

critical sections o f the software being developed [14]. As such,
the correspondence between the diagnmunatic (scurd-formal) and
textual (formal) parts of a specification is typically limited to a
subset of the speeification's components.

Depending on the number o f notations involved, a combination of
notations can take the form of either a dual-notation integration
(e.g., [6], where UML is combined with SDL) or of a multiple-
notation integration (e.g., Zave and Jackson's multi-paradigm
specification technique [34], Paige's pure formal method
integration strategy [25], and Day and Joyce's framework solution
for integrating multiple notations [I 1]). Generally speaking, the
integration does not necessarily involve aformal/semi.fornml (or
informal) combination; it can be of the formal/formal type (e-g.,
[31], where the dynamic aspects of RTS are modeled using
Statecharts and FNLOG) or semi-formal~semi-formal (e.g., [29],
where an integration UM]JLean Cuisine+ is proposed for
supporting the early stages of interactive system design).

We believe that the integration of notations can provide a viable
solution for modeling complex systems e ~ i a l l y because various
aspects of the systems need be described in various ways (for a
classification and examination of forms of method
complementarity, primarily in terms of notations and processes,
we suggest [26]). In particular, in the case of formal/semi-formal
integrations, it is always possible to "fine tune" the formality level
and adjust the balance between the less rigorous diagrammatic
representations and the formal specifications to best handle the
requirements of a specific application.

Within this context, we propose an object-oriented specification
approach bescd on the combined used of UML [32] and Z-H- [21]
and aimed at the construction o f real-time systems. UML has been
incorporated in our approach for obvious reasons- it has
remarkable modeling power, is extensible, enjoys a large
acceptance in the soRware development community, and has
become the standard notation for object-oriented development.
On the other hand, Z-H- also brings significant advantages: it is
formal, object-oriented, and provides support for specifying real-
time systems. In particular, in order to capture the temporal
properties of the systems we employ within the frame of Z++
Jabanian and Mok's Real-Time Logic (RTL) [16] and make use of
the extensions to RTL proposed by Kevin Lane [21]. A key issue
of the approach is the harmonized use o f the two notations, which
can be greatly helped by a bi-directional link between the
diagrammatic and formal parts o f the system's model. For this
purpose, translation algorithms between a subset of the UML part
of the model and its Z++ counterpart have been designed. These
algorithms, which support the formalization and deformalization
processes and address both structural and behavioral aspects of
the system, are described in detail in [10].

The present paper, in its remaining part, is structured as follows.
Section 2 describes the proposed procedural frame in terms of
modeling activities performed and att i la,s produced, suggests a
regular flow of activities, and considers alternative modeling
scenarios. Section 3 inUroduces Harmony, the environment
designed to support the proposed specification approach. The
concluding section 4 analyzes the status of our work, compares it
with related integration strategies, and indicates several aspects of
our work that we intend to improve in the near future.

2. THE PROCEDURAL FRAblE
The specification approach presented in this paper is focused on
the structural and behavioral aspects o f systems and is aimed at
developing object-oriented models in a rigorous, pragmatic, and
efficient way. For practical reasons, a number o f modeling
activities supported by UML are not included in the procedural
frame described below and their corresponding artifacts
(specifically, diagrams) are not incorporated in the integrated
UML/Z++ model. This simplification is possible because the
above diagrams are either parallel to some already incorporated
(specifically, collaboration diagrams are essentially re-writings o f
sequence diagrams), can be ignored without losing significant
insight into the system (activity diagrams), or can be deferred to
later development stages that are beyond the scope of the
proposed approach (component diagrams and deployment
diagrams).

By considering the usual 4+1 architectural views approach
advocated by many (e.g., [7], DO]), only the user view, the
structural view, and the behavioral view are dealt with in our
approach, and from the diagrams that support the architectural
views only the use case diagrams, the class diagrams, the
sequence diagrams, and the state diagrams are employed. In short,
we model the architecture of the system using 2+1 views, a
reduction of the generic 4+1 views approach that nevertheless
allows a reliable description o f the system. It is worth noting that
many of the UML applications described in the recent literature
focus typically on use cases, scenarios, class diagrams, and
statecharts diagrams (e.g., [3], [15], [18], and [33]) and less
frequently other types of diagrams are also presented (e.g., [4] and
[12]). In fact, having the class organization completed in terms of
both attributes and operations allows the further development of
the system possibly up to and including implementation. This is
not to say, however, that the omitted diagrams cannot be drawn if
necessary, but certain simplifications are needed in order to allow
the combined use of techniques in a manner which is not only
precise but also practical, lightweight, and rapid.

