


critical sections o f  the software being developed [14]. As such, 
the correspondence between the diagnmunatic (scurd-formal) and 
textual (formal) parts of  a specification is typically limited to a 
subset of  the speeification's components. 

Depending on the number o f  notations involved, a combination of  
notations can take the form of  either a dual-notation integration 
(e.g., [6], where UML is combined with SDL) or of  a multiple- 
notation integration (e.g., Zave and Jackson's multi-paradigm 
specification technique [34], Paige's pure formal method 
integration strategy [25], and Day and Joyce's framework solution 
for integrating multiple notations [I 1]). Generally speaking, the 
integration does not necessarily involve aformal/semi.fornml (or 
informal) combination; it can be of  the formal/formal type (e-g., 
[31], where the dynamic aspects of  RTS are modeled using 
Statecharts and FNLOG) or semi-formal~semi-formal (e.g., [29], 
where an integration UM]JLean Cuisine+ is proposed for 
supporting the early stages of  interactive system design). 

We believe that the integration of  notations can provide a viable 
solution for modeling complex systems e ~ i a l l y  because various 
aspects of  the systems need be described in various ways (for a 
classification and examination of  forms of  method 
complementarity, primarily in terms of  notations and processes, 
we suggest [26]). In particular, in the case of formal/semi-formal 
integrations, it is always possible to "fine tune" the formality level 
and adjust the balance between the less rigorous diagrammatic 
representations and the formal specifications to best handle the 
requirements of  a specific application. 

Within this context, we propose an object-oriented specification 
approach bescd on the combined used of  UML [32] and Z-H- [21] 
and aimed at the construction o f  real-time systems. UML has been 
incorporated in our approach for obvious reasons- it has 
remarkable modeling power, is extensible, enjoys a large 
acceptance in the soRware development community, and has 
become the standard notation for object-oriented development. 
On the other hand, Z-H- also brings significant advantages: it is 
formal, object-oriented, and provides support for specifying real- 
time systems. In particular, in order to capture the temporal 
properties of  the systems we employ within the frame of  Z++ 
Jabanian and Mok's Real-Time Logic (RTL) [16] and make use of  
the extensions to RTL proposed by Kevin Lane [21]. A key issue 
of  the approach is the harmonized use o f  the two notations, which 
can be greatly helped by a bi-directional link between the 
diagrammatic and formal parts o f  the system's model. For this 
purpose, translation algorithms between a subset of the UML part 
of  the model and its Z++ counterpart have been designed. These 
algorithms, which support the formalization and deformalization 
processes and address both structural and behavioral aspects of  
the system, are described in detail in [10]. 

The present paper, in its remaining part, is structured as follows. 
Section 2 describes the proposed procedural frame in terms of  
modeling activities performed and att i la,s  produced, suggests a 
regular flow of  activities, and considers alternative modeling 
scenarios. Section 3 inUroduces Harmony, the environment 
designed to support the proposed specification approach. The 
concluding section 4 analyzes the status of  our work, compares it 
with related integration strategies, and indicates several aspects of  
our work that we intend to improve in the near future. 

2. THE PROCEDURAL FRAblE 
The specification approach presented in this paper is focused on 
the structural and behavioral aspects o f  systems and is aimed at 
developing object-oriented models in a rigorous, pragmatic, and 
efficient way. For practical reasons, a number o f  modeling 
activities supported by UML are not included in the procedural 
frame described below and their corresponding artifacts 
(specifically, diagrams) are not incorporated in the integrated 
UML/Z++ model. This simplification is possible because the 
above diagrams are either parallel to some already incorporated 
(specifically, collaboration diagrams are essentially re-writings o f  
sequence diagrams), can be ignored without losing significant 
insight into the system (activity diagrams), or can be deferred to 
later development stages that are beyond the scope of  the 
proposed approach (component diagrams and deployment 
diagrams). 

By considering the usual 4+1 architectural views approach 
advocated by many (e.g., [7], DO]), only the user view, the 
structural view, and the behavioral view are dealt with in our 
approach, and from the diagrams that support the architectural 
views only the use case diagrams, the class diagrams, the 
sequence diagrams, and the state diagrams are employed. In short, 
we model the architecture of  the system using 2+1 views, a 
reduction of  the generic 4+1 views approach that nevertheless 
allows a reliable description o f  the system. It is worth noting that 
many of  the UML applications described in the recent literature 
focus typically on use cases, scenarios, class diagrams, and 
statecharts diagrams (e.g., [3], [15], [18], and [33]) and less 
frequently other types of  diagrams are also presented (e.g., [4] and 
[12]). In fact, having the class organization completed in terms of  
both attributes and operations allows the further development of  
the system possibly up to and including implementation. This is 
not to say, however, that the omitted diagrams cannot be drawn if 
necessary, but certain simplifications are needed in order to allow 
the combined use of  techniques in a manner which is not only 
precise but also practical, lightweight, and rapid. 

