. C2 plays a critical role in 
operating a warship. If we compare a warship to a human body, the C2 system is the equivalent of 
the human brain. To gain advantage over enemies, efficient decision-making is essential and hence 
sophisticated processes (tasks) are required. These tasks necessitate a considerable amount of staff 
support. Therefore, to have an effective “brain” in the scope of naval power, Command Control 
and Intelligence (C2I) is needed. 
 
1.3 Paper Structure 
 
The remaining of this paper provides background information on work related to C2I systems and 
presents details of developing a C2I support software by using UML as modeling notation. Also, 
the paper demonstrates the software prototype (tool) via snapshots of the tool “in action” and 
descriptions of its user interface.  
More specifically, Section 2 provides background information on several key aspects pertaining to 
the proposed software solution. Section 3 describes the mechanisms used for enhancing the 
prototype tool from an HCI point of view. Details of the algorithms that support intelligent 
functions included in the proposed prototype are also provided in this section. Section 4 presents 
excerpts of the UML-based software model of the prototype. Section 5 demonstrates the prototype 
built via snapshots of its user-interface. Section 6 contains pointers to future work and a summary 
of the paper’s contributions. 
 
2. Background 
 
In this section, background information is provided on: Naval Tactical Data System (NTDS), 
Genetic Algorithms (GAs), and the Unified Modeling Language (UML). Work related to our 
approach is also briefly surveyed.  
 
 

 



2.1 Naval Tactical Data System 
 
Naval Tactical Data System (NTDS) is a shipboard device used in battlefield and training 
situations for displaying tactical data [ [15]]. With NTDS, combat data obtained from various 
kinds of sources is collected. Then, the data is processed by discarding redundant data, correcting 
erroneous information, and completing deficient data. The data thus processed is transformed into 
a battlefield picture. This picture is important because it allows the commander to evaluate the 
situation and decide on tactical actions. Table I presents several symbols used in NTDS. 
 

Table I: Symbols used in NTDS 
              Identify 
Type Unknown Friendly Hostile Neutral Our ship 

Aircraft 
 

 
  

 

Surface ship 
     

Submarine 
    

 

 

 
2.2 Genetic Algorithms  
 
Genetic Algorithms (GAs) constitute a branch of Artificial Intelligence (AI). GAs are search 
algorithms based on biological mechanisms of natural evolution and selection. They work with a 
set of input binaries (chromosomes) to maximize the value (fitness value) of an unknown function 
(fitness function). With three basic operations—reproduction, crossover, and mutation—genetic 
algorithms manipulate a set of chromosomes (population) with the goal of generating an 
individual chromosome that is characterized by higher fitness [ [8]].Figure 1 shows the general 
steps of regular GAs. At the initial point, the parents are randomly created. After the parents’ 
chromosomes pass the process of reproduction, crossover, and mutation, the children are 
produced. After that, the children are evaluated and selected by using the fitness function. In this 
operation, the survival or death of each child is decided. Those who survive will be the parents of 
the next generation. This loop continues until a satisfactory value of a child’s fitness is obtained or 
the number of generations reaches the pre-set limitation of the algorithm. 
 

 

Reproduction 

Crossover 

Mutation 

Parents 

Children 

Evaluation

High value 
children 

Low value 
children 

An operation 

Chromosomes 

Basic GA diagram

Selection

Satisfied output 

Unsatisfied output 

The number of 
generations reaches the 
pre-set limitation  

Figure 1: The basic procedure of GAs 
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(a) Crossover operation (b) Mutation operation 

Figure 2: Crossover and mutation operations 

The reproduction operator selects some good individual chromosomes from the population to be 
the parent chromosomes for the next generation. The crossover operator crosses over among 
selected populations to create new offspring chromosomes. Finally, the mutation operator allows 
traveling around some areas that have not been explored. Figure 2 illustrates (a) the crossover, and 
(b) the mutation operators.  
 