2.1 Artifacts
Starting from a set o f requirements that describe the desired
properties o f the system, the following five categories of artifacts
are developed, making up the combined semi-formal/furmal
model oftbe system'.
• Use case diagrams (UCD), describing the intended high-level
behavior o f the system as seen from outside the system. These are
typical UML use case diagrams, each capturing a portion of the
system's externally visible behavior and each containing a number
of use cases (UC) that detail this behavior;
• Scenarios (SC), specific sequences o f actions involving the
system and the actors that interact with it. Scenarios, as pointed
out by Bench, "are to use cases what instances are to classes,
meaning that a scenario is basically one instance of a use case" [7,
pp. 225]. UML provides sequence and collaboration diagrams for
repi~senting scenarios; however, these diagrams involve a high
level o f details so we make a distinction between scenarios and
sequcnee diagrams. Specifically, we see a scenario as an informal,
analysis-level description of a particular sequence of actions
encompassed by a use case, while a sequence diagram is a
detailed, design-level description o f the same thing in which

1015

responsibilities for carrying on actions are assigned to individual
classes and objects (as opposed to the system as a whole);
• S e q u e n c e d i a g r a m s (SQD), developed using the UML notation
and providing a design-level representation o f scenarios, as
described above;
• C lass d i a g r a m s (CD), defining the high level architecture o f the
system and consisting essentially of classes and relationships
among classes;
• Class c o m p o u n d s (COMP), each class compound containing a
regular class description (CLS) and the state diagram (CLSTD)
associated with the class. The notion of class compound is
introduced primarily for supporting the formalization process, but
it represents in general a simple yet useful extension of the
concept of class ("a class with enhanced description o f
behavior' '). The idea o f a class compound comes primarily from
Z-H-, but it has also been inspired by Howerton and Hinchey, who
propose the combination o f UML descriptions and Z
specifications in an approach that advocates different notations for
modeling different aspects o f the system [15]. (However,
Howerton and Hinchey do not propose the syntactical
concatenation o f the UML class and state diagram constructs, and
do not suggest a name for their solution);
• Z+ + spec i f i ca t ion (ZSPEC), consisting o f a set o f Z+4- classes
(ZPPC), each Z-l-l- class corresponding to a class from the UML
space. The Z++ specification as a whole is the formal counterpart
o f the combined contents o f the class diagrams that make up the
UML component o f the system's integrated model_

2.2 Activities
Figure 1 gives a diagrammatic description o f the proposed
procedural frame in terms o f modeling act iv i t ies (steps) p e r f o r m e d
and ar t i fac t s (products) obtained. Several conven-tinns are used
in this figure:
• Activities are represented by rounded rectangles;
• Artifacts are ~presented by regular rectangles;
• Continuous, arrow-ended lines connect activities with their
output artifacts and artifacts with activities thai use them as input;
• Dashed, arrow-ended lines represent a transfer from an activity
to another which does not necessarily require that artifacts are
obtained in the originating activity (the decision to move to
another activity can be based on the inspection o f the already
existing a r t i ~ associated with the current activity). These
dashed lines are typically used as feedback links in the iterative
development o f the system's model. For simplicity, forward
dashed links are not depicted in Figure 1 and feedback links from
activities 5A and 5B to activities 4A and 4B are also omitted;
• The steps are numbered and organised in five stages (or levels),
their ordering suggesting the typical flow o f activities within the
modeling process;
• The set o f diagranis obtained as a result o f a specific activity in
stages 1 to 3 are generically denoted col lect ion.
The diagram presented in Figure 1 is flexible enough to
accommodate various specification strategies and encompass
diverse modeling paths, as discussed more in the next subsection.
The activities included in our modeling approach are the
following:
• At stage l, starting from the requirements set that describes the
desired system, a number of use cases that capture segments o f
externally visible system functionality are identified, making up
the UC collection o f the integrated model;