2.1 Artifacts 
Starting from a set o f  requirements that describe the desired 
properties o f  the system, the following five categories of  artifacts 
are developed, making up the combined semi-formal/furmal 
model oftbe system'. 
• Use case diagrams (UCD), describing the intended high-level 
behavior o f  the system as seen from outside the system. These are 
typical UML use case diagrams, each capturing a portion of  the 
system's externally visible behavior and each containing a number 
of  use cases (UC) that detail this behavior; 
• Scenarios (SC), specific sequences o f  actions involving the 
system and the actors that interact with it. Scenarios, as pointed 
out by Bench, "are to use cases what instances are to classes, 
meaning that a scenario is basically one instance of  a use case" [7, 
pp. 225]. UML provides sequence and collaboration diagrams for 
repi~senting scenarios; however, these diagrams involve a high 
level o f  details so we make a distinction between scenarios and 
sequcnee diagrams. Specifically, we see a scenario as an informal, 
analysis-level description of  a particular sequence of  actions 
encompassed by a use case, while a sequence diagram is a 
detailed, design-level description o f  the same thing in which 
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responsibilities for carrying on actions are assigned to individual 
classes and objects (as opposed to the system as a whole); 
• S e q u e n c e  d i a g r a m s  (SQD), developed using the UML notation 
and providing a design-level representation o f  scenarios, as 
described above; 
• C lass  d i a g r a m s  (CD), defining the high level architecture o f  the 
system and consisting essentially of  classes and relationships 
among classes; 
• Class  c o m p o u n d s  (COMP), each class compound containing a 
regular class description (CLS) and the state diagram (CLSTD) 
associated with the class. The notion of  class compound is 
introduced primarily for supporting the formalization process, but 
it represents in general a simple yet useful extension of  the 
concept of  class ("a class with enhanced description o f  
behavior' '). The idea o f  a class compound comes primarily from 
Z-H-, but it has also been inspired by Howerton and Hinchey, who 
propose the combination o f  UML descriptions and Z 
specifications in an approach that advocates different notations for 
modeling different aspects o f  the system [15]. (However, 
Howerton and Hinchey do not propose the syntactical 
concatenation o f  the UML class and state diagram constructs, and 
do not suggest a name for their solution); 
• Z+ + spec i f i ca t ion  (ZSPEC), consisting o f  a set o f  Z+4- classes 
(ZPPC), each Z-l-l- class corresponding to a class from the UML 
space. The Z++ specification as a whole is the formal counterpart 
o f  the combined contents o f  the class diagrams that make up the 
UML component o f  the system's integrated model_ 

2.2 Activities 
Figure 1 gives a diagrammatic description o f  the proposed 
procedural frame in terms o f  modeling act iv i t ies  (steps) p e r f o r m e d  
and ar t i fac t s  (products)  obtained. Several conven-tinns are used 
in this figure: 
• Activities are represented by rounded rectangles; 
• Artifacts are ~presented by regular rectangles; 
• Continuous, arrow-ended lines connect activities with their 
output artifacts and artifacts with activities thai use them as input; 
• Dashed, arrow-ended lines represent a transfer from an activity 
to another which does not necessarily require that artifacts are 
obtained in the originating activity (the decision to move to 
another activity can be based on the inspection o f  the already 
existing a r t i ~  associated with the current activity). These 
dashed lines are typically used as feedback links in the iterative 
development o f  the system's model. For  simplicity, forward 
dashed links are not depicted in Figure 1 and feedback links from 
activities 5A and 5B to activities 4A and 4B are also omitted; 
• The steps are numbered and organised in five stages (or levels), 
their ordering suggesting the typical flow o f  activities within the 
modeling process; 
• The set o f  diagranis obtained as a result o f  a specific activity in 
stages 1 to 3 are generically denoted col lect ion.  
The diagram presented in Figure 1 is flexible enough to 
accommodate various specification strategies and encompass 
diverse modeling paths, as discussed more in the next subsection. 
The activities included in our modeling approach are the 
following: 
• At stage l, starting from the requirements set that describes the 
desired system, a number of  use cases that capture segments o f  
externally visible system functionality are identified, making up 
the UC collection o f  the integrated model; 
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Figure 1. The Procedural Frame 

