An Approach To Integrating Semi-formal and
Formal Notations in Software Specification

Sergiu Dascalu

Peter Hitchcock

Faculty of Computer Science, Dalhousie University
6050 University Avenue, Halifax, NS, B3H | W$5, Canada
1 (902) 494 6449

{dascalus, hitchcp}@cs.dal.ca

ABSTRACT

In this paper the integration of graphical, semi-formal modeling
languages with formal notations for software specification
purposes is discussed and a proposal for a procedural frame based
on the combined use of UML and Z++ is presented. This
procedural frame, organized in stages and steps, provides the
methodological basis for a pragmatic and rigorous object-ariented
modeling approach aimed at the construction of larger software
systems, including real-time systems. Within the proposed frame a
regular flow of modeling activities is suggested and alternative
modeling scenarios are considered. A brief presentation of the
Harmony integrated specification environment, a tool designed to
support the proposed approach, is also included in the paper.

Keywords
object-oriented modeling, formal methods, integration of nota-
tions, UML, Z++.

1. INTRODUCTION

Numerous authors have indicated the benefits of integrating
formal techniques with conventional, informal or semi-formal
approaches in sofiware development. For instance, Aujla et al
point out that formal techniques are portable and extendable and
can be used in various phases of the development as
complementary techniques or as alternatives to traditional, non-
formal approaches [2], Alexander sees the combination of
formality and informality as a way to obtain “the best of both
worlds” [1], and Bruel et al. point out that “the main objectives of
integrated formal/informal approaches is to make formal methods
easier to apply and to make informal methods more rigorous™ [8,
pP- 52]. Other authors who consider beneficial the integration of
notations include Fiona Pollack [27], Moreira and Clark [23],
Berry and Weber [5], and Chen et al. [9].

Integration, which in general covers combination of notations,
models, and methods [2], has nevertheless its own issues, most
notably the fact that interpretations underlying the translation
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rules from informal to formal are seldom explicitly stated, the
focus of formalization is usually on basic constructs, and not
structures, and little attention is paid to relating the results of
analyzing the generated formal models to the comresponding
components of the informal counterparts (Bemhard Rumpe, in
{8]). However, using complementary, concerted techniques for
developing software systems generally provides greater modeling
power, supports the early detection of errors, and increases the
developers’ confidence in the correctness of the sofiware product
being developed. Evidently, these advantages did not pass
unnoticed by the researchers and practitioners of the software
engineering field and various combination strategies have been
proposed. In broad terms, the relationship between the semi-
formal (or informal) and the formal components of a specification
can be one of the following (note that we refer in particular to

semi-formal graphical notations such as UML or data flow
diagrams and do not cover formal graphical notations such as
Petri Nets or Statecharts):

e If the semi-formal (or informal) part is built initially and then
the forma! counterpart is obtained through a translation process,
we can speak about derivation of the formal model from the semi-
formal model, or of formalization of the semi-formal model (e.g,
[22], where diagrammatic and text elements of Bailin’s object-
oriented requirements specification method OOS are translated
into Z counterparts). The reverse process is also possible, albeit
rarely attempted (e.g., [19], where Z constructs are mapped to
graphical representations). In this case the tranclation between the
formal and semi-formal (informal) parts of the model can be
referred to as deformalization;

e If in addition to diagrammatic representations some related
formal specifications are obtained independently (e.g., [17], where
Z specifications supplement UML models), the approach can be
described as complementary formalization. Generally, this
approach also involves the derivation from semi-formal to formal
specifications of a subset of the diagrammatic descriptions of the
system;

e If changes in any of the specification’s parts are propagated to
the other, a fight integration of notations is achieved (e.g., [28],
where continuous, bi-directional links exist between UML models
and their corresponding ZEST specifications).

In the above classification the terms semi-formal part and formal
part of a specification are used but we should point out that, due
to the costs involved, formalizing the entire specification of a
software product is generally impractical, if not impossible, and
the typical approach is to apply formal techniques only to the
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critical sections of the software being developed [14]. As such,
the correspondence between the diagmmmatic (semi-formal) and
textual (formal) parts of a specification is typically limited to a
subset of the specification’s components.

Depending on the number of notations involved, a combination of
notations can take the form of either a dual-notation integration
(e.g., [6], where UML is combined with SDL) or of a multiple-
notation integration (e.g., Zave and Jackson’s multi-paradigm
specification technique [34], Paige’s pure formal method
integration strategy [25), and Day and Joyce’s framework solution
for integrating multiple notations [11]). Generally speaking, the
integration does not necessarily involve a formal/semi-formal (or
informal) combination; it can be of the formal/formal type (e.g.,
{31], where the dynamic aspects of RTS are modeled using
Statecharts and FNLOG) or semi-formal/semi-formal (e.g., [29],
where an integration UML/Lean Cuisinet+ is proposed for
supporting the early stages of interactive system design).

