

A publication of ISCA*:

International Society for Computers
and Their Applications

INTERNATIONAL JOURNAL OF

COMPUTERS AND THEIR
APPLICATIONS

TABLE OF CONTENTS
 Page

Guest Editorial . 193
 Dunren Che, Parisa Ghodous, and Hassan Badir

Performance Evaluation of Distributed Storage Systems for Cloud Computing 195
 Sogand Shirinbab, Lars Lundberg, and David Erman

Budget Constrained Dataflow Scheduling for Minimized Completion Time on

the Cloud . 208
 Dabin Ding, Fei Cao, Dunren Che, Michelle M. Zhu, and Wen-Chi Hou

A Cooperative Game Theory-based Approach for Energy-Aware Job

Scheduling in Cloud . 221
 Mustafa Khaleel, Saad Alqithami, Michelle M. Zhu, Dunren Che, and Wen-Chi Hou

Moving Energy Consumption Control into the Cloud by Coordinating Services 236

 Genoveva Vargas-Solar, Catarina Ferreira da Silva, Parisa Ghodous, and
José-Luis Zechinelli-Martini

Data Warehouse Systems in the Cloud: Rise to the Benchmarking Challenge 245

 Rim Moussa and Hassan Badir

Index . 255

* “International Journal of Computers and Their Applications is abstracted and indexed in INSPECT and
Scopus.”

Volume 20, No. 4, Dec. 2013 ISSN 1076-5204

International Journal of Computers and Their Applications

ISCA Headquarters…•…64 White Oak Court, Winona, MN 55987…•…Phone: (507) 458-4517
E-mail: isca@ipass.net • URL: http://www.isca-hq.org

Copyright © 2013 by the International Society for Computers and Their Applications (ISCA)

All rights reserved. Reproduction in any form without the written consent of ISCA is prohibited.

A publication of the International Society for Computers and Their Applications

EDITOR-IN-CHIEF

Dr. Frederick C. Harris, Jr., Professor
Department of Computer Science and Engineering

University of Nevada, Reno, NV 89557, USA
Phone: 775-784-6571, Fax: 775-784-1877

Email: Fred.Harris@cse.unr.edu, Web: http://www.cse.unr.edu/~fredh

ASSOCIATE EDITORS

Dr. Abdullah Al-Dhelaan
King Saud University, Saudi Arabia
dhelaan@ksu.edu.sa

Dr. Hisham Al-Mubaid
University of Houston-Clear Lake, USA
hisham@uhcl.edu

Dr. Mark Burgin
University of California,
Los Angeles, USA
mburgin@math.ucla.edu

Dr. Sergiu Dascalu
University of Nevada, USA
dascalus@cse.unr.edu

Dr. Sami Fadali
University of Nevada, USA
fadali@ieee.org

Dr. Vic Grout
Glyndŵr University, Wrexham
UK
v.grout@glyndwr.ac.uk

Dr. Yi Maggie Guo
University of Michigan, Dearborn, USA
magyiguo@umich.edu

Dr. Wen-Chi Hou
Southern Illinois University, USA
hou@cs.siu.edu

Dr. Ramesh K. Karne
Towson University, USA
rkarne@towson.edu

Dr. Soo-Young Lee
Auburn University, USA
leesooy@eng.auburn.edu

Dr. Bruce M. McMillin
Missouri University of Science and
Technology, USA
ff@mst.edu

Dr. Michael Oudshoorn
Montclair State University, USA
michael.oudshoorn@gmail.com

Dr. Mehdi O. Owrang
The American University, USA
owrang@american.edu

Dr. George A. Papadopoulos
University of Cyprus, Cyprus
george@cs.ucy.ac.cy

Dr. Sakti Pramanik
Michigan State University, USA
pramanik@cse.msu.edu

Dr. Xing Qiu
University of Rochester, USA
xqiu@bst.rochester.edu

Dr. Abdelmounaam Rezgui
New Mexico Tech, USA
rezgui@cs.nmt.edu

Dr. Kenneth G. Ricks
The University of Alabama, USA
kricks@eng.ua.edu

Dr. James E. Smith
West Virginia University, USA
James.Smith@mail.wvu.edu

Dr. Shamik Sural
Indian Institute of Technology
Kharagpur, India
shamik@cse.iitkgp.ernet.in

Dr. Ramalingam Sridhar
The State University of New York at
Buffalo, USA
rsridhar@buffalo.edu

Dr. Junping Sun
Nova Southeastern University, USA
jps@nsu.nova.edu

Dr. Jianwu Wang
University of California, San Diege, USA
jianwu@sdsc.edu

Dr. Xiaoling Wang
East China Normal University, China
xlwang@sei.ecnu.edu.cn

Dr. Paul A. S. Ward
University of Waterloo, Canada
pasward@ccng.uwaterloo.ca

Dr. Yiu-Kwong Wong
Hong Kong Polytechnic University,
Hong Kong
eeykwong@polyu.edu.hk

Dr. Rong Zhao
The State University of New York
 at Stony Brook, USA
rong.zhao@stonybrook.edu

IJCA, Vol. 20, No. 4, Dec. 2013

ISCA Copyright© 2013

193

Guest Editorial:
Advances in Cloud Computing

Dunren Che*, Guest Editor
Southern Illinois University, Carbondale, IL 62901, USA

Parisa Ghodous†, Guest Editor

University Lyon 1, Villeurbanne, 69622, FRANCE

Hassan Badir‡, Guest Editor
Abdelmalek Essaadi University, Tangier, 9000, MOROCCO