There are many applications that are based on GAs. For example, uses of GAs for military 
purposes are described in [11]. 
 
2.3 The Unified Modeling Language 
Originally introduced in 1997 by Grady Booch, James Rumbaugh, and Ivar Jacobson, the Unified 
Modeling Language (UML) has been rapidly and widely accepted by the software engineering 
community as “the standard graphical language for visualizing, specifying, constructing, and 
documenting the artifacts of a software-intensive systems” [ [1]]. In our work, we have used 
diagrams in the UML notation to design the proposed software tool for naval surface warfare. The 
nine most important diagrams of UML are [1]: class diagrams, object diagrams, use case 
diagrams, sequence diagrams, collaboration diagrams, statechart diagrams, activity diagrams, 
component diagrams, and deployment diagrams. Samples of these are shown in Section 4 of the 
paper. 
 
2.4 Related Work 
 
For more than a decade, there have been many researchers in the area we also have endeavored to 
explore. The vast majority of them have been employed by the Department of Defense (DoD), and 
have worked on various projects [2, 3, 4, 6, 7, 9, 10]. The following describes several examples of 
related work developed by the DoD or with DoD support. 
 
In 1983, a prototype for naval Battle Group Simulation (BGS) was developed by Jerry Golub and 
Willis A. Soper [9]. A simulation prototype was created for evaluating software design, user 
interfaces, and other features and details of various models. The BGS prototype was important in 
that it offered a development baseline which can be characterized as a single radar and missile 
system. 
 
In 1995, Curtis L Blais presented the Marine Air Ground Task Force (MAGTF) Tactical Warfare 
Simulation (MTWS) [2, 3]. The purpose of this simulation system was to support the training and 
the preparation of the U.S. Marine Corps (USMC) commanders and their staff. Blais proposed the 
main mechanisms of the system and indicated ways for improving the simulation [2]. In later 
work, published in 1998, Blais presented a prototype system for advanced warfare gaming 

 



capabilities, aimed to be used in the 21st century warfighter [3]. This prototype system, entitled 
the Joint Simulation System (JSIMS), was designed for the training of commanders and other 
DoD staffs. The main goals of the training with this system were to enhance commander and staff 
interaction with the system and to support the development of intelligent military tactics. 
Remarkably, the system enabled a smaller number of exercise control personnel to prepare, 
organize, conduct, and assess the results of more complex exercises. The system was intended to 
support the procedures of the Command Control Communications Computers and Intelligence 
(C4I) system, a system that is used in practice by commanding staff in almost all US military units. 
 
In 2001, George F. Stone and Georgy A. McIntyre published their work on the Joint Warfare 
System (JWARS) [14], a system that proposes a campaign-level model of military operations. 
This system has been developed by the US Office of the Secretary of Defense (OSD) with the 
purpose that the results of this project will be used by the OSD, the Joint Staff, and the war 
fighting Commands. The JWARS is intended to provide users with a complex representation of 
joint warfare, including elements of operational planning and execution. There are three functions 
included in the system, dealing respectively with: C4ISR (Command, Control, Communications, 
Computers, Intelligence, Surveillance, and Reconnaissance) systems and processes, the impact of 
logistics in combat areas, and operational-level aspects of maneuver warfare. However, [14] 
emphasizes only top-level concepts and highlights some of the significant problems and 
limitations of existing solutions for these types of functions. The JWARS consists of three 
software domains, namely problem, simulation, and platform. All three domains are integrated 
into a single executable package. Firstly, in the JWARS problem domain, the Battle Space Entities 
(BSEs) are assigned as battalion-level for maneuver units, air mission elements for air operations, 
ships for maritime assets, and individual platforms for critical ISR systems. One of the most 
significant advantages of JWARS is to allow the simulation of forces’ activities before the battle 
starts. Secondly, the simulation domain provides a comprehensive range of synthetic theater 
environment details such as terrain roughness, weather, movement of infrastructure, wind 
conditions, and so forth. Lastly, the platform domain provides details on the JWARS hardware as 
well on the system’s human-computer interface. 
 