• At stage 2 use cases are employed to instantiate a number o f  
scenarios that will serve later for the identification o f  classes. 
Normal scenarios (most likely to occur), as well as abnormal 
scenarios (describing situations that diverge from the normal case) 
are developed and included in the SC collection o f  the system's 
model; 
• At stage 3, using the available scenarios two possibly 
intertwined activities can take place: construction o f  class 
diagrams (3A) and specification o f  sequence diagrams (3B). In 
practice, the specification o f  sequence diagrams can be deferred 
after 3A since in general it is easier to construct the class diagrams 
by exploiting the information contained in scenarios (the class 
dialgnims may contain only the names of  the classes, without other 
details, while sequence diagrams necessarily include class and 
object names as well as class operations). In fact, step 3B can be 
skipped in certain situations, as discussed in section 2.3. The best 
thing, however, is not to omit it, and to use it at Least as a 
"revision checkpoint," with input from all subsequent levels; 
• At stage 4 the CD collection and the SQD collection (if 
available) provide the basis for the detailed specification of  
classes. An argument can be raised about the development o f  
classes represented separately from the development o f  class 
diagrams and, indeed, there is a blurred line between these two 
activities. We separate them for systemeaization purposes and 
view the specification o f  class diagrams as an activity in which the 
rough sketch o f  the system's class structure is drawn (in t~i,,s or 
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classes, relationships, and cardinality constraints) while the 
subsequent activities of  UML and Z++ class claboration are 
concerned with the specification o f  class details (attributes, 
operations, and constraints). Regarding the "parallel" steps 4A 
(elaboration of UML class compounds) and 4B (elaboration of  
Z++ specification) we note that they can be started and performed 
simultaneously (this is the reason for piecing them on the same 
level) but the typical way is to perform step 4A first or to perform 
only the step 4A and rely on the subsequent formalization o f  class 
compounds (step 5A) to obtain the Z++ specification o f  classes; 
• At stage 5 the formalization o f  selected UML class compounds 
takes piece in step 5A by initially applying the algorithms for 
automated translation and then by manually adding the necessary 
details to the formal specification. This activity has the rule of  
producing rigorous descriptions of  the system, captured in the 
Z++ specification, and provides the strongest basis for refining the 
model -many  ambiguities, omissions, and inconsistencies are 
detected here. At the same level of  modeling, deformalizatinn of 
classes initially written in Z++ (step 5B) can be performed 
following the set of  guidelines suggested in [1(3]. 

2.3 "Regular" and "lrregul,~r" Sequences of 
Modeling Activities 

A Braph-like representation of  the regular sequence of  modeling 
activities, which for simplicity omits the products of  ¢ech activity, 
is represented in Figure 2. (In UML terms, this can be seen as the 
normal scenario of  the use case represented by the procedural 
frame described in Figure 1). The modeling stages are 
highlighted, the direct flow of  activities is emphasized by a 
continuous line, and the iterative revisions of specifications are 
indicated by a dashed Iinc. This ~enario, which in its "forward 
segment" (that is, not including feedback links) does not 
encompass the defommlizatiun activity (reserved for "irregular" 
modeling scenarios), can be suc~octly described by the sequence 
<1, 2, 3A, 3B, 4A, 5A, 4B>, where numbers are associated with 
activities as indicated in Figure 1. 

The procedural frame presented in Figure 1 encompasses different 
orderings o f  activities and we do not claim that the '~'egular" flow 
suggested above is the unique or the most effective way of  
developing the integrated UML/Z++ model of  the system. There 
are other alternatives possible, and depending on the particular 
application, on the experience of  the development team, as well as 
on a series of  other factors, including p ro jm  priorities and 
deadlines, one of  these alteroatives may be better suited for the 
particular needs of  a given application. 