Cloud Computing [1, 3] represents a major paradigm shift in
computing and information technology strategy. The “Cloud”
is a natural evolution of distributed computing and of
widespread adoption of the virtualization technology and SOA.
In Cloud Computing, IT-related capabilities and resources are
provisioned as services, via the Internet and with the essential
characteristics such as on-demand, elasticity, metered services,
and rapid provision (without requiring possession of detailed
knowledge of the underlying technology). The International
Journal of Computers and Their Applications (IJCA) has thus
scheduled this special issue in response to the fast development
and increased application of Cloud Computing. This issue
includes five selected articles on various topics of Cloud
Computing:

1. “Performance Evaluation of Distributed Storage Systems

for Cloud Computing,” by S. Shirinbab et al.
2. “Budget Constrained Dataflow Scheduling for Mini-

mized Completion Time on the Cloud,” by D. Ding et al.
3. “A Cooperative Game Theory-based Approach for

Energy-Aware Job Scheduling in Cloud,” by M. Khaleel
et al.

4. “Moving energy consumption control into the cloud by
coordinating services,” by G. Vargas-Solar et al.

5. “Data Warehouse Systems in the Cloud: Rise to the
Benchmarking Challenge,” by R. Moussa et al.

Load balancing (and load rebalancing) is a critical

management task in Cloud Computing. If properly done, it
helps to achieve the promised QoS (in contrast to otherwise
deteriorated performance especially on congested server
machines) and avoiding quick wearing out of heavily used
servers. The task of load balancing relates to many other
issues in Cloud Computing, for example, if properly done, it

* Department of Computer Science. Email: dche@cs.siu.edu.
† Department of Computer Science, LIRIS UMR 5205. Email:
ghodous@liris.cnrs.fr.
‡ LabTIC Lab., Departement of Computer Science SIC. Email:
hassan.badir@uae.ma.

may facilitate “green computing” – that is, when the task is
carried out toward consolidating sparse computing jobs (which
happens typically at non-peak times) onto fewer physical
server machines, this will result in more idle servers that can
be shut down in favor of reducing energy consumption. Load
balancing inevitably requires live migration of virtual servers,
which in turn requires the provision of large shared storage
systems accessible to all the physical servers involved in a
cloud. Distributed storage systems offer reliable and cost-
effective storage for large amounts of data and thus become a
favored choice for supporting live migration of virtual servers
in a Cloud. In article 1 of this special issue, the authors
evaluated four large distributed storage systems, and provided
insight that are helpful for potential cloud providers in future
consideration of a distributed storage systems for supporting
live migration of virtual servers in their clouds. The article
concluded that in general the multicast approach outperforms
another popular approach – Distributed Hash Table.

Cloud Computing has emerged as a promising computing
paradigm for large-scale data intensive applications and as an
ideal platform to face the unprecedented challenges of Big
Data and Big Data Analytics [2], which is currently an
exhortation in the discipline of Commuter Science and the IT
industry. Many such data intensive applications are best
modeled as complex Directed Acyclic Graphs (DAGs) [5],
which in essence are structured processing data flows with
arbitrary data operators being modeled as nodes and producer-
consumer interactions modeled as directed edges in the DAGs.
The optimization problem of dataflow scheduling on clouds is
a very challenging task. The optimization must satisfy a
variety of objectives and constraints, including fitting into the
particular characteristics of an underlying cloud environment.
Job completion time and user’s budget constraint (especially
under the current global economic atmosphere) are the two
most prominent parameters in the optimization of dataflow
scheduling on clouds. In article 2, the authors formulated
dataflow scheduling problem in a cloud environment toward
the objective of minimizing the job completion time under a
certain budget constraint. A heuristic scheduling algorithm,
called LRA-B (Layer-oriented Resource Allocation within
Budget constraint) was proposed and experimentally

 IJCA, Vol. 20, No. 4, Dec. 2013

194

evaluated.
To a great extent, green computing means less power

consumption and higher utilization of other resources [1, 4, 6].
Article 3 addresses the problem of energy-aware job
scheduling on underlying cloud nodes using a cooperative
game theory. This work inspects a bi-objective, maximization
of resource utilization and minimization of power consumption
under the constraint of not sacrificing a module’s latest
completion time (Make span). Cloud providers always have
the keen interest in an efficient and cost-effective job
scheduling strategy with low power consumption and high job
throughput. This article presents an energy-aware job
scheduling algorithm given a bag of tasks based on the premise
of Nash Bargaining Solution (NBS). The article also
demonstrates the effectiveness of the proposed algorithm via
simulation-based evaluation and comparison with related
work.

Continuing on the same theme as article 3, i.e., energy-
efficiency, the authors of article 4 presented a cloud-based and
service-oriented approach for collecting, integrating, storing,
and analyzing energy consumption data. In their work, energy
sensors are utilized and modeled as cloud services that carries
information regarding various aspects of energy consumption
and can be composed into distinct (monitoring and controlling)
scenarios at different granularity levels best suiting users’
particular needs and requirements, such as home-owners,
energy providers, local and regional planning authorities, etc.,
which all concern about energy consumption.

While Big Data and Big Data Analytics [2], though being
the buzzwords for a couple of years, still remain at their
fledging stage of research and development, migrating data
warehouse systems into the clouds appears to be a practical
and immediately deliverable approach. Accordingly, there
emerges the necessity for benchmarking data warehouse
systems running in the clouds. Although there are popular
benchmarks for cloud computing such as Terasort and YCSB,
and prominent benchmarks for decision support systems such
as the Transaction Processing Council’s TPC-H and TPC-DS
benchmarks, however, specialized benchmarks for cloud-
hosted data warehouse systems remain to be developed. Such
benchmarks must take into account the specific rationale of
clouds (e.g., scalability, elasticity, pay-per-use, QoS, and fault-
tolerance) and that of data warehouse systems and related
OLAP technologies. The last article in this special issue,
article 5, discusses the new requirements for implementing a
benchmark for data warehouse systems in clouds and sets a
preliminary foundation with the potential of facilitating fair
comparisons of data warehouse systems hosted and running on
different cloud providers’ platforms.