Because of insufficient technologies and high cost of existing military computers, it becomes 
practical and efficient to replace them with COTS. Indeed, there have been several research 
attempts to employ COTS computers instead of military-type computers in command, control and 
intelligence systems [7, 12].  
 
In 2002, Sushil Louis, a faculty member of the University of Nevada, Reno, in collaboration with 
John McDonnell and Nick Gizzi from Space and Naval Warfare (SPAWAR) Systems Center 
introduced a dynamic strike force asset allocation using genetic search and case-based reasoning 
[11]. The system commands and controls air strike fighters to go through enemy areas so that they 
can be close enough to launch missiles at hostile targets. The system supports destruction of 
enemy air defenses in real time. The authors applied an advanced genetic search algorithm, called 
case injection to bias genetic algorithm, to provide a plan. The basic idea of this genetic search 
algorithm is that the system initially searches for pre-selected points instead of random points. 
 
3. Proposed Software Tool 
 
The main functions of the system can be divided into four categories: human-computer interaction 
display, command and control center, interception, and escape route planner. 
 
 
 
 

 



3.1 Human-Computer Interaction Display 
 
Of paramount importance for efficient command and control is to provide valuable information to 
commanders who have been invested with central authorities. In warfare conditions, it is necessary 
that commanders understand the details of their own forces as well as of the enemy forces. 
Furthermore, the information provided to them must be continuously, constantly, and rapidly 
updated.  
 
The ideal supporting software tool shall depict the curent events of a battlefield on a computer 
screen or a projector. In our solution, we have adopted NTDS symbols (which most US Navy 
operational personnel are familiar with) as symbols to be displayed on the screen. However, with 
modern computer technology available, we have extended the traditional set of NTDS symbols 
with several new symbols that allow for real time display and manipulation. Furthermore, in order 
to keep the Combat Information Center (CIC) room dark we use a black background screen 
instead of a white one. As such, the relevant information and alarm signals that always display 
with colorful symbols such as red, white, blue, and green can more easily be noticed. To make the 
screen look uncomplicated, the tool usually displays only the platforms’ symbols as well as their 
tracks and speed vectors to show current positions, previous positions, and movements. However, 
the minute representation details can be accessed with ease via mouse clicks. In addition, zoom-in 
and zoom-out options are available to adjust the level of details shown on screen. 
 
3.2 Command & Control Center 
 
One major goal of the software tool we developed has been to centralize combat command and 
control. The tool allows commanders to centralize control tactical operations and thus it represents 
a command & control center. The commanders can maneuver their own platform and they can 
control sensors, weapons, and operation activities by providing fire control to engage weapons or 
to operate active sensors. For example, without the fire signal from the system controlled by the 
commander, the gunnery officer cannot operate his or her weapons. In addition, the commander 
monitoring overall combat conditions can arrange movement of platforms in his or her control to 
get advantage over the enemy via the system’s communications.  
 
3.3 Interception 
 
In this section, we illustrate how to determine the optimum course to interception. Interception is 
an regular task of both the Officer Of Deck (OOD) and the Tactical Action Officer (TAO) [15]. 
However, it requires a certain computational time and is sometimes insufficiently accurate. Also, 
whenever the course and speed of a target change, recalculation is required. With our system, this 
calculation can be done in real time. For the interception algorithm, we use simple vector and 
trigonometric operations. Figure 3 illustrates the drawing procedures of vector combination for 
interception. 
 
