

Specification of the Verity
Learning Companion and Self-Assessment Tool

Sergiu Dascalu* Daniela Saru** Ryan Simpson* Justin Bradley* Eva Sarwar* Joohoon Oh*

 * Department of Computer Science ** Dept. of Control and Industrial Informatics
 University of Nevada, Reno Faculty of Automatic Control & Computers
 1664 N. Virginia St. University Politehnica of Bucharest
 Reno, NV, USA Sp. Independentei 313, Bucharest, Romania

Abstract

In this paper, the specification of Verity, a web-
based instructional tool, is presented. Verity is
intended to be used as a learning assistant and
self-assessment tool, more than a web-based
testing system. This represents a new approach
to web-based instruction. Specifically, the
purpose of the Verity software tool is twofold:
first, to assist the students in their study by
providing supporting information, sample
examples, exercises and problems related to a
given course and, second, to allow the students
self-evaluate their knowledge of course material
through sets of multiple-choice questionnaires.
Both assistance from the instructor to the
student and feedback from the students to the
instructor are supported by a web-based
implementation solution. Verity’s main
components are described in the paper and the
tool’s functionality is outlined. A discussion of
possible extensions is also included.

Keywords: computer-aided education, software
tool, requirements specification, use cases,
scenarios, web application, UML.

1 Introduction

Verity1, whose name is intended to suggest

an accurate, objective evaluation of the students’
level of knowledge and study progress, is a web-
based learning companion and self-assessment
tool designed to assist students in their study by
providing course material for study as well as
tests related to course topics.

1) This project has been supported in part by an
Instructional Enhancement Grant from the
University of Nevada, Reno.

 In summary, the Verity software package
consists of three main components: the
instructor’s module, the student’s module, and
an information repository for course-related
material.
 The information repository is the linking
component of the package, a component that
stores study material provided by the instructor,
results of students’ evaluations, as well as
questions from the students and answers given
by the instructor to questions.
 The instructor’s module allows the
introduction of course-related study material in
the system, material which can be used by
students in their learning process and self-
evaluation.
 The student’s module supports the
following: retrieval of key concepts, principles
and methodological instructions, retrieval of
hints and sample solutions for exercises and
problems, structured communication with the
instructor, generation of questionnaires for self-
evaluation, and calculation and archival of
student test results. More details on Verity
components and functionality are provided later
in the paper.

Three observations are worth noting
regarding this project. First, although
computerized tests based on multiple-choice
questionnaires already exist (e.g., GRE [1],
TOEFL [2], various tests for professional
certification [3, 4]) our proposed package is
novel in that it allows for assistance and
guidance from the instructor via a two-way
communication mechanism. Verity’s intended
destination as learning assistant and self-
assessment tool – as opposed to just generating

the questionnaires and evaluating the answers –
also represents a new way of approaching the
problem. Second, although initially we intend to
use the Verity tool within the frame of one of the
Computer Science capstone courses offered at
the University of Nevada, Reno (UNR), the
range of courses which can benefit from this tool
is practically endless. Due to its flexibility and
generality, the Verity package can be
particularized for any given course. Third, the
proposed package’s possibilities for extension
are numerous. For instance, within a larger
context and time-span the Verity software can
evolve into a Professional Study Companion and
Self-Evaluator with high marketability potential.
Other possible extensions of Verity are
discussed later in the paper.

From a development point of view, the
Verity software has been built following a
simplified (due to time constraints) version of
the Unified Process (UP) [5] and its model has
been represented using constructs of the Unified
Modeling Notation (UML) [6, 7]. Guidelines
regarding both the develop-ment process and the
modeling notation have been taken from [8].

The remaining of this paper is structured as
follows: Section 2 presents Verity’s most
important functional and non-functional
requirements, Section 3 provides details of use
case modeling by showing the Verity’s use case
diagram and sample use cases, Section 4
highlights several aspects of Verity’s high-level
architecture, Section 5 reports on the current
status of the tool and shows excerpts from the
tool’s user interface, Section 6 points to a series
of future extensions, and Section 7 concludes the
paper by summarizing our work and by
presenting our acknowledgements.

2 Requirements Specification

Before starting the specification of Verity
software, we have defined a series of functional
and non-functional requirements that need be
satisfied by the initial operational version of the
tool. In the following, using the practical,
efficient style proposed in [8], the most
important requirements for Verity, both
functional and non-functional, are presented.

2.1 Functional Requirements

 The following is a list of functional
requirements for the Verity learning companion
and self-assessment tool:

R01 Verity shall keep a record of instructor and

student accounts.
R02 Verity shall allow instructors to add,

modify, and delete questions in the
database.

R03 Verity shall support various types of
memos, including but not limited to: video
clips, audio clips, presentations, problem
sets, hint sets, solution sets, and links to
web sites with supplemental study
material.

R04 Verity shall allow instructors to add,
modify, and delete memos in the database.

R05 Verity shall support multiple-choice
questions with a single correct answer.