Acknowledgement

As guest editors, we would like to express our genuine

appreciation for the encouragement and support from the
former and current editor-in-chiefs, Qiang Zhu and Fred
Harris, of the journal. Our appreciation shall well extend to
Professor Aris M. Ouksel, who, as the general chair of

AICCSA’13, helped bridging the conference and this special
issue (We accepted two recommended papers from
AICCSA’13 and included their extended versions in this
special issue). We also owe many thanks to our authors and
reviewers who contributed to this special issue.

References

[1] D. Che and W.-C. Hou, “A Novel ‘Credit Union’ Model

of Cloud Computing,” Proc. of DICTAP, Dijon, France,
pp. 714-727, June 21-23, 2011.

[2] D. Che, M. Safran1, and Z. Peng, “From Big Data to Big
Data Mining: Challenges, Issues, and Opportunities,”
Proc. of DASFAA-BDMA Workshop, Wuhan, China, pp.
1-15, April 2013.

[3] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing
and Grid Computing 360-Degree Compared,” Proc. of
Grid Computing Environments Workshop, Austin, TX, pp.
1-10, Nov. 2008.

[4] S. Khan and I. Ahmad, [A3-2], “A Cooperative Game
Theoretical Technique for Joint Optimization of Energy
Consumption and Response Time in Computational
Grids,” IEEE Transactions on Parallel and Distributed
Systems, 20(3):346-360, Oct. 2009.

[5] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. Loannidis,
“Schedule Optimization for Data Processing Flows on the
Cloud,” Proc. of SIGMOD’11, Athens, Greece, pp. 289-
300, June 12-16, 2011.

[6] Y. C. Lee and A. Y. Zomaya, [A3-1], “Minimizing Energy
Consumption for Precedence-Constrained Applications
Using Dynamic Voltage Scaling,” Proc. of the 9th
IEEE/ACM Inter. Symposium on Cluster Computing and
the Grid (CCGRID '09), Shanghai, China, pp. 92-99, May
18-21, 2009.

IJCA, Vol. 20, No. 4, Dec. 2013

ISCA Copyright© 2013

195

Performance Evaluation of Distributed Storage
Systems for Cloud Computing

Sogand Shirinbab*, Lars Lundberg*, and David Erman*
Blekinge Institute of Technology, 371 79 Karlskrona, SWEDEN

Abstract1

The possibility to migrate a virtual server from one physical
computer in a cloud to another physical computer in the same
cloud is important in order to obtain a balanced load. In order
to facilitate live migration of virtual servers, one needs to
provide large shared storage systems that are accessible for all
the physical servers that are used in the cloud. Distributed
storage systems offer reliable and cost-effective storage of
large amounts of data and such storage systems will be used in
future Cloud Computing. We have evaluated four large
distributed storage systems. Two of these use Distributed
Hash Tables (DHTs) in order to keep track of how data is
distributed, and two systems use multicasting to access the
stored data. We measure the read/write/delete performance, as
well as the recovery time when a storage node goes down. The
evaluations are done on the same hardware, consisting of 24
storage nodes and a total storage capacity of 768 TB of data.
These evaluations show that the multicast approach
outperforms the DHT approach.

Key Words: Cloud computing, compuverde, distributed
storage system, file system, gluster, OpenStack (Swift).

1 Introduction

The possibility to migrate a virtual server from one physical

computer in a cloud to another physical computer in the same
cloud is important in order to obtain a balanced load. In order
to facilitate live migration of virtual servers, one needs to
provide large shared storage systems that are accessible for all
the physical servers that are used in the cloud. This is an
important reason why the demand for storage capacity has
increased rapidly during the last years.

One problem with traditional disk drives is that data losses
are common due to hardware errors. A solution to this is
Redundant Array of Independent Disks (RAID) storage. RAID
storage systems can automatically manage faulty disks without
losing data, and scale by attaching new disk drives. However,
the scalability of RAID is too limited for large cloud systems;
this limitation is the main reason for using distributed storage
systems.

* Department of Computer Science, School of Computing. E-mail:
{Sogand.Shirinbab, Lars.Lundberg, David.Erman}@bth.se.

Distributed storage systems should be capable of sustaining
rapidly growing storage demands, avoid loss of data in case of
hardware failure, and they should provide efficient distribution
of the stored content [33]. Two examples of distributed
storage systems are OpenStack’s Swift1 and Gluster2. We have
evaluated the performance of three distributed storage systems:
Compuverde, OpenStack’s Swift, and Gluster. Openstack’s
Swift and Gluster are both open-source distributed storage
systems that are available for downloading and testing.