In Figure 3 the following are known: 

• |T| = scalar value of target vector T 
• |O| = scalar value of real interception vector O 
• α, the direction of relative interception vector R 
• β, the direction of target vector T 

 

 



 

T 

R 

O 

β

θ α 

R = relative interception vector 
T = target vector 
O = real interception vector 
 
|R| = scalar value of vector R 
|T| = scalar value of vector T 
|O| = scalar value of vector O 
 
α = direction of relative interception vector R 
β = direction of target vector T 
θ = direction of real interception vector O 

Figure 3: Geometrical representation of interception 

The objective is to find θ, the direction of the real interception vector O. However, we do not 
know |R|, the scalar value of relative interception vector R. To determine θ, we need to determine 
|R| first. 
From the combination of vectors shown in Figure 3: 

0 = R + T        (1) 
Separate vectors on the vertical and horizontal directions are: 
 |O|sin θ = |R|sin α + |T|sin β 
 |O|cos θ = |R |cos α + |T |cos β      (2) 
This yields the scalar equation: 
 |O|2 = |R|2 + 2|R||T|cos(α - β) + |T|2          (3) 
To determine |R|, we rewrite the equation in the form 

|R|2 + {2|T|cos(α - β)} |R| + {|T|2 - |O|2} = 0         (4) 
 

By using the quadratic formula, we determine the positive roots. |R| is the smaller value of two 
positive root values, or the positive one if the other is negative or an imaginary number. If both 
root values are negative or imaginary numbers, it indicates that interception is impossible. 
To determine θ, we substitute |R| in equations (2) and obtain: 
 
 θ = tan-1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
|Τ| + 
|Τ| + 

βα
βα
 coscos|R|
 sinsin|R|

      (5) 

From the above, the angle of interception θ is determined. 
 
3.4 Escape Route Planner 
 
Escape, meaning to move our platform through all hostile forces without detection by enemy 
sensors, requires complex plans and calculations. Our intelligent system shall provide an optimum 
trajectory for escape function. As in the interception function, whenever the course and speed of 
any hostile platforms change, a new plan and recalculation are needed. With current position, 
course, and speed of all hostile targets exposed to our sensors, the intelligent system must 
determine the shortest and safest escape route and recalculate it in real time when any hostile 
target changes its course, speed, or both. Moreover, the escape route is created with the condition 
that our platform has to maintain its current speed. Therefore, whenever our platform changes its 
speed, the intelligent function must reroute the escape automatically. In Figure 4 an example of 
escape trajectory is shown. 
 

 



 

Our platform 

Hostile platform 

Figure 4: Example of escape trajectory 

Similar to the method of a robot’s movement to its target destination, the problem here is to avoid 
obstacles. The robot’s route is the shortest path avoiding any obstacles. In the case of escape route 
planning, there is an analogy between the obstacle and the detection area of hostile sensors. 
Instead of obstacles, our platform needs the shortest route to the destination without moving into 
any sensor surveillance area, which is assumed circular. However, if it is unavoidable to go 
through the hazard area, our platform will minimize its stay in that area to maximize its escape 
chances. Unfortunately, the surveillance areas of the enemy sensors are not static. The movement 
of hostile platforms with sensors means that enemy surveillance areas move as well. Obviously, 
this problem is more complicated than the static obstacle avoidance problem. To solve this 
problem, complex mathematics, a good model and a good optimum search method are needed. 
Fortunately, we found a search genetic algorithm that does not involve complex mathematics and 
solves the problem reasonably well. 
 
We discussed the genetic search methods in Section 2. At this point, we explain how we apply a 
GA to solve the problem of escape planning. We show the representation and evaluation aspects of 
this particular problem. Due to search optimizations in GA, we need to represent the search area of 
this problem using binary numbers. Because our platform is always a surface ship, the problem is 
within on 2D space. Therefore, the trajectory of the escape route can be drawn from the initial 
point to the destination. With our design, the trajectory consists of 11 partial straight lines. Each 
straight line extends from a minimum of zero to a maximum of the distance between the initial 
point and the destination. With this design, the trajectory is constrained with a maximum of 11 
turns, which we assume are enough to reach the destination. The maximum number of segments, 
11, has resulted from considerations related to the computational power of the computer we use to 
develop our prototype software. The number can be larger if a faster processor is used or parallel 
processing is performed. The representation of the escape route is shown in Figure 5. 
 