I ~ p . g m M ~ a . ~ d ~ - - ~ l l k l l / t a l o a a l U m ~ l ~ •

, i
,,

::::::::::::::::::::::::::
I ÷

i

u

- - eml m o m ~ . ~w ~4a m l N l e m .

i~!"l ''-:~ -?7 ~ '?~: ~ ~ " ~t:~i,,:~, f t ~ c!7,2~T~.~-.--..7: I ,-~

: " " ' " " " " "

Figure 1. The Procedural Frame

• At stage 2 use cases are employed to instantiate a number o f
scenarios that will serve later for the identification o f classes.
Normal scenarios (most likely to occur), as well as abnormal
scenarios (describing situations that diverge from the normal case)
are developed and included in the SC collection o f the system's
model;
• At stage 3, using the available scenarios two possibly
intertwined activities can take place: construction o f class
diagrams (3A) and specification o f sequence diagrams (3B). In
practice, the specification o f sequence diagrams can be deferred
after 3A since in general it is easier to construct the class diagrams
by exploiting the information contained in scenarios (the class
dialgnims may contain only the names of the classes, without other
details, while sequence diagrams necessarily include class and
object names as well as class operations). In fact, step 3B can be
skipped in certain situations, as discussed in section 2.3. The best
thing, however, is not to omit it, and to use it at Least as a
"revision checkpoint," with input from all subsequent levels;
• At stage 4 the CD collection and the SQD collection (if
available) provide the basis for the detailed specification of
classes. An argument can be raised about the development o f
classes represented separately from the development o f class
diagrams and, indeed, there is a blurred line between these two
activities. We separate them for systemeaization purposes and
view the specification o f class diagrams as an activity in which the
rough sketch o f the system's class structure is drawn (in t~i,,s or

1 0 1 6

classes, relationships, and cardinality constraints) while the
subsequent activities of UML and Z++ class claboration are
concerned with the specification o f class details (attributes,
operations, and constraints). Regarding the "parallel" steps 4A
(elaboration of UML class compounds) and 4B (elaboration of
Z++ specification) we note that they can be started and performed
simultaneously (this is the reason for piecing them on the same
level) but the typical way is to perform step 4A first or to perform
only the step 4A and rely on the subsequent formalization o f class
compounds (step 5A) to obtain the Z++ specification o f classes;
• At stage 5 the formalization o f selected UML class compounds
takes piece in step 5A by initially applying the algorithms for
automated translation and then by manually adding the necessary
details to the formal specification. This activity has the rule of
producing rigorous descriptions of the system, captured in the
Z++ specification, and provides the strongest basis for refining the
model -many ambiguities, omissions, and inconsistencies are
detected here. At the same level of modeling, deformalizatinn of
classes initially written in Z++ (step 5B) can be performed
following the set of guidelines suggested in [1(3].

2.3 "Regular" and "lrregul,~r" Sequences of
Modeling Activities

A Braph-like representation of the regular sequence of modeling
activities, which for simplicity omits the products of ¢ech activity,
is represented in Figure 2. (In UML terms, this can be seen as the
normal scenario of the use case represented by the procedural
frame described in Figure 1). The modeling stages are
highlighted, the direct flow of activities is emphasized by a
continuous line, and the iterative revisions of specifications are
indicated by a dashed Iinc. This ~enario, which in its "forward
segment" (that is, not including feedback links) does not
encompass the defommlizatiun activity (reserved for "irregular"
modeling scenarios), can be suc~octly described by the sequence
<1, 2, 3A, 3B, 4A, 5A, 4B>, where numbers are associated with
activities as indicated in Figure 1.

The procedural frame presented in Figure 1 encompasses different
orderings o f activities and we do not claim that the '~'egular" flow
suggested above is the unique or the most effective way of
developing the integrated UML/Z++ model of the system. There
are other alternatives possible, and depending on the particular
application, on the experience of the development team, as well as
on a series of other factors, including p ro jm priorities and
deadlines, one of these alteroatives may be better suited for the
particular needs of a given application.