We believe that the integration of notations can provide a viable
solution for modeling complex systems especially because various
aspects of the systems need be described in various ways (for a
classification and examination of forms of method
complementarity, primarily in terms of notations and processes,
we suggest [26]). In particular, in the case of formal/semi-formal
integrations, it is always possible to “fine tune” the formality level
and adjust the balance between the less rigorous diagrammatic
representations and the formal specifications to best handle the
requirements of a specific application.

Within this context, we propose an object-oriented specification
approach based on the combined used of UML [32] and Z++ [21]
and aimed at the construction of real-time systems. UML has been
incorporated in our approach for obvious reasons: it has
remarkable modeling power, is extensible, enjoys a large
acceptance in the software development community, and has
become the standard notation for object-oriented development.
On the other hand, Z++ also brings significant advantages: it is
formal, object-oriented, and provides support for specifying real-
time systems. In particular, in order to capture the temporal
properties of the systems we employ within the frame of Z++
Jahanian and Mok’s Real-Time Logic (RTL) [16] and make use of
the extensions to RTL proposed by Kevin Lano [21]. A key issue
of the approach is the harmonized use of the two notations, which
can be greatly helped by a bi-directional link between the
diagrammatic and formal parts of the system’s model. For this
purpose, translation algorithms between a subset of the UML part
of the mode! and its Z++ counterpart have been designed. These
algorithms, which support the formalization and deformalization
processes and address both structural and behavioral aspects of
the system, are described in detail in [10]-

The present paper, in its remaining part, is structured as follows.
Section 2 describes the proposed procedural frame in terms of
modeling activities performed and artifacts produced, suggests a
regular flow of activities, and considers alternative modeling
scenarios. Section 3 introduces Harmony, the environment
designed to support the proposed specification approach. The
concluding section 4 analyzes the status of our work, compares it
with related integration strategies, and indicates several aspects of
our work that we intend to improve in the near future.
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2. THE PROCEDURAL FRAME

The specification approach presented in this paper is focused on
the structural and behavioral aspects of systems and is aimed at
developing object-oriented models in e rigorous, pragmatic, and
efficient way. For practical reasons, a number of modeling
activities supported by UML are not included in the procedural
frame dcscribed below and their comresponding artifacts
(specifically, diagrams) are not incorporated in the integrated
UML/Z++ model. This simplification is possible because the
above diagrams are either parallel to some already incorporated
(specifically, collaboration diagrams are essentially re-writings of
sequence diagrams), can be ignored without losing significant
insight into the system (activity diagrams), or can be deferred to
later development stages that are beyond the scope of the
proposed approach (component diagrams and deployment
diagrams).

By considering the usual 4+1 architectural views approach
advocated by many (e.g., [7], [30]), only the user view, the
structural view, and the behavioral view are dealt with in our
approach, and from the diagrams that support the architectural
views only the use case diagrams, the class diagrams, the
sequence diagrams, and the state diagrams are employed. In short,
we model the architecture of the system using 2+1 views, a
reduction of the generic 4+1 views approach that nevertheless
allows a reliable description of the system. It is worth noting that
many of the UML applications described in the recent literature
focus typically on use cases, scenarios, class diagrams, and
statecharts diagrams (e.g., [3], [15]), [18]), and [33]) and less
frequently other types of diagrams are also presented (e.g-, [4] and
[12]). In fact, having the class organization completed in terms of
both attributes and operations allows the further development of
the system possibly up to and including implementation. This is
not to say, however, that the omitted diagrams cannot be drawn if
necessary, but certain simplifications are needed in order to allow
the combined use of techniques in a manner which is not only
precise but also practical, lightweight, and rapid.