Some distributed storage systems use Distributed Hash
Tables (DHTs) for mapping data to physical servers. In the
DHT approach file names and addresses are run through a
hashing function in order to indentify the nodes that have the
requested data. Two examples of systems that use DHTs are
Gluster and OpenStack’s Swift [15]. An alternative approach
to using DHTs is to use multicasting where data requests are
sent to multiple storage nodes and the nodes that have the
requested data answer. Compuverde uses the multicast
approach. The architectural advantage of DHTs compared to
multicasting is that we do not need to broadcast requests; the
hash table gives us the address of the nodes that store the
requested data and we avoid communication overhead.
However, the obvious disadvantage with DHTs is that we need
to run a hash function to obtain the address of the data, which
introduces processing overhead. This means that the
architectural decision, whether to use DHTs or multicasting
will introduce different kinds of overhead: processing
overhead for DHTs and communication overhead for
multicasting. Using DHTs or multicasting is a key architectural
decision in distributed storage systems for Cloud Computing
and this performance evaluation will give important insights
regarding the performance implications of this decision.

2 Background

In distributed storage systems, the most common interfaces

are Web Service APIs (Application Programming Interface)
like Internet Small Computer System Interface (iSCSI) [38];
REpresentational State Transfer (REST)-based [19, 25] and
Simple Object Access Protocol (SOAP)-based [14]. REST is a
HTTP-based architectural style to build networked

1 http://openstack.org/.
2 http://www.gluster.org/.

 IJCA, Vol. 20, No. 4, Dec. 2013 196

applications that allows access to stored objects by an Object
Identifier (OID), i.e., no file or directory structures are
supported [17]. We will refer to object-based storage systems
as unstructured storage systems.

There are other access methods like Network File System
(NFS) and Common Internet File System (CIFS) which are
used for accessing storage on a private network or LAN and
Web-based Distributed Authoring and Versioning (WebDAV)
which is based on HTTP. These APIs are file-based (variable-
size) and use a path to identify the data; we denote these as
structured storage systems. The architecture of structured
storage systems is similar to Network Attached Storage (NAS)
which provide file system functionality, i.e., structured storage
systems support variable file and directory structures [9, 22].

The most well-known distributed storage systems are
Amplistor [2, 13], Caringo’s CAStor [7-8], Ceph [6],
Cleversafe3 , Compuverde4 , EMC Atmos [16], Gluster [23],
Google File System [21], Hadoop [11, 27], Lustre [32],
OpenStack’s Swift [29], Panasas [1], Scality5 and Sheepdog6.
Some of the distributed file systems could be used by other
applications, i.e., BigTable is a distributed storage for
structured data and it uses GFS to store log and data files [10].
 As shown in Table 1 AmpliStor, CAStor, Ceph, Cleversafe
and Scality are unstructured distributed storage systems.
Amplistor is designed to work with HTTP/REST. Just as in
Amplistor, CAStor’s Simple Content Storage Protocol (SCSP)
is based on HTTP using a RESTful architecture [26]. Ceph
provides an S3-compatible REST interface that allows applica-
tions to work with Amazon’s S3 service. Cleversafe provides
an iSCSI device interface, which enables users to transparently
store and retrieve files as if they were using a local hard drive.

EMC Atmos is a structured distributed storage system that
provides CIFS and NFS interfaces, as well as web standard
interfaces such as SOAP and REST. Other distributed file
systems such as Google File System, Hadoop Distributed File
System (HDFS), Lustre and Panasas provide a standard POSIX
API. Sheepdog is the only distributed storage system which is
based on Linux QEMU/KVM and is used for virtual machines.
 Some of the distributed file systems are also used for
computing purposes, e.g., the Hadoop Distributed File System
(HDFS) which distributes storage and computation across
many servers. HDFS stores file system metadata and
application data separately and users can reference files and
directories by paths in the namespace (a HTTP browser can be
used to browse the files of an HDFS instance) [18]. Lustre is
an object-based file system used mainly for computing
purposes. The Lustre architecture is designed for HighPerfor-
mance Computing (HPC). Panasas is also used for computing
purposes and similar to Lustre, it is designed for HPC.
 Scality uses a ring storage system which is based on a
Distributed Hashing Mechanism with transactional support and
failover capability for each storage node. The Sheepdog

3 http://www.cleversafe.com/.
4 http://compuverde.com/.
5 http://www.scality.com/.
6 http://www.osrg.net/sheepdog/.

architecture is fully symmetric and there is no central node
such as a meta-data server (Sheepdog uses the Corosync
cluster engine [4] to avoid metadata servers). Sheepdog
provides an object (variable-sized) storage and assigned a
global unique id to each object. In Sheepdog’s object storage,
target nodes calculated based on consistent hashing algorithm
which is a schema that provides hash table functionality and
each object is replicated to 3 nodes to avoid data loss [35].

The remaining distributed storage systems in Table 1 are
Compuverde, Gluster and OpenStack’s Swift. We have ported
these three systems to the same hardware platform (see Section
3), thus making it possible to compare their performance (see
Sections 4 and 5). In Subsections 2.1, 2.2, and 2.3, we discuss
these three systems in detail.

Distributed storage systems use either multicasting or Dis-
tributed Hash Tables (DHTs). Data redundancy is obtained by
either using multiple copies of the stored files or by so called
striping using Reed-Solomon coding [20]. When using
striping the files are split into stripes and a configurable
number of extra stripes with redundancy information are
generated. The stripes (in case of Striping) and file copies (in
case of Copying) are distributed to the storage nodes in the
system.

2.1 Compuverde

Compuverde has no separate metadata. The system uses its

own proprietary caching mechanism (SSD Caching that
employs Write-back policy) [5] in the storage nodes. The
solution uses multicasting, and supports geographical
dispersion, heartbeat monitoring, versioning, self-healing and
self-configuring. Compuverde supports a flat 128 bit
addresses space (for unstructured storage) and NFS/CIFS (for
structured storage). The system supports both Linux and
Windows. Compuverde’s storage solution consists of two
parts: The first part is unstructured and it contains all storage
nodes (clusters). The other part is the structured part of the
storage solution. This part contains gateways (this corresponds
to what OpenStack calls proxy servers) to communicate with
storage nodes. The communication is based on TCP unicast
and UDP multicast messages. Structured data storage is
achieved by storing information about the structure in
envelopes. An envelope is an unstructured file that is stored
on the storage nodes and contains information about other
envelopes and other files.