Among other possible alternatives o f sequencing the modeling
activities, the "irregular" scenario shown in Figure 3 and
described in its forward segment by the sequence <1, 2, 3A,
4AI[4B, 5AII5B, 313> (where the symbol II indicates parallel
amivities) deserves a brief examination. (Notice that in order to
show that 3B comes after 5A and 5B a compromise regarding the
notation has been made in Figure 3, where thick dashed lines are
used as pert of the forward segment; they are nevertheless
different fi'om the regular feedback connections, which continue
to be represented by thin dashed lines). Two elements are worth
noting in this scenario: first, the fa~t that the description of classes
proceeds in parallel in UML and Z++ and, second, that step 3B

, l t o ~ t

1 l imp Z

t l l m p ~1

I I Im~ 4

B l q l II

i

. . . . _

i

D ~ n l i m t M
I J ~

Etolmmtlm
o l ' m

etwallmal~'hm ulF

TI "" .%,,=.; ,,..=,=,n ~
t ~ n m

~ U h l L
c t o m ~

l t l m m m m ot
Z ~ ~ a f g m ~ n

(UUL to Z ~ }

. ~ Z ~ to UML)

Figure 2. Regular Sequence of Modeling Aetivities

comes last in the forward part o f the scenario. The first element
points to the fact that various teams ofslmcifiers may have various
backgrounds and while some would favor the use of UML, some
may prefer employing Z++ as their main specification notation.
Thus, it is possible to proceed first with the specification of
classes in Z++, followed by descriptions in UML and, in fact, it is
theoretically possible m have all classes specified in Z++ and not
at all in UML. The second element illustrates the idea that
sequence diagrams can be used as means for fine-tuning the
specification, and thus can be the last set of artifacts developed in
the modeling process. Of course, additional refinements for
improving the accuracy of the model follow in any case.

Another example or irregular modeling scenario, which messes
rapid development is, in its forward segment, <2, 3A, 4A, 5A,
4B>, meaning that the definition o f use cases (step 1) and the
specification o f sequence diagrams (step 3B) are omitted. In short,
this modeling alternative takes a "fast-track mute" and, after the
elaboration o f scenarios, class diagrams are developed, UML
classes are detailed, the formalization process takes place, and the
detailed specification of Z++ classes is completed. In fact, this
modeling scenario represents a shorter version of the regular flow
of modeling activities suggested previously. While we recommend
the regular alternative described in conjunction with Figure 2, the
above shorter chain of activities may be used in certain
application contexts.

1017

- "

B I ~ I I s I ,

--ii
i 1

k ~ 4 I

, I

m n g e e

():=:: r)--, FonmUlzm~ __ I ~ lUi
(UML to Z++) __

Dg l l l l 0n uf
Uem

EIi ibomlm
of 6cmmk~

I

Clamm, :

.~3a=ilmlfMln i~
SUlUmm

~ o f
Z','-~ Cisumm

{Z~-~ to UMI.) .

Figure 3. Example of ~ l n ' q u l a r " Flow of Modeling Aetiviti~

3. T H E S U P P O R T I N G E N V I R O N M E N T
The Harmony environment, shown in Figure 4, is designed to
support the object-oriented modeling process presented in section
2 (the name of the environment reflec~_s our goal of smoothly
integrating, or "harmonizing," distinct specification languages).
The environment allows the development of specification
projects, which are sets of specifications represented in
diagrmnmatical (UML) and mathamatical (Z++) forms. These
projects consist of the artifacts described previously in the paper.
One of the distinguishing characteristics of Harmony is its
"monolithicity," meaning that the environment is able to sustain
the complete UML and Z++ combined specification of the system.
Through its capabilities for interfacing with external tools such as
programs for formal proof and formal refinement the environment
is also capable in principle to support the further development of
the system's model. As shown in Figure 4, it also monolithically
integrates the two "spanes," the graphical space of UML and the
textual, formal space of Z++. On a detailed level, support for class
compounds is available in the form of a splitter bar that divides
the screen area of each class compound in two sections, one for
the CLS and the other CLSTD components of the compound.