2.1 Artifacts

Starting from a set of requirements that describe the desired
properties of the system, the following five categories of artifacts
are developed, making up the combined semi-formal/formal
model of the system:

e Use case diagrams (UCD), describing the intended high-level
behavior of the system as seen from outside the system. These are
typical UML use case diagrams, each capturing a portion of the
system’s externally visible behavior and each containing a number
of use cases (UC) that detail this behavior;

e Scenarios (SC), specific sequences of actions involving the
system and the actors that interact with it. Scenarios, as pointed
out by Booch, “are to use cases what instances are to classes,
meaning that a scenario is basically one instance of a use case” [7,
pp- 225]. UML provides sequence and collaboration diagrams for
representing scenarios; however, these diagrams involve a high
level of details so we make a distinction between scenarios and
sequence diagrams. Specifically, we see a scenario as an informal,
analysis-level description of a particular sequence of actions
encompassed by a use case, while a sequence diagram is a
detailed, design-level description of the same thing in which



responsibilities for carrying on actions are assigned to individual
classes and objects (as opposed to the system as a whole);

® Sequence diagrams (SQD), developed using the UML notation
and providing a design-level representation of scenarios, as
described above;

® Class diagrams (CD), defining the high level architecture of the
system and consisting essentially of classes and relationships
among classes;

e Class compounds (COMP), each class compound containing a
regular class description (CLS) and the state diagram (CLSTD)
associated with the class. The notion of class compound is
introduced primarily for supporting the formalization process, but
it represents in general a simple yet useful extension of the
concept of class (*a class with enhanced description of
behavior”). The idea of a class compound comes primarily from
Z++, but it has also been inspired by Howerton and Hinchey, who
propose the combination of UML descriptions and Z
specifications in an approach that advocates different notations for
modeling different aspects of the system {i15]. (However,
Howerton and Hinchey do not propose the syntactical
concatenation of the UML class and state diagram constructs, and
do not suggest a name for their solution);

e Z++ specification (ZSPEC), consisting of a set of Z++ classes
(ZPPC), each Z++ class comresponding to a class from the UML
space. The Z++ specification as a whole is the formal counterpart
of the combined contents of the class diagrams that make up the
UML component of the system’s integrated model.

2.2 Activities

Figure 1 gives a diagrammatic description of the proposed
procedural frame in terms of modeling activities (steps) performed
and artifacts (products) obtained. Several conven-tions are used
in this figure:

e Activities are represented by rounded rectangles;

e Artifacts are represented by regular rectangles;

s Continuous, arrow-ended lines connect activities with their
output artifacts and artifacts with activities that use them as input;
s Dashed, arrow-ended lines represent a transfer from an activity
to another which does not necessarily require that artifacts are
obtained in the originating activity (the decision to move to
another activity can be based on the inspection of the already
existing artifacts associated with the current activity). These
dashed lines are typically used as feedback links in the iterative
development of the system’s model. For simplicity, forward
dashed links are not depicted in Figure 1 and feedback links from
activities 5A and 5B to activities 4A and 4B are also omitted;

e The steps are numbered and organised in five stages (or levels),
their ordering suggesting the typical flow of activities within the
modeling process;

o The set of diagrams obtained as a result of a specific activity in
stages 1 to 3 are generically denoted collection.

The diagram presented in Figure 1 is flexible enough Ip
accommodate various specification strategies and encompass
diverse modeling paths, as discussed more in the next subsection.
The activities included in our modeling approach are the
following:

® At stage 1, starting from the requirements set that describes the
desired system, a number of use cases that capture segments of
externally visible system functionality are identified, making up
the UC collection of the integrated model;
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Figure 1. The Procedural Frame

e At stage 2 use cases are employed to instantiate a number of
scenarios that will serve later for the identification of classes.
Normal scenarios (most likely to occur), as well as abnormal
scenarios (describing situations that diverge from the normal case)
are developed and included in the SC collection of the system’s
model;

e At stage 3, using the available scenarios two possibly
intertwined activities can take place: construction of class
diagrams (3A) and specification of sequence diagrams (3B). In
practice, the specification of sequence diagrams can be deferred
after 3A since in general it is easier to construct the class diagrams
by exploiting the information contained in scenarios (the class
diagrams may contain only the names of the classes, without other
details, while sequence diagrams necessarily include class and
object names as well as class operations). In fact, step 3B can be
skipped in certain situations, as discussed in section 2.3. The best
thing, however, is not to omit it, and to use it at least as a
“revision checkpoint,” with input from all subsequent levels;

e At stage 4 the CD collection and the SQD collection (if
available) provide the basis for the detailed specification of
classes. An argument can be raised about the development of
classes represented separately from the development of class
diagrams and, indeed, there is a blurred line between these two
activitics. We separate them for systematization purposes and
view the specification of class diagrams as an activity in which the
rough sketch of the system’s class structure is drawn (in terms or



classes, relationships, and cardinality constraints) while the
subsequent activities of UML and Z++ class elaboration are
concerned with the specification of class details (attributes,
operations, and constraints). Regarding the “parallel” steps 4A
(elaboration of UML class compounds) and 4B (elaboration of
Z++ specification) we note that they can be started and performed
simultaneously (this is the reason for placing them on the same
level) but the typical way is to perform step 4A first or to perform
only the step 4A and rely on the subsequent formalization of class
compounds (step 5A) to obtain the Z++ specification of classes;

e At stage 5 the formalization of selected UML class compounds
takes place in step SA by initially applying the algorithms for
automated translation and then by manually adding the necessary
details to the formal specification. This activity has the role of
producing rigorous descriptions of the system, captured in the