As illustrated in Figure 5, we dedicate the entry combination of 11 segments to the escape route. 
We need to indicate 10 information lines, each with course C and distance D shown in the 
rectangles and associated with arrows that point to the beginning of each line (for the first 10 
segments). For the last segment, we do not indicate this information because the end point of the 

 



10th segment is connected directly with the destination. Therefore, with these characteristics, we 
determine the course and distance of the first 10 segments. To transform these linear values into 
binary numbers, we represent them with 8 bits for each course and 8 bits for each distance, as 
shown in Figure 6. 
 

 
Destination 

Initial point 

Line 1 
C-100 
D-3.4 

Line 2 
C-100 
D-2.7 

Line 3 
C-113 
D-2.4 

We will not search for the last line.  The end point of the 
10th line is connected directly with the destination. 

Line 4 
C-113 
D-4.1 

Line 5 
C-105 
D-2.4 

Line 6 
C-105 
D-2.7 

Line 7 
C-213 
D-2.0 

Line 10 
C-100 
D-3.6 

Line 9 
C-100 
D-3.7 

Line 8 
C-113 
D-3.3 

Note: 
C is course or direction of lines in degree. 
D is distance or size of line in nautical mile. 

Figure 5: The representation of the escape route 

 

 

Representation perspectives 

Binary perspectives 

8 bits for distance of line 4 8 bits for course of line 4 

   . . .  C1  D1  C2  D2  C3  D3  C4  D4 D10  C9  D9 D10 

1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 

111101002 = 244 010001002 = 68

Representation of the 10 segments; where C is course and D is distance 

Figure 6: Transformation of course and distance to binary 

In Figure 6, the course and distance of segment 4 are transformed into two 8-bit representations. 
The binary representation of C4, in this case 111101002, corresponds to 244 in decimal numbers. 
The decimal value of C4 is determined by using the following formula: 
 
   

256
360

,, ×= icic βα           (6) 

where αc,i is the decimal course value of segment i [0, 360] and βc,i is the corresponding value on 8 

bits (range 0..256). Therefore, in Figure 6, the exact value of C4 is 343
256
360244 ≈× . Next, to 

determine the exact value of D4, the following equation is used:   

 



256,,
λβα ×= idid

        (7) 

where αd,i is distance value of segment i, in decimal, βd,i is the corresponding value on 8 bits (range 
0..255), and λ is the direct distance between the starting and the destination points of the escape 
trajectory. 
 
From the above equation, it is obvious that the maximum distance of each straight line is the direct 
distance between the start and end points of the escape trajectory. In Figure 6, by assuming λ  is 
32 nautical miles, then the exact value of D4 is 5.8

256
3268 =×  nautical miles. 

Next, we shift the description to the evaluation aspect of the solution. As previously mentioned, 
this evaluation is key to the process of survival in GA [8]. We determine how good the escape 
route reproduced is by using a fitness function. There are two variables involved: the total distance 
of the escape route and the total amount of time during which our platform is exposed to hostile 
sensors. The objective is to minimize the value of both these variables. However, sometimes the 
two variables are conflicting, i.e. the shortest route may lead to longer exposure time to enemy 
sensors. We need to weigh which one is of higher importance in a particular situation. The 
following is the fitness function of the algorithm used: 
 

 ( )[ ] TxF
T

t

N

i
it νμ −−−Κ= ∑ ∑

= =0 1

3

,30     (8) 

 where F = fitness, 
  K = a large constant value, for example 3,000,000 
  µ = gain of exposed value, 
  ν = gain of travel time from starting to ending points, 
  xt,i = distance between our platform and hostile platform i at time t;  
    (if xt,i < 30; otherwise xt,i = 30), 
      T = time our platform travels from the starting to the destination points, 
  N = number of hostile platforms.  
 