Among other possible alternatives o f  sequencing the modeling 
activities, the "irregular" scenario shown in Figure 3 and 
described in its forward segment by the sequence <1, 2, 3A, 
4AI[4B, 5AII5B, 313> (where the symbol II indicates parallel 
amivities) deserves a brief examination. (Notice that in order to 
show that 3B comes after 5A and 5B a compromise regarding the 
notation has been made in Figure 3, where thick dashed lines are 
used as pert of  the forward segment; they are nevertheless 
different fi'om the regular feedback connections, which continue 
to be represented by thin dashed lines). Two elements are worth 
noting in this scenario: first, the fa~t that the description of  classes 
proceeds in parallel in UML and Z++ and, second, that step 3B 
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Figure 2. Regular Sequence of Modeling Aetivities 

comes last in the forward part o f  the scenario. The first element 
points to the fact that various teams ofslmcifiers may have various 
backgrounds and while some would favor the use of  UML, some 
may prefer employing Z++ as their main specification notation. 
Thus, it is possible to proceed first with the specification of  
classes in Z++, followed by descriptions in UML and, in fact, it is 
theoretically possible m have all classes specified in Z++ and not 
at all in UML. The second element illustrates the idea that 
sequence diagrams can be used as means for fine-tuning the 
specification, and thus can be the last set of  artifacts developed in 
the modeling process. Of  course, additional refinements for 
improving the accuracy of  the model follow in any case. 

Another example or irregular modeling scenario, which messes 
rapid development is, in its forward segment, <2, 3A, 4A, 5A, 
4B>, meaning that the definition o f  use cases (step 1) and the 
specification o f  sequence diagrams (step 3B) are omitted. In short, 
this modeling alternative takes a "fast-track mute" and, after the 
elaboration o f  scenarios, class diagrams are developed, UML 
classes are detailed, the formalization process takes place, and the 
detailed specification of  Z++ classes is completed. In fact, this 
modeling scenario represents a shorter version of  the regular flow 
of  modeling activities suggested previously. While we recommend 
the regular alternative described in conjunction with Figure 2, the 
above shorter chain of  activities may be used in certain 
application contexts. 
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3. T H E  S U P P O R T I N G  E N V I R O N M E N T  
The Harmony environment, shown in Figure 4, is designed to 
support the object-oriented modeling process presented in section 
2 (the name of  the environment reflec~_s our goal of  smoothly 
integrating, or "harmonizing," distinct specification languages). 
The environment allows the development of specification 
projects, which are sets of  specifications represented in 
diagrmnmatical (UML) and mathamatical (Z++) forms. These 
projects consist of  the artifacts described previously in the paper. 
One of the distinguishing characteristics of Harmony is its 
"monolithicity," meaning that the environment is able to sustain 
the complete UML and Z++ combined specification of  the system. 
Through its capabilities for interfacing with external tools such as 
programs for formal proof and formal refinement the environment 
is also capable in principle to support the further development of  
the system's model. As shown in Figure 4, it also monolithically 
integrates the two "spanes," the graphical space of  UML and the 
textual, formal space of Z++. On a detailed level, support for class 
compounds is available in the form of a splitter bar that divides 
the screen area of  each class compound in two sections, one for 
the CLS and the other CLSTD components of  the compound. 

Figure 4 presents Harmony with a project loaded and several of  
the proje~zt's components visible in the UML and 2;++ spares. 
More precisely, the Elevator class compound is shown (partially) 

in the UML Space and the corresponding Elevator Z++ class is 
displayed on the top tabbed-pane of  the Z++ Space. As seen in the 
figure, the environment consists of  a main window, divided into 
three principal panes - the  Project Pane, the UML Space, and the 
Z++ Space-- and includes several other GUI elements such as a 
message console and a status bar. Environment specific toolboxes, 
such as the Z-H- Symbol Box shown in Figure 4 on the left-hand 
side of the Z++ Space, are also included in Harmony. 

Regarding the three main panes of the environment it is useful to 
note that the project's organization is displayed in the Project 
Pane, work on the semi-formal model is performed in the UML 
Space, and the development of the formal specifications takes 
place in the Z++ Space. All these three panes can be individually 
turned on or off, thus allowing the development of  specifications 
either in only one of  the spac~ or in ~parallei" in both the UML 
and Z++ spaces. 

Since an intense work on UML class compounds and on their 
corresponding Z++ classes is expected, a synchronization 
mechanism of o n - s ~ e n  presentation of  the corresponding COMP 
and ZPPC constructs is provided. This mechanism defines a mode 
of  operation that can be viewed as a manifestation - i n  our 
terminology- of  the tandem principle, meaning that two entities 
(in Harmony's case, a UML class compound and its 
corresponding Z++ class) are collaborating to accomplish a 
common goal (this is the case in Figure 4, where the Elevator 
COMP and the Elevator ZPPC are the top tabbed-panes of  the 
UML and, respectively, Z++ spaces). On practical terms, this 
mechanism allows the simultaneous development or the simple 
inspection of a class in both its UML and Z++ representations. 