Figure 4 presents Harmony with a project loaded and several of
the proje~zt's components visible in the UML and 2;++ spares.
More precisely, the Elevator class compound is shown (partially)

in the UML Space and the corresponding Elevator Z++ class is
displayed on the top tabbed-pane of the Z++ Space. As seen in the
figure, the environment consists of a main window, divided into
three principal panes - the Project Pane, the UML Space, and the
Z++ Space-- and includes several other GUI elements such as a
message console and a status bar. Environment specific toolboxes,
such as the Z-H- Symbol Box shown in Figure 4 on the left-hand
side of the Z++ Space, are also included in Harmony.

Regarding the three main panes of the environment it is useful to
note that the project's organization is displayed in the Project
Pane, work on the semi-formal model is performed in the UML
Space, and the development of the formal specifications takes
place in the Z++ Space. All these three panes can be individually
turned on or off, thus allowing the development of specifications
either in only one of the spac~ or in ~parallei" in both the UML
and Z++ spaces.

Since an intense work on UML class compounds and on their
corresponding Z++ classes is expected, a synchronization
mechanism of o n - s ~ e n presentation of the corresponding COMP
and ZPPC constructs is provided. This mechanism defines a mode
of operation that can be viewed as a manifestation - i n our
terminology- of the tandem principle, meaning that two entities
(in Harmony's case, a UML class compound and its
corresponding Z++ class) are collaborating to accomplish a
common goal (this is the case in Figure 4, where the Elevator
COMP and the Elevator ZPPC are the top tabbed-panes of the
UML and, respectively, Z++ spaces). On practical terms, this
mechanism allows the simultaneous development or the simple
inspection of a class in both its UML and Z++ representations.

Automated translations between UML and Z++ models, applied
m subsets of the models and involving inherent simplifications,
can be invoked through the menu bar or from the main tonlbar
(cube-shaped icons "Propagate to UML" and, respectively,
"Propagate to Z++ are placed on the main tool bar for this
purpose).

4. C O N C L U S I O N S
Although there are numerous approaches that integrate in various
levels graphical, semi-formal notations with elements of formal
techniques only few of them employ an object-oriented, Z-based
formalism in conjunction with a graphical notation. Moreover,
among the latter, only very few contain pmvisinns for dealing
with real-time systems. To the best of our knowledge the closest
approaches to ours are France et al.'s formalization in Z of
Octopus models [13], Jia's AML-based solution for exploiting
thethe strengths of both object-oriented and formal notations [17],
Kim and Cerrington's combined use of UML and Object-Z [20],
and Nee and Hartrum's inclusion of formal specifications in
Rational Rose [24]. The only tool developed commercially to
support an object-orient~! modeling approach and combine the
advantages of graphical, semi-formal notations with those of
formal notations is RoZeLink [28]. Nevertheless, our alternative
is distinct from all these approaches in at least one significant
way. Specifically, as opposed to [13], [17], and [24] we use an
object-oriented version of Z and in contrast to [13], [20], and [28]
we include in our approach provisions for dealing with time-

1018

IP sa uc co~tuon
t I ~ u ~ m ~ m m

I P l e c c ~
U mn,dmm, amq.m

'P m OuUm ~qumma
• f l m ~ Irnm Top f lmrJ
0 R m m Imm Top ~ 1

s ~ nwn ald~ fie
a,m aa eoba~o.
e . ~ ~as, a ~ one ~ u ~

m ~lev~
mac

• . _~ . . ,

Elmmlm'

waNI i~
r m ; n l l l m l I~
rimed: , n ~ e ~ ~
pmit~u- ,~: mnla~l m l l

r ~ m l a 4 ~ : ~ lWam lal I

u . p T o T l ~

f . o v n ~

all tr ~ l ~ m ~
m~ m l

1
m

. .
w I m ~ m ~
/

~ , q p a m m ~ l m ~ a
Tl~m
I
I

i : m ~ l ;

e u r m m :

a w ~ s : m C m ;

.,-~,Jmfaqnm~ ;

~ : ~
~ : ~

O l p x i m ' l

~ : ..mS
Jr, o p : - * ;

mlg1~mqlmL m ;
w x l a r . d m ~ s - ~ ;

q l g l ~ S-NzP01

Figure 4, The Harmony Environment

related properties of thc systems (wc rely on Z++'s capability of
dealing with real-time systems via Jahanien and Mok's Real Time
Logic [16] and Lano's extensions to RTL [21]). Also, the
Harmony environment distinguishes itself through its monolithic
construction, as described in Section 3 of this paper, and is
characterized by a tight kind of integration of notations that can
be found only in [28].