The genetic search maximizes fitness F but our objective is to minimize the value of the two 
variables. Therefore, the fitness involves subtraction of the two parameters from a large constant 
value (K). Usually, the longest effective detection range of surface radar is around 30 nautical 
miles, so we assume that our platform will be safe when the range is more than 30 nautical miles. 
Otherwise, the exposed value will be to the exponential of 3 for the distance that is less than 30 
nautical mines. In addition, a user can assign gains of both variables; µ for exposed value and ν for 
time of traveling. By default, we assign µ a significant value in order to eliminate the exposure to 
enemy sensors. 
 
4. Software Model 
 
The prototype software presented in this paper has been developed using a systematic software 
engineering approach [1, 13] and UML as modeling notation. In this section several excerpts of 
the main elements of the software’s specification and design are presented. Specifically, examples 
of the following are provided: functional and non-functional requirements, use case diagram, and 
sequence diagrams. For more details, the reader is referred to [5].  
 
 
 
 
 

 



4.1 Requirements specification 
 
The proposed software’s requirements can be classified as functional and non-functional. The 
former describe the intended behavior of the system, while the latter specify constraints on its 
implementation. In the following, some of the tool’s functional requirements are presented. 
 

Functional requirements 

R1. The system shall display on a black screen the current position of our ship as well as the 
positions of all detected platforms, represented using tactical symbols and colors that 
conform to NTDS. 

R2. The system shall continuously calculate the next position of our ship as well as the next 
positions of all detected platforms. 

R3. The system shall display the time elapsed from the start of the program’s execution. 

R4. The system shall allow the user to adjust the time speed for faster than real time 
representation. 

R5. The system shall provide a function to manually create a target.  

R6. The system shall provide a function to manually modify a target.  

R7. The system shall provide a function to manually remove a target. 

R8. The system shall allow the user to reinitialize the starting position of our ship.  

 

Display position 
of targets 

Control time 
scale 

Modify 
target 

Control time 
scale 

Change symbol 
of target 

Display/hide 
vectors and trail  

Show detail 
information 

Zoom in/out 

Move screen 
center 

Commander 

Interception 
a target 

Plan an escape 
route 

<<system>> 
Friendly systems 

Intelligence system Control and display system 

<<exclude>> 

<<include>> 

<<include>> 

 
Figure 7: Use case diagram of the proposed software tool 

 
 

 



4.2 Use case diagram 
 
Figure 7 presents the use case diagram of the proposed software tool. This diagram shows the 
relationships among actors involved and the use cases that describe the system’s functionality. 
There are two actors and 11 use cases in the software model that we have created.  
 
First, the Commander actor represents the broad kind of tactical commanders that could use the 
system, including fleet commanders and commanding officers. This actor plays the most 
prominent role in the system. Most of the use cases are created to describe the commander’s 
interaction with the system. The commander is in charge of monitoring, understanding all battle 
field circumstances, and providing command to his task force.  
 
Second, the Clock actor is included in the system because it needs to provide accurate time for 
real-time calculations and displaying of platform positions. 
 
4.3 Sequence Diagrams 
 
Figure 8 shows an example of sequence diagram, namely the sequence diagram for calculating the 
positions of the targets. The targets’ information stored in the ListOfTargets can be manually 
modified by calling UpdateEvent. The automatically updating procedure starts when the 
SystemClock sends a TimeToUpdate signal. The Calculate component fetches information 
of the first target from the ListOfTargets and gets current time from System Clock. The 
Calculate component determines the new position of the first target and writes over to the 
ListOfTargets. The procedure is repeated until the last target in the ListOfTargets is 
reached. Then all targets in the ListOfTargets are displayed on screen. Finally, this process 
sleeps and waits for the next signals from SystemClock.  