Z++ specification, and provides the strongest basis for refining the

model —-many ambiguities, omissions, and inconsistencies are
detected here. At the same level of modeling, deformalization of
classes initially written in Z++ (step 5B) can be performed
following the set of guidelines suggested in [10].

23 “Regular” and “Irregular” Sequences of
Modeling Activities
A graph-like representation of the regular sequence of madeling
activities, which for simplicity omits the products of cach activity,
is represented in Figure 2. (In UML terms, this can be seen as the
normal scenario of the use case represented by the procedural
frame described in Figure 1). The modeling stages are
highlighted, the direct flow of activities is emphasized by a
continuous line, and the iterative revisions of specifications are
indicated by a dashed line. This scenario, which in its “forward
segment” (that is, not including feedback links) does not
encompass the deformalization activity (reserved for “irregular”
modeling scenarios), can be succinctly described by the sequence
<1, 2, 3A, 3B, 4A, 5A, 4B>, where numbers are associated with
activities as indicated in Figure 1.

The procedural frame presented in Figure 1 encompasses different
orderings of activities and we do not claim that the “regular” flow
suggested above is the unique or the most effective way of
developing the integrated UML/Z++ model of the system. There
are other alternatives possible, and depending on the particular
application, on the experience of the development team, as well as
on a series of other factors, including project priorities and
deadlines, one of these alternatives may be better suited for the
particular needs of a given application.

Among other possible alternatives of sequencing the modeling
activities, the “irregular” scenario shown in Figure 3 and
described in its forward segment by the sequence <1, 2, 3A,
4Aj4B, 5A|5B, 3B> (where the symbol || indicates parallel
activities) deserves a brief examination. (Notice that in order to
show that 3B comes after 5A and 5B a compromise regarding the
notation has been made in Figure 3, where thick dashed lines are
used as part of the forward segment; they are nevertheless
different from the regular feedback connections, which continue
to be represented by thin dashed lines). Two elements are worth
noting in this scenario: first, the fact that the description of classes
proceeds in parallel in UML and Z++ and, second, that step 3B
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comes last in the forward part of the scenario. The first element
points to the fact that various teams of specifiers may have various
backgrounds and while some would favor the use of UML, some
may prefer employing Z++ as their main specification notation.
Thus, it is possible to proceed first with the specification of
classes in Z++, followed by descriptions in UML and, in fact, it is
theoretically possible to have all classes specified in Z++ and not
at all in UML. The second clement illustrates the idea that
sequence diagrams can be used as means for fine-tuning the
specification, and thus can be the last set of artifacts developed in
the modeling process. Of course, additional refinements for
improving the accuracy of the model follow in any case.

Another example or imregular modeling scenario, which stresses
rapid development is, in its forward segment, <2, 3A, 4A, 5A,
4B>, meaning that the definition of use cases (step 1) and the
specification of sequence diagrams (step 3B) are omitted. In short,
this modeling alternative takes a “fast-track route” and, after the
elaboration of scenarios, class diagrams are developed, UML
classes are detailed, the formalization process takes place, and the
detailed specification of Z++ classes is completed. In fact, this
modeling scenario represents a shorter version of the regular flow
of modeling activities suggested previously. While we recommend
the regular alternative described in conjunction with Figure 2, the
above shorter chain of activities may be used in certain
application contexts.
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3. THE SUPPORTING ENVIRONMENT

The Harmony environment, shown in Figure 4, is designed to
support the object-oriented modeling process presented in section
2 (the name of the environment reflects our goal of smoothly
integrating, or “harmonizing,” distinct specification languages).
The environment allows the development of specification
projects, which are sets of specifications represented in
diagrammatical (UML) and mathematical (Z++) forms. These
projects consist of the artifacts described previously in the paper.
One of the distinguishing characteristics of Harmony is its
“monolithicity,” meaning that the environment is able to sustain
the complete UML. and Z++ combined specification of the system.
Through its capabilities for interfacing with external tools such as
programs for formal proof and formal refinement the environment
is also capable in principle to support the further development of
the system’s model. As shown in Figure 4, it also monolithically
integrates the two “spaces,” the graphical space of UML and the
textual, formal space of Z++. On a detailed level, support for class
compounds is available in the form of a splitter bar that divides
the screen area of each class compound in two sections, one for
the CLS and the other CLSTD components of the compound.