The design of Harmony has been completed, including its GUI
appearance, and detailed formalization algorithms have been
designed, implemented, and tested. The input, the output and
pseudo-code description of these algorithms, together with a Java
implementation of the algorithm for formalizing state diagrams
(AFSD) are presented in [10]. The proposed modeling approach
has been exercised on several medium-size case studies, including
the Elevator case study from which the sereenshot presented in
Figure 4 has been extracted. Details on the application of our
approach to the Elevator system are also provided in [10].

Further work is planned in several directions. In particular,
Harmony needs the refinement of its design and the completion of
its implementation, which will allow us to validate the useful
features of the environment and improve its functionality. Other
plans include the inclusion in Harmony of a syntax checker for
Z-t-t-, the integration of links to tools for formal refinement and
verification, the enhancement of the existing UML to Z++
translation algorithms, and the use of the proposed approach and

its accompanying environment for the specification of more
complex systems.

R E F E R E N C E S
[1] Alexander, P. Best of Both Worlds: Combining Formal and

Semi-Formal Methods in Software Engineering. IEEE
Potentials, 14 (5) (Dec. 1995/Jan. 1996), 29-32.

[2] Auj|a, S., Bryant, T., and Semmens, L. Applying Formal
Methods Within Semctttred Development. IEEE Journal On
Selected Areas in Communications, 12 (2) (Feb. 1994), 258-
264.

[3] Barrios, S.D., and Lopez LC. Heterogeneous Systems Design:
a UML-based Approach. In Proc. of the 25 th EUROMICRO
Conf. (Milan, Italy, Sop. 1999), vol. 1,386-389.

[4] Bell, A.E., and Schmidt, R.W. UMLoquent Expression of
AWACS Software Design, Comm. of the ACM_, 42 (10) (Oct.
1999), 55-6 I.

[5] Berry, D.M., and Weber, M. A ~ c , Rigorous
Integration of Structural and Behavioral Modeling Notations.
In Pro¢. oflCFEM'97 (Hiroshima~ Japan, Nov. 1997), 38-48.

[6 BjSrklandef, M. Graphical Programming Using UML and
SDL. IEEE Computer, 33 (12) (Dec. 2000), 30-35.

[7] Booch, G., Rumbaugh, J., and Jaeobson, 1. The Unified
Modeling Language User Guide, Addison--Wesley, 1999.

[8] Bruel, J.M., Cheng, B., Easterbrook, S., France. 1L, and
Rumpe, B. Integrating Formal and Informal Specifi~fion
Techniques. Why? How'? In Prec. of WIFT'98 (Boca Raton
FL, Oct. 1998), 50-57.

1019

[9] Chen, Z., Can, A., Zedan, H., Liu, X., and Yang, H. A
Refinement Calculus for the Development of Real-Time
Systems. In Proc. ofAPSEC'98 (Taipei, Taiwan, Dec. 1998),
61-68.

[10] Dascalu, S.M. Combining Semi-Formal and Formal
Notations in Software Specification: An Approach to
Modelling Time-Conslrsined Systems. PhD thesis, Dalhonsie
University, Halifax, NS, Canada, 2001.

[I I] Day, N. A Framework for Multi-Notation Requit~Inents
Specification and Analysis_ In Proc_ of ICRE'00
(Schaumburg IL, June 2000), 39-48.

[12] Fernandes, J.M., Machado, R.J., and Santos, H.D. Modeling
Industrial Embedded Systems with UML, In Pro¢. of CODES
2000 (San Diego CA, May 2000), i 8-22.

[13] France, R.B., Bmel, J.-M., and Ra~hava~ G. Taming the
Octopus: Using Formal Models to Integrate the Octopus
Object-Oriented Analysis Model& In Proc. of HASE'97
(Bethasda MD, Aug. 1997), 8-13.