The storage cluster provides mechanisms for maintaining
scalability and availability of the structured data by replicating
the envelopes a (configurable) number of times within the
cluster as well as providing access to them by the use of IP-
multicast technology.

The communication between the structured and the
unstructured layers starts with an IP-multicast of a key from
the gateway; this key identifies the requested envelope. All
nodes that have the requested envelope reply with information
about the envelope and what other nodes contain the requested
envelope, with the current execution load on the storage node.
The gateway collects this information and waits until it has
received answers from more than 50 percent of the listed

IJCA, Vol. 20, No. 4, Dec. 2013

197

 Table 1: Overview of different distributed storage systems
INTERFACE SOLUTION REPLICATION METADATA

Unstructured Structured

Web Service
APIs (REST,

SOAP)

Block-
based APIs

(iSCSI)

File-based
APIs

(CIFS,
NFS)

Other APIs
(WebDAV,

FTP,
Proprietary

API)

D
H

T

M
ulticast

C
opy-ing

Striping

C
entralized

D
istributed

AmpliStor X - - - - - - X X
Caringo’s
CAStor X - X - - X X - X -

Ceph X - - - X - - X - X
Cleversafe - X - - - - - X X -

Compuverde X - X X - X X - - X
EMC Atmos X - X - X - - X - X

Gluster - - X X X - X - - -
Google File

System (GFS) X - X - - - - X X -

Hadoop - - X - X - - X X -
Lustre - - X - X - - X X -

OpenStack’s
Swift X - - - X - X - - X

Panasas - - X - - - - X - X
Scality X - - - X - X - - X

SheepDog - X - - X - X - - X

storage nodes that contains the identifier before it makes a
decision on which one to select for retrieval of the file.

2.2 Gluster

Gluster is a structured distributed storage system. Storage

servers in Gluster support both NFS and CIFS. Gluster does
not provide a client side cache in the default configuration
[34]. Gluster only provides redundancy at the server level, not
at the individual disk level. For data availability and integrity
reasons Gluster recommends RAID 6 or RAID 5 for general
use cases. For high-performance computing applications,
RAID 10 is recommended.

Distribution over mirrors (RAID 10) is one common way to
implement Gluster. In this scenario, each storage server is
replicated to another storage server using synchronous writes.
In this strategy, failure of a single storage server is transparent,
and read operations are spread across both members of the
mirror.

Gluster uses the Elastic Hash Algorithm (EHA). EHA
determines where the data are stored and is a key to the ability
to function without metadata. A pathname/filename is run
through the hashing algorithm. After that, the file is placed on
the selected storage. When accessing the file, the Gluster file
system uses load balancing to access replicated instances.
Gluster offers automatic self-healing [23, 37].

2.3 OpenStack’s Swift

OpenStack’s Swift is an unstructured distributed storage

system. A number of “zones” are organized in a logical ring
which represents a mapping between the names of entities
stored on disk and their physical location. Swift is
configurable in terms of how many copies (called “replicas”)
are stored, as well as how many zones are used. The system
tries to balance the writing of objects to storage servers so that
the write and read load is distributed.

The mapping of objects to zones is done using a hash
function. Swift does not do any caching of actual object data
but Swift-proxys can work with a cache (Memcached7) to
reduce authentication, container, and account calls [30]. In
Swift, there are separate rings for accounts, containers, and
objects. When other components need to perform any
operation on an object, container, or account, they interact with
the appropriate ring to determine its location in the cluster.
OpenStack’s Swift’s rings are responsible for determining
which devices to use in failure scenarios [3, 28-29, 31, 36].

OpenStack’s Swift divides the storage space into partitions.
In our case, 18 bits of the GUID are used to decide on which
partition a certain file should be stored, i.e., there are 218 = 262
144 partitions. These partitions are divided into 6 zones. Zone
0 is mapped to storage nodes 0 to 3, zone 1 is mapped storage
nodes 4 to 7, and zone 5 is mapped to storage nodes 20 to 23.
Storage nodes 0 to 7 are handled by one switch, nodes 8 to 15
by one switch and nodes 16 to 23 by one switch (see Figure 1).
There are 24*16 = 384 disks in the system and the 262 144
partitions are spread out with 682 or 683 partitions on each

7 Memcached is a distributed memory object caching system.

 IJCA, Vol. 20, No. 4, Dec. 2013 198

Figure 1: The physical structure of the test configuration

disk (262144/384 = 682.666…). If a file is stored on partition
X, the two extra copies of the file (there are three copies of
each file) are stored on partitions (X + 87 381) mod 262 144,
and (X + 2 * 87 381) mod 262 144 (262 144 / 3 =
87 381.333…).

3 Experimental Setup

3.1 Test Configurations

Four different storage system configurations have been

evaluated:

1. Compuverde Unstructured
2. Compuverde Structured
3. OpenStack’s Swift (an unstructured storage system)
4. Gluster (a structured storage system)

The measurements use two load generating clients (see

Figure 1). We use the same load for each configuration; the
only part that has been changed is the interface. The clients
work synchronously and report the result to the master
controlling the clients (see Figure 1), which is responsible for
monitoring the throughput.