R06 Verity shall support at least three levels of
difficulty for questions. Each level of
difficult shall be reflected in a number of
specific points associated to a question of
that difficulty.

R07 Verity shall generate tests based on
student’s specification of the desired
number of questions in the test or of the
desired total points of the test.

R08 Verity shall determine the allowable time
for taking a test based on the difficulty of
questions included in the test.

R09 Verity shall provide correct answers to
questions.

R10 Verity shall calculate the scores of the
student tests.

R11 Verity shall record the scores of the
student tests.

R12 Verity shall provide a non-timed test mode
in which memos are available, and a timed
test mode in which memos are not
available.

R13 Verity shall allow instructors to see
individual student weighted test score
averages.

R15 Verity shall allow students to see their
weighted test score averages.

R16 Verity shall allow both instructors and
students to see weighted test score
averages for the class.

It is useful to note that in the above
requirements the term memo has been use in a
general way. In essence, a memo encapsulates a
piece or set of pieces of study-supporting
material presented in various formats
(specifically, text, audio, video or combinations
of these) and having various structures, for
example PowerPoint presentation, web-based
tutorial, web article, and so forth.

2.2 Non-Functional Requirements

Some of the most relevant non-functional
requirements for Verity are listed below:

T01 Verity shall be a web-based application.

T02 Verity shall be written in HTML,
JavaScript, Flash, MySQL and PHP4.

T03 Verity shall support at least 100 student
accounts.

T04 Verity shall support at least one instructor
account.

3 Use Case Modeling

 Early in the modeling process, Verity’s
functionality has been defined using use cases
and scenarios. The entire functionality of this
instructional tool is represented in the use case
diagram shown in Figure 1. A correspondence
between the functional requirements listed in
subsection 2.1 and the use cases shown in the
use case diagram can be easily established.

Fig. 1 Verity’s Use Case Diagram

For illustration purposes two of Verity use cases
are shown in a simplified form in Figs. 2 and 3.

Use case: AddQuestion

Use Case ID: UC02
Actors: Instructor
Preconditions:
1. The Instructor is logged on the Verity

instructor’s website.
2. The instructor has clicked on the link “Add

Question” from the main page of the
instructor’s website or has clicked on the
button “Reset Form” of the Add Question
page of the instructor’s website.

Flow of events:
1. The use case starts when the above

preconditions are met.
2. The system displays the Add Question page

with an entry form with fields for the text of
the question and the texts of four possible
answers. In addition, four radio buttons are
displayed for the specification of the correct
answer and a drop-down menu is available
for the specification of the question’s level of
difficulty.

3. The instructor fills out the texts of question
and of the four possible answers, selects the
radio button corresponding to the correct
answer, and selects the question’s level of
difficulty using the drop-down menu.

4. The instructor either clicks on the “Submit
Form” button, or clicks on the “Reset Form”
button, or closes the Add Question page.
 4.1 If the instructor clicks the “Submit

Form” button the question is saved in the
database.

 4.2 If the instructor clicks the “Reset Form”
button all the text fields are emptied and
the correct answer as well as the
question’s level of difficulty become
unspecified. The overall effect of this
action is to return to step 2 of the present
use case.

 4.3 If the instructor closes the Add Question
page then any information entered or
selected is not saved and the browser
returns to the main page of Verity’s
instructor’s website.

Fig. 2 The AddQuestion Use Case

Fig. 3 The SetupTest Segment of the

 DoTestMode Use Case

Due to space limitations only a very limited
description of the use cases developed for Verity
has been provided in this section. For the same
reason, scenarios, which are instances of use
cases, have not been presented either. However,
for specifying Verity’s behavior we have relied
significantly on both use cases and scenarios.

Use case: DoTestMode [SetupTest only]

ID: UC10
Actors: Student
Preconditions:
1. The student has logged on the Verity

student’s website.
2. The student has clicked on the “Test” link

or has canceled the taking of a test.
Flow of Events:
1. The use case starts when the above

preconditions are met.
2. The system displays the Setup Test page

with an entry form with fields for the
student to select a type of test, based on
either the total number of questions or the
total number of points desired.

3. The student enters either the total number
of questions or the total number of points
desired for the test.

4. The student either clicks the “Start Test”
button, or clicks the “Go Back” button, or
closes the Setup Test page.
4.1 If the student clicks on the “Start

Test” button then the system verifies
the entry provided.
4.1.1 If the entry is valid then the

system displays the Test page and
the taking of the test can start.

4.1.2 If the entry is invalid the system
displays a message indicating
why the student’s entry is invalid.
The student must then click the
“OK” button and return to step 2
of the current use case.

4.2 If the student clicks the “Go Back”
button or closes the Setup Test page
the system returns to the main page of
Verity’s student web-page.