[14] Gerhan, S., Craigen, D., and Ralston, T. Experience with
Formal Methods in Critical Systems. IEEE SoPcwa~, 11 (!)
(Jan. 1994), 21-28.

[15] Howerton, W.G., and Hin©hey, M.G. Using the Right Tool
for the Job. In Pro¢. of ICECCS 2000 (Tokyo, Japan, Sep.
2000), 105-115.

[16] Jahanian, F., and Mok, A_ Modechart: A Specification
Language for Real-Time Systems. IEEE Trans. on Software
Engineering, 12 (9) (Sep. 1986), 933-944.

[17] Jie, X. A Pragmatic Appro~h to Formalizing Object-
Oriented Modeling and De-velopment, In Proc. of
COMPSAC'97 (Washington DC, Aug. 1997), 240-245.

[18]]igorea, R., Manolache, S_, Elcs, P., and Peng, Z. Modelling
of Real-Time Embedded Systems in an Object-Oriented
Design Environment with UML. In Proc. of ISORC 2000
(Newport Beach CA, March 2000), 210-213.

[19] Kim, S.-K., and Catriilgton, D. Visualization of Formal
Specifications. In Proc. ofAPSEC ' 99 (Takamatsu, Japan,
Dec. 1999), 102-|09.

[20] Kim, S.-K., and Carrington, D. A Formal Mapping between
UML Models and Object-Z Specifications. In Bowen, J.P.,
Dunne, S., Galloway, A_, and King, S. (eds.), Intl. Conf. of B
and Z Users ZB2000, LNCS 1878 (Feb. 2000), Springer-
Verleg, 2-2 I.

[21] Lano, K. Formal Object-Oriented Development. Springer-
Verlag, 1995.

[22] Lee, J., Pan, J.l., and Huang, W.T. Integrating Object-
Oriented Requirements Specifications with Formal
Notations. In Prec. of ICTAI'95 (Washington DC, Nov.
1995), 34-41.

[23] Moreira, A_M.D., and Clark, R.G.Adding Rigour to Object-
Oriented Analysis. Software Engineering Journal, 11(5)
(Sep. 1996), 270-280.

[24] Noe, P.A., and Haxtrum, T.C. Extending the Notation of
Rational Rose 98 for Use with Formal Methods. In Proc. of
NAECON 2000 (Dayton OH, Oct_ 2000), pp. 43-50.

[25] Paige, K. F. Heterogeneous Notations for Pure Formal
Method Integration. Formal Aspects of Computing, 10 (3)
(June 1998), 233-242.

[26] Paige, R.F., "When Are Methods Complementary?, "~
Information and Sottware Technology, 41 (3) (Feb. 1999),
157-162.

[271 Polack, F. I n ~ Formal Notations and Systems
Analysis: Using Entity Relationship Diagrams. Software
Engineering Journal, 7 (5) (Sep. 1992), 363-371.

[28] RoZeLink (product description). Headway Software Inc.'s
web site, ~ May 1999 at h t t p : / / i n d i g o . i e / ~

[29] Scoging~ C., and Phillips, C. A Method for the Early Stages
of Interactive System Design Using UML and Lean
Cuisine+. In Proc. of AUIC 2001(Queensland, Australia,
Jan./Feb. 2001), 69-76.

[30] Si Alhir, S. UML In A Nutshell: A Desktop Quick Reference.
O'Reilly & Associates, 1998.

[31] Sowmya, A., and Rmnesh, S. Extending Statechmi~ with
Temporal Logic. IEEE Trans. on Soflwa~ Engineering, 24
(3) (March 1998), 216-231.

[32] OMG Unified Modeling l.,anguage Specification, v.l.3.
(Match 2000), ftp://tlp.omg.org/pub/docs/formal/O0-03-
01.pdf

[33] Xu, R., Masaru, Z., and Zhang, H-Q. Object-Oriented AGVS
Modeling with UML. In Proc. of the 39 ~ SICE Annual Conf.
(lizuka, Japan, July 2000), 261-264.

[34] Zave, P,, and Jackson, M. Where Do Operations Come
Fmm?A Multiparadigm Specification Technique. IEEE
Trans. on Software Engineering, 22(7) (July 1996),508-528.

1.020