In the configurations 1 and 2, Compuverde 0.9 has been
installed on CentOS 6.2. In the configuration 3, version 1.4.3
of the OpenStack’s Swift (release name: Diablo) has been
installed on Linux Ubuntu 10.04 and in the configuration 4,
Gluster 3.2.5 has been installed on CentOS 6.2.

The same hardware is used in each configuration. The
storage system consists of 24 storage nodes, each containing
sixteen 2 TB disks, i.e., a total of 32 TB for each node and 768
TB storage for all 24 nodes. With the exception of
configuration 1 (Compuverde Unstructured), all accesses to the
storage system are routed through four proxy (gateway)
servers. In configuration 1 the clients communicate directly
with the storage system.

Each proxy server has an Intel Quad processor, 16 GB
RAM, and two 10 Gbit network cards. Each storage node has
an Intel Atom D525 processor, 4 GB RAM, and a 1 Gbit
network card. All storage nodes and proxy servers run the
Linux operating system. There are four switches that are used
to transmit data from four proxy servers and two load
generating clients to the 24 storage nodes. The central switch
is a Dell 8024F and the other three switches are Dell 7048Rs.
Four proxy servers are connected to the central switch via four
20 Gbit fibers. Two load generating clients are connected to a
central switch via two 10 Gbit fibers and the central switch is
connected to the other three switches via three 40 Gbit fibers.

The four test configurations will now be described.

3.1.1 Compuverde Unstructured. In this configuration

three copies of each file are created. The proxy servers are not
used, and the load generating clients communicate directly
 with the storage nodes.

3.1.2 Compuverde Structured. In this case two copies of
each file are created. The reason for this is that this case will

IJCA, Vol. 20, No. 4, Dec. 2013

199

be compared with Gluster, and Gluster only supports two
copies of each file. The two load generating clients
communicate with two proxy servers each. The
communication protocol between the load generating clients
and the proxy servers is NFS/CIFS.

3.1.3 OpenStack’s Swift. OpenStack’s Swift has three

copies of each file, and the two load generating clients
communicate with two proxy servers each.

3.1.4 Gluster. Gluster dedicates a volume to the lock file. In
Gluster the storage nodes are arranged in pairs to obtain fault
tolerance. This means that there are only two copies of each
file. The communication protocol between the load generating
clients and the proxy servers is NFS/CIFS.

3.2 Test Cases

Two kinds of tests are considered in this study: performance

tests and recovery tests.

3.2.1 Performance Tests. In these test cases the read, write

and delete performance are measured:

There are four test cases for each test configuration:

1. We measure write performance. In these tests, a number
of clients (implemented as full speed threads, i.e., as
threads that issue write requests in a tight loop without
any delay and with only minimal processing done
between each request) running on two servers (see Figure
1) create files of size 0 KB, 10 KB, 100 KB, 1 MB and
10 MB, respectively. Writing 0 KB corresponds to
creating a file and will be reported separately. We vary
the number of clients using the steps 2, 4, 8, 16, 32, 64,
128, and 256 clients. A write operation is a combination
of Open, Write and Close. We measure MB/s and
operations/s.

2. We measure read performance. In these tests, a number
of clients (implemented as full speed threads) running on
two servers (see Figure 1) read files of size 0 KB, 10 KB,
100 KB, 1 MB and 10 MB, respectively. Reading 0 KB
corresponds to opening a file and will be reported
separately. We vary the number of clients using the steps
2, 4, 8, 16, 32, 64, 128, and 256 clients. A read operation
is a combination of Open, Read and Close. We measure
MB/s and operations/s.

3. We measure delete performance. In these tests, a number
of clients (implemented as full speed threads) running on
two servers (see Figure 1) delete files of size 10 KB, 100
KB, 1 MB and 10 MB, respectively. We vary the
number of clients using the steps 2, 4, 8, 16, 32, 64, 128,
and 256 clients. We measure operations/s.

4. For the structured storage case, we use the SPECsfs2008
performance evaluation tool8. The tool can be

8 http://www.spec.org/sfs2008.

configured to issue a number of I/O Operations per
Second (IOPS), and it then measures the actual achieved
throughput in terms of IOPS and the average response
time.

The performance tests for small file sizes (0 KB and 10 KB)

have been done by writing/reading/deleting 1,000,000 files
to/from the storage nodes, but for larger file sizes (100 KB, 1
MB and 10 MB) the test has been continued by
writing/reading/deleting files (between 50,000 and 100,000
files) until the results become stable.

Gluster and OpenStack’s Swift do not use caching. In order
to get fair results, the test has been done for Compuverde for
two cases: caching and No Caching (NC). We limited the NC
tests to 1 MB files

3.2.2 Recovery Tests. In these tests we measure how long it

takes for the storage system to reconfigure itself after a node
failure. We measure recovery performance by reformatting
one storage node. When a storage node is reformatted the file
copies stored on that node are lost. We measure the time until
the system has created new copies corresponding to the copies
that were lost.

4 Read and Write Performance

In this section we look at the read and write performance of

each of the four configurations. In Section 5 we compare the
different configurations.

4.1 Compuverde Unstructured

Figures 2a and 2b show that the throughput is low when the

number of clients and the size of the files are small; the
throughput increases when the number of clients and the size
of the files increase. It can also be noted that the performance
in case of using cache in the storage nodes, e.g., 1 MB files,
does not differ much compared to the case that using NC, i.e.,
1 MB (NC).