Figure 4 presents Harmony with a project loaded and several of
the project’s components visible in the UML and Z++ spaces.
More precisely, the Elevator class compound is shown (partially)
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in the UML Space and the corresponding Elevator Z++ class is
displayed on the top tabbed-pane of the Z++ Space. As seen in the
figure, the environment consists of a main window, divided into
three principal panes —the Project Pane, the UML Space, and the
Z++ Space-- and includes several other GUI elements such as a
message console and a status bar. Environment specific toolboxes,
such as the Z++ Symbol Box shown in Figure 4 on the left-hand
side of the Z++ Space, are also included in Harmony.

Regarding the three main panes of the environment it is useful to
note that the project’s orpanization is displayed in the Project
Pane, work on the semi-formal model is performed in the UML
Space, and the development of the formal specifications takes
place in the Z++ Space. All these three panes can be individually
tumed on or off, thus allowing the development of specifications
either in only one of the spaces or in “parallel” in both the UML
and Z++ spaces.

Since an intense work on UML class compounds and on their
corresponding Z++ classes is expected, a synchronization
mechanism of on-screen presentation of the corresponding COMP
and ZPPC constructs is provided. This mechanism defines a mode
of operation that can be viewed as a manifestation —in our
terminology— of the tandem principle, meaning that two entities
(in Hammony’s case, a UML class compound and its
corresponding Z++ class) are collaborating to accomplish a
common goal (this is the case in Figure 4, where the Elevator
COMP and the Elevator ZPPC are the top tabbed-panes of the
UML and, respectively, Z++ spaces). On practical terms, this
mechanism allows the simultancous development or the simple
inspection of a class in both its UML and Z++ representations.

Automated translations between UML and Z++ models, applied
to subsets of the models and involving inherent simplifications,
can be invoked through the menu bar or from the main toolbar
(cube-shaped icons “Propagate to UML”™ and, respectively,
“Propagate to Z++ are placed on the main tool bar for this
purpose).

4. CONCLUSIONS

Although there are numerous approaches that integrate in various
levels graphical, semi-formal notations with elements of formal
techniques only few of them employ an object-oriented, Z-based
formalism in conjunction with a graphical notation. Moreover,
among the latter, only very few contain provisions for dealing
with real-time systems. To the best of our knowledge the closest
approaches to ours are France et al.’s formalization in Z of

Octopus models [13], Jia’s AML-based solution for exploiting
thethe strengths of both object-oriented and formal notations [17],
Kim and Carrington’s combined use of UML and Object-Z {20],
and Noe and Hartrum’s inclusion of formal specifications in
Rational Rose [24]). The only tool developed commercially to
support an object-oriented modeling approach and combine the
advantages of graphical, semi-formal notations with those of
formal notations is RoZeLink [28]. Nevertheless, our alternative
is distinct from all these approaches in at least one significant
way. Specifically, as opposed to [13], [17], and (24] we use an
object-oriented version of Z and in contrast to [13], [20], and [28]
we include in our approach provisions for dealing with time-
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Figure 4. The Harmony Environment

related properties of the systems (we rely on Z++’s capability of
dealing with real-time systemns via Jahanian and Mok’s Real Time
Logic [16] and Lano’s extensions to RTL [21]). Also, the
Harmony environment distinguishes itself through its monolithic
construction, as described in Section 3 of this paper, and is
characterized by a tight kind of integration of notations that can
be found only in [28].

The design of Harmony has been completed, including its GUI
appearance, and detailed formalization algorithms have been
designed, implemented, and tested. The input, the output and
pseudo-code description of these algorithms, together with a Java
implementation of the algorithm for formalizing state diagrams
(AFSD) are presented in [10). The proposed modeling approach
has been exercised on several medium-size case studies, including
the Elevator case study from which the screenshot presented in
Figure 4 has been extracted. Details on the application of our
approach to the Elevator system are also provided in [10].

Further work is planned in several directions. In particular,
Harmony needs the refinement of its design and the completion of
its implementation, which will allow us to validate the useful
features of the environment and improve its functionality. Other
plans include the inclusion in Harmony of a syntax checker for
Z++, the integration of links to tools for formal refinement and
verification, the enhancement of the existing UML to Z++
transiation algorithms, and the use of the proposed approach and

1019

its accompanying environment for the specification of more
complex systems.
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