Automated translations between UML and Z++ models, applied 
m subsets of  the models and involving inherent simplifications, 
can be invoked through the menu bar or from the main tonlbar 
(cube-shaped icons "Propagate to UML" and, respectively, 
"Propagate to Z++ are placed on the main tool bar for this 
purpose). 

4. C O N C L U S I O N S  
Although there are numerous approaches that integrate in various 
levels graphical, semi-formal notations with elements of formal 
techniques only few of  them employ an object-oriented, Z-based 
formalism in conjunction with a graphical notation. Moreover, 
among the latter, only very few contain pmvisinns for dealing 
with real-time systems. To the best of  our knowledge the closest 
approaches to ours are France et al.'s formalization in Z of  
Octopus models [13], Jia's AML-based solution for exploiting 
thethe strengths of both object-oriented and formal notations [17], 
Kim and Cerrington's combined use of  UML and Object-Z [20], 
and Nee and Hartrum's inclusion of  formal specifications in 
Rational Rose [24]. The only tool developed commercially to 
support an object-orient~! modeling approach and combine the 
advantages of  graphical, semi-formal notations with those of 
formal notations is RoZeLink [28]. Nevertheless, our alternative 
is distinct from all these approaches in at least one significant 
way. Specifically, as opposed to [13], [17], and [24] we use an 
object-oriented version of  Z and in contrast to [13], [20], and [28] 
we include in our approach provisions for dealing with time- 

1018 



IP sa uc co~tuon 
t I ~ u ~ m ~ m m  

I P l e c c ~  
U mn,dmm, amq.m 

'P m OuUm ~qumma 
• f l m ~  Irnm Top f lmrJ  
0 R m m  Imm Top ~ 1  

s ~  nwn ald~ fie 
a,m aa eoba~o. 
e . ~  ~as, a ~ one ~ u ~  

m ~lev~ 
mac 

• . _~ .  . ,  

Elmmlm' 

waNI i~ 
r m ;  n l l l m l  I~ 
rimed: , n ~ e ~  ~ 
pmit~u- ,~:  mnla~l  m l l  

r ~ m l a 4 ~ :  ~ lWam lal I 

u . p T o T l ~  

f . o v n ~  

all tr ~ l ~ m ~  
m~ m l  

1 
m 

. .  
w I m ~ m ~  
/ 

~ ,  q p a m m ~ l m ~ a  
Tl~m 
I 
I 

i : m ~ l ;  

e u r m m  : 

a w ~ s  : m C m ;  

.,-~,Jmfaqnm~ ; 

~ : ~  
~ : ~  

O l p x i m ' l  

~ :  ..mS 
Jr, o p  : - * ;  

mlg1~mqlmL m ; 
w x l a r . d m ~ s  - ~  ; 

q l g l ~  S-NzP01 

Figure 4, The Harmony Environment 

related properties of thc systems (wc rely on Z++'s capability of 
dealing with real-time systems via Jahanien and Mok's Real Time 
Logic [16] and Lano's extensions to RTL [21]). Also, the 
Harmony environment distinguishes itself through its monolithic 
construction, as described in Section 3 of this paper, and is 
characterized by a tight kind of integration of notations that can 
be found only in [28]. 

The design of Harmony has been completed, including its GUI 
appearance, and detailed formalization algorithms have been 
designed, implemented, and tested. The input, the output and 
pseudo-code description of these algorithms, together with a Java 
implementation of the algorithm for formalizing state diagrams 
(AFSD) are presented in [10]. The proposed modeling approach 
has been exercised on several medium-size case studies, including 
the Elevator case study from which the sereenshot presented in 
Figure 4 has been extracted. Details on the application of our 
approach to the Elevator system are also provided in [10]. 

Further work is planned in several directions. In particular, 
Harmony needs the refinement of its design and the completion of 
its implementation, which will allow us to validate the useful 
features of the environment and improve its functionality. Other 
plans include the inclusion in Harmony of a syntax checker for 
Z-t-t-, the integration of links to tools for formal refinement and 
verification, the enhancement of the existing UML to Z++ 
translation algorithms, and the use of the proposed approach and 

its accompanying environment for the specification of more 
complex systems. 
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