4.2 Compuverde Structured

Figures 3a and 3b show that the data transfer rate is low

when the number of clients and the size of the files are small
and it increases when the number of clients and size of files
increase. It can also be noted that the performance difference
between using caching in the storage nodes, e.g., 1 MB files,
and using NC, i.e., 1 MB (NC), is approximately a factor of 1.5
when writing; there is no significant difference between
caching and NC when reading.

4.3 OpenStack’s Swift

Figures 4a and 4b show that in cases of writing/reading

the files of files of large size (10 MB), the data transfer rate
increases rapidly when the number of the clients increases.
While in case of writing files with size of 1 MB and less the
curve is quite stable.

 IJCA, Vol. 20, No. 4, Dec. 2013 200

(a) Write performance test results (compuverde unstructured)

(b) Read performance test results (compuverde unstructured)

Figure 2: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the number of clients that
are writing/reading simultaneously

(a) Write performance test results (compuverde structured)

(b) Read performance test results (compuverde structured)

Figure 3: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the number of clients that
are writing/reading simultaneously

(a) Write performance test results (openstack)

(b) Read performance test results (openstack)

Figure 4: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the number of clients that
are writing/reading simultaneously

IJCA, Vol. 20, No. 4, Dec. 2013

201

4.4 Gluster

Figures 5a and 5b show that the data transfer rate for large
files increases when the number of clients increases. However,
for smaller files the transfer rate does not increase so much
when the number of clients increases.

In fact, when the number of clients exceeds a certain value
the transfer rate starts to decrease. The reason for this is
probably that Gluster contains contention bottlenecks
internally. According to the performance test results, the
utilization for the storage nodes never exceeds 50 percent for
Gluster. For the other test configurations we get much higher
utilization values. This is an indication that there are internal
performance bottlenecks in Gluster.

5 Comparing the Distributed Storage Systems

We have evaluated two unstructured storage systems

(OpenStack’s Swift and Compuverde Unstructured) and two
structured storage systems (Gluster and Compuverde
Structured). In Section 5.1 we compare the performance of the
two unstructured systems and in Section 5.2 we compare the
performance of the two structured systems. In Section 5.3 we
compare the time to recreate all the file copies in a storage
system in case one of the storage nodes fails.

5.1 Compuverde Unstructured vs. OpenStack’s Swift

We talked to several cloud storage providers and it turned

out that most of their users store small files with an average
size of 1 MB. Therefore, the performance tests are compared
only for 1 MB. Figure 6a shows that the write performance of

Compuverde Unstructured for 256 clients (both when using
caching and NC) was roughly 800 MB/s, while for
OpenStack’s Swift it was around 200 MB/s. Figure 6b shows
that the read performance of Compuverde Unstructured for 256
clients (both when using caching and NC) was 1600 MB/s to

 1900 MB/s, while for OpenStack’s Swift it was around 600
MB/s. Figure 6c shows that the create files performance of
Compuverde Unstructured for 256 clients was 10,118
operations/s in case of caching and 6,500 operations/s in case
of NC; for OpenStack’s Swift it was 600 operations/s. Figure
6d show that the open files performance of Compuverde
Unstructured for 256 clients was 11,153 operations/s in case of
caching and 12,826 operations/s in case of NC; for
OpenStack’s Swift it was 4,500 operations/s. The delete files
performance test has been done by deleting files with a size of
1 MB. Figure 6e shows that the delete files performance of
Compuverde Unstructured for 256 clients was 9956
operations/s in case of caching and 8,145 operations/s in case
of NC; for OpenStack’s Swift it was 498 operations/s.

5.2 Compuverde Structured vs. Gluster

The write/read/delete performance tests have been done for 1
MB file size. Figure 7a shows that the write performance of
Compuverde Structured for 256 clients was 655 MB/s in case
of caching and 450 MB/s in case of NC; for Gluster it was 164
MB/s. Figure 7b shows that the read performance of
Compuverde Structured for 256 clients was 780 MB/s in case
of caching and 821 MB/s in case of NC; for Gluster it was 270
MB/s. Figure 7c shows that the performance for Compuverde
Structured for 256 clients was 7,370 operations/s in case of
caching and 1,239 operations/s in case of NC; for Gluster it
was 241 operations/s. Figure 7d shows that the performance
for Compuverde Structured for 256 clients was 11,116
operations/s in case of caching and 12,458 operations/s in case
of NC; for Gluster it was 1,029 operations/s. The delete files
performance test has been done by deleting files of 1 MB size.
Figure 7e shows that the performance for Compuverde
Structured for 256 clients was 3,548 operations/s in case of
caching and 3,367 operations/s in case of NC; for Gluster it
was 441 operations/s. The test results using the Spec2008sfs
tool are shown in Figures 8a and 8b. Figure 8a shows that

(a) Write performance test results (gluster)

(b) Write performance test results (gluster)

Figure 5: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the number of clients that
are writing/reading simultaneously

 IJCA, Vol. 20, No. 4, Dec. 2013 202

(a) Write performance compuverde unstructured vs.

openstack’s swift

(b) Read performance compuverde unstructured vs.

openstack’s swift

(c) Create files performance compuverde unstructured vs.

openstack’s swift

(d) Open files performance compuverde unstructured vs.

openstack’s swift

(e) Delete files performance compuverde unstructured vs. openstack’s swift

Figure 6: Comparison between the performance of compuverde unstructured and openstack’s swift for files of 1 MB

IJCA, Vol. 20, No. 4, Dec. 2013

203

(a) Write performance compuverde structured vs. gluster

(b) Read performance compuverde structured vs. gluster

(c) Create files performance compuverde structured vs. gluster

(d) Open files performance compuverde structured vs. gluster

(e) Delete files performance compuverde structured vs. gluster

Figure 7: Comparison between the performance of compuverde structured and gluster for files of 1 MB