 

Time to Update 

System Clock List of Targets Update Event Calculate Display 

Modify targets 

Current time 

Current time 

Current time 

First target position

Updated position

Next target position

Updated position

Last target position

Updated position

Figure 8: Sequence diagram for calculating the positions of the targets 

 



5 Prototype Details 
 
In this section we present the prototype of the software tool we created on the Linux distribution 
of Fedora Core 2, running on a COTS computer (Dell 8052). For illustration purposes, we set the 
screen resolution of a 17-inch monitor to 1024x768. This allowed for both satisfactory speed 
performance and clarity of information display. The prototype is shown via several snapshots 
taken during its operation. More details can be found in [5].  
 
The main screen of the software tool is shown in Figure 9. From the beginning, it is useful to note 
that in this system we can run multiple processes that display various areas of the battlefield, each 
area in its associated window. We chose a windows-based solution because windows can be 
manipulated using a variety of operations: moving, resizing, hiding, and displaying on full or 
partial screen. Throughout its entire operation, the prototype retains the same center of the screen, 
regardless of window resizing. In addition, resizing does not affect the size of the text and the 
symbols shown on the screen.  
 
This tool displays NTDS symbols on a black background. Although we have utilized NTDS 
symbols, we also have modified some presentation details. For example, instead of using a white 
background, we have a black one to keep the room dark and thus provide better visualization 
contrast. More specifically, using colored symbols on black background makes easier the noticing 
of alarms and changes. Consequently, the symbols for unknown platforms and for our own 
platform have been changed from black to white. The trails of targets are displayed with 
combinations of continuous lines. The colors of the lines correspond to their identification status 
in real time (for example, one trail can change from unknown to hostile). The speed vector of 
each symbol is displayed with continuous dots. Its size and direction correspond to speed and 
course, respectively. Its color is the color of the symbol it is associated with.  
 
Also, we deliberately have placed detailed information at the corners of the screen. On the top-left 
corner of the screen the points of the compass and a scale are shown. The top of the screen is 
always North. The scale information consists of a text and a bar. The text shows the real world 
distance that is scaled to display on the screen as the length of the bar. For example, the text “5 
NM” indicates that the length of the yellow bar behind the text stands for 5 nautical miles. The 
length of the bar is equal to the length of the background grid square. 
 
On the top-right corner of the screen, the tactical time (the time elapsed from the beginning of the 
C4I prototype’s operation session) and the time scale (simulated operation speed) are indicated. 
Note that the time scale has been included for simulation purposes only. By default, the time scale 
is 1:1, which corresponds to the real-time. From this value, it can be increased up to 1:50, which 
means that simulation speed is 50 times faster than the speed of real-time events. 
 
On the bottom-left corner of the screen, detailed pieces of information about our own platform 
and about the selected target are located. The first information group shows the current 
course of our own platform in the navigation system, its speed in knots, and its position in 
nautical miles. The second information group is associated with the selected target, a target 
that is marked by a small yellow square placed inside the target’s symbol. In this group, besides 
the course, the speed, and the position of the selected target, the bearing and the range from our 
platform to the selected target are shown as well. 
 
To meet its command and control purpose, the proposed the software tool provides functions for 
maneuvering our own platform. After the Maneuver our ship option is selected, a dialog 
window (panel) is shown on the screen. The dialog panel consists of four editable entries 
(parameters): x-position, y-position, course, and speed. The current values of these four 
parameters are provided. To maneuver own platform, the user can enter only the value(s) of those 

 



parameter(s) that he or she would like to update. Figure 10 shows the structure of the dialog for 
maneuvering our own platform. 
 
As shown in Figure 11, on the left-hand side of the screen, below the scale bar, the relevant data 
involving the target to be intercepted and the user’s own platform are displayed. When the 
distance between the user’s own platform and the target is less than three nautical miles, the 
remaining distance and remaining time to interception is displayed using red text. To cancel the 
interception function, the user needs to click on the Disable submenu of the Interception 
option.  