4 Architectural Details

Because Verity is a web-based application
we have included in its specification several
modeling elements that depart somewhat from
the traditional, UML-supported representation of
object-oriented systems. In particular, we have
found useful the inclusion of a site map that
details the pages used in the Verity environment
(Fig. 4) and have provided descriptions for each
of these pages (program units). The description
of one of these pages is shown in Fig. 5. In
addition, given the data-intensive nature of this
application, the definition of all the tables used
in Verity to store information was necessary.

In our view, all these supplementary
components of the model fall under the
classification of specification, given that we use
the term specification in Alan Davis’ sense, that
of “a document containing a description” [9]. In
Verity’s case, the specification of the tool
encompasses descriptions pertaining to both
requirements analysis and software design.

5 Current Status

Although the focus of this paper has been on
the specification of Verity’s model, we note that
this instructional tool has reached recently its
implementation and testing stages, and a first
operational –albeit not fully complete– version
is currently available. There are still several
components of Verity’s software that need to be
finalized, in particular the generation and the
taking of tests, yet as proof of concept Verity
has largely achieved its initial goals. We
estimate about three more months of
implementation, testing, and data entry until a
fully functional version will be completed.

Snapshots from the current version of Verity
“in action” are provided in Fig. 6 (the student’s
interface) and Fig. 7 (the template for adding
questions). The first snapshot provides an
overview of Verity’s functionality (student side)
and thus complements the use case diagram
shown in Fig. 1, while the second snapshot
supplies a visual illustration for the use case
described in Fig. 2. For more information on the
Verity project the reader is referred to [10].

Fig. 4 Verity Site Map

Module Instructor

Unit Statistics

Type MYSQL for stored database on
students progress

Description

The instructor has to be logged on
the instructor’s website, and needs to
click on the ViewStudentStats link.
The system displays the page that
asks which student the instructor
would like to view statistics for.
Alternatively, the instructor can
select to view statistics for the entire
class. The system calculates the
selected type of statistics and
displays them graphically. If
applicable, the statistics also indicate
how a particular student performs as
compared with the class.

Fig. 5 Description of the Statistics Unit

6 Possible Extensions

As stated in the introduction of this paper,
we believe that the Verity tool has great
potential in terms of applicability and possible
extensions.

In what regards short term design and
implementation refinements, the Verity tool can
be expanded with numerous features and
options. In particular, we are looking at
enhancing the study and test modes of operation
in principal by expanding the types of memos
(study material) and by providing means for a
more elaborate definition of tests, for example
via controlled selection of questions from
various sections of the course. Also, there are
many aspects that we intend to address regarding
the definition and presentation of statistics on
tests taken and on the usage of the Verity tool.

Fig. 6 Verity: The Student’s Main Page

These are directions of investigation from
which the monitoring of the students’ study
progress as well the assessment of the
instructor’s contribution to off-class support of
the students’ learning could significantly benefit.

On a larger scale, the Verity tool offers the
basis for several more complex extensions,
which demand intensive research and
development. Such extensions encompass the
inclusion of an automated, intelligent learning
assistant based on an expert-system engine, the
development of a multi-user version of Verity
for collaborative study and assessment, and the
addition of a recommender system for web-wide
retrieval and classification of course-related
material.

7 Conclusions

In this paper the Verity tool has been
introduced via descriptions of requirements, use
case modeling, and high-level design. The main
goal of this instructional software package, that
of providing learning and self-assessment
support –as opposed to just offering a new
alternative for taking computerized tests– has
been emphasized and both Verity’s current
status and possible extensions have been pointed
out. Our belief is that significant practical
benefits can be obtained through further
enhancement of this tool dedicated to assisting
students in their learning process.

Acknowledgement: We would like to thank the
University of Nevada, Reno for the Instructional
Enhancement Grant that has supported the
development of Verity.

References

[1] Graduate Records Examination website,

http://www.gre.org/ttindex.html, accessed
May 4, 2003

[2] free-TOEFL.com website, http://www.free-
toefl.com/, accessed May 4, 2003.

[3] Sun Certification: Java Technology website
http://suned.sun.com/US/certification/java/
java_progj2se.html, accessed May 4, 2003.

[4] Microsoft Training and Certification website
http://www.microsoft.com/traincert/default.
asp, accessed May 4, 2003.

[5] I. Jacobson, G. Booch, and J. Rumbaugh,
The Unified Software Development Process,
Addison-Wesley, 1999.

[6] OMG’s UML Resource Page, accessed
April 25, 2003, http://www.omg.org/uml

[7] G. Booch, J. Rumbaugh, and I. Jacobson,
The Unified Modeling Language User
Guide, Addison-Wesley, 1998.

[8] J. Arlow and I. Neustadt, UML and the
Unified Process: Practical Object-Oriented
Analysis & Design, Addison-Wesley, 2002.

 [9] A. Davis, Software Requirements: Objects,
Functions & States, Prentice Hall, 1993.

[10]Team 9, Verity project, accessed May 2003,
www.cs.unr. edu/~rsimpson/home.html

Fig. 7 Verity: Instructor’s Add Question Page