 
Figure 9: The main screen of the prototype software tool 

 
Figure 10: The dialog panel of the ‘maneuver our ship’ option 

 



 
Figure 11: Example of target interception 

 
Figure 12: Example of escape route planning 

Also, when the user activates the Escape route planner function, the interception function is 
automatically disabled. Figure 12 shows the escape route plan drawn on the screen as a sequence 
of yellow line segments and detailed by descriptive text presented on the left-hand side of the 
window, (just below the scale bar). In both figures, the user’s own platform and a hostile ship are 
represented. The user’s own ship’s objective is to reach a chosen destination with minimum 
chance of detection by the enemies. The user starts the escape procedure by clicking on the 
Escape route’s Operate function and then clicking on the screen to specify the desired 
destination. Consequently, the software tool computes and provides a plan that brings the user’s 
own ship to the destination. The user’s own ship will follow this plan automatically. The escape 

 



route is displayed on the screen in green-yellow color. For instance, we can notice that in the 
particular example shown in Figure 12 the route goes down first in order to move away from 
hostile platforms.  
 
Whenever any hostile target changes its course, speed, or both, the software tool changes the 
escape plan accordingly by providing a new route. To stop following the plan provided by the 
software tool, the user has to click on the Disable function of the Escape route option. 
 
6 Future Work and Conclusions 
 
6.1 Future Work 
 
The proposed software tool has been developed in terms of comprehensive software specification, 
detailed architectural and GUI design, and operational implementation in C. While the prototype 
serves well as a proof of concept and can be used in practice for naval surface warfare training and 
simulation purposes, the work presented in this paper can be further expanded in several 
directions. 
 
First, the software needs to be completed and enhanced with more functionality and improved 
graphical user-interface. 
 
Second, the algorithms underlying the support for command and control could be further 
elaborated and optimized. For example, better genetic search algorithms need to be investigated, 
evaluated, and applied. 
 
Third, the software solution presented involves the use of a single computer. A networked version 
of the program could increase significantly the efficiency of training and simulation via real-time, 
multi-user involvement of trainers and trainees. 
 
Fourth, an ambitious goal for this project would be to evolve in a multi-platform version of naval 
surface warfare training and simulation (multiple task force system). At this time, only one user’s 
own platform can be controlled by the software, but larger and more realistic situations should be 
modeled by involving a fleet of user’s own platforms. 
 
Finally, the ideal accomplishment of this project would be to be used in real-world navy 
applications, not as a training or simulation tool, but as an effective, real-time solution for 
supporting actual combat operations. For this, in addition to the enhancements suggested above, 
interfacing with navy detection sensors and maneuvering equipment is necessary. 
 
6.2 Concluding Remarks 
 
The main goal of the work presented in this paper has been to develop a prototype software tool 
that provides support for centralized command and control in naval surface warfare. To build this 
prototype, we have defined the modes of operation for the tool and have designed algorithms 
needed for its implementation. These algorithms include intercepting an enemy target platform 
and calculating an escape route. A detailed GUI interface with easy-to-use options facilitates the 
interaction with the computer by navy commanders and tactical action officers. Currently, the 
system is operational for training and simulation in naval surface warfare. Also, it provides a basis 
for more complex research and development. 
 
The software was designed and developed using a systematic engineering approach, supported by 
the modern modeling notation UML. Four main functions have been incorporated in the prototype 

 



of the software tool. First, an HCI function depicts the battlefield information using NTDS 
graphical symbols and enhances the use of computers by commanders via detailed graphical 
interfaces. Second, a command and control function provides support to commanders for 
centralized control of the battlefield situation. Third, an interception function calculates an 
optimum course for intercepting a particular enemy target. Fourth, an escape route planner 
provides a route characterized by minimum chance of detection by hostile platforms.  
 
Furthermore, we have used a personal computer as hardware equipment on which our software 
tool executes. This is important, because with this approach both the development costs and the 
expenses associated with the tool’s use are substantially reduced. 
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