 IJCA, Vol. 20, No. 4, Dec. 2013 204

(a) Performance evaluation compuverde structured vs. gluster

(b) Performance evaluation compuverde structured vs. gluster

Figure 8: Comparison between the performance of compuverde structured and gluster when using the spec2008sfs tools

both Compuverde Structured and Gluster meet the number of
requested IOPS for 3000 IOPS and 4000 IOPS. However,
when the requested numbers of IOPS increased to 5000 and
above, Compuverde Structured delivered a number of IOPS
relatively near to the requested one, while Gluster delivers a
number of IOPS that is significantly lower than the requested
number. Figure 8b shows the result of response time test that
has been obtained using the Spec2008sfs performance
evaluation tool. Compuverde’s response time is in the range of
3.5 ms to 17 ms, while for Gluster the response time is
between 10.1 ms and 33.3 ms.

5.3 Recovery Test

We did the recovery test for all four different configurations.

The same recovery test has been run twice for each
configuration.

As shown in Table 2, the recovery time for Compuverde
Unstructured was 18-19 minutes and the recovery time for
OpenStack’s Swift was approximately 10 hours. This means
that the recovery time for Compuverde Unstructured is
approximately 30 times faster than that of OpenStack’s Swift.
One reason for this difference is that Compuverde uses
multicasting whereas OpenStack’s Swift uses DHT. Another
reason could be that OpenStack uses the rsync9 command that
is responsible for maintaining object replicas, consistency of
objects and perform update operations. It seems that using
rsync command introduces a significant overhead which
causes a performance decrease. The situation is similar for
Compuverde Structured with a recovery time of 22 minutes
compared to Gluster with recovery time of approximately 18.5
hours. Compuverde Structured recovery time is thus
approximately 50 times faster than Gluster recovery time. As
discussed before, Gluster uses DHTs instead of multicasting.
Gluster also uses rsync for replication. Another reason for the
low performance of Gluster compared to Compuverde

9 rsync is a file transfer program for Unix-like systems.

Structured is the architecture that is used by Gluster for repli-
cation. In Gluster the proxy servers are doing the self-healing
while in Compuverde Structured storage nodes are performing

Table 2: Recovery test results

Compuverde
Unstructured 19 minutes (1140 s) 18 minutes (1080 s)

Compuverde
Structured 22 minutes (1320 s) 22 minutes (1320 s)

OpenStack 9 hours 27 minutes
(34020 s)

10 hours 16 minutes
(36960 s)

Gluster 18 hours 27 minutes
(66420 s)

18 hours 29 minutes
(66540 s)

the self-healing by themselves without involving any proxy
servers which results in a many-to-many replication pattern.

6 Discussion and Related Work

Compared to conventional centralized storage systems, a

distributed storage system allows for not only increased
performance and redundancy, but also affords improved
energy efficiency and lowering the carbon footprint of the
system. For instance, by removing the need for a central, high-
powered storage controller and replacing it with low wattage
storage nodes, such as the ones used in the experiments
presented in this paper. Furthermore, a distributed storage
systems built from standard hardware components also makes
it possible to exchange the individual nodes with nodes with a
lower carbon footprint as technology advances. Reducing the
carbon footprint and enabling green computing are two
important aspects of Cloud Computing.

In recent years, many research and development efforts have
been done in cloud computing, specifically on distributed file
systems. In [24] the authors have done a performance compar-
ison between several distributed file systems such as Hadoop,
MooseFS (MFS) and Lustre. They have compared functional-

IJCA, Vol. 20, No. 4, Dec. 2013

205

ities as well as I/O performance of these three file systems.
In [12] the authors have done a performance comparison

between Google File System (GFS) and MFS in terms of
reliability, file performance and scalability. According to their
comparison GFS and MFS are both reliable since resource files
are backed up. But they found a single point of failure in
master on GFS while it does not exist on MFS. In MFS there
is a need for manual backup after a problem has occurred.
Their comparison of the file performance indicates that GFS is
used for large GB file size while MFS supports small files
better.

7 Conclusion

We have compared two unstructured storage systems for

Cloud Computing (Compuvede Unstructured and Openstack’s
Swift) and two structured storage systems for Cloud
Computing (Compuverde Structured and Gluster).
Compuverde uses multicasting and Openstack’s Swift and
Gluster use Distributed Hash Tables (DHTs). The
architectural advantage of DHTs compared to multicasting is
that we do not need to broadcast requests; the hash table gives
us the address of the nodes that store the requested data and we
avoid communication overhead. However, the obvious
disadvantage with DHTs is that we need to run a hash function
to obtain the address of the data, which introduces processing
overhead. This means that the architectural decision, whether
to use DHTs or multicasting will introduce different kinds of
overhead: processing overhead for DHTs and communication
overhead for multicasting.

We have compared the performance using a large storage
system and realistic workloads, including the well-known
Spec2008sfs test tool. Our experiments show that
Compuverde has higher performance than the two systems that
use DHTs. The performance advantage of Compuverde is
particularly clear when the number of clients that issue
simultaneous accesses to the system is high, which is typical in
Cloud Computing. The performance advantage of
Compuverde is not a result of caching in the storage nodes,
i.e., the performance of Compuverde using NC is still
significantly higher than that of the other two systems. We
believe that the main reason for the higher performance is that
Compuverde uses multicast instead of DHTs. The
communication overhead introduced by multicasting does
obviously not affect the performance as negatively as the
processing overhead introduced by DHTs.

The recovery tests show that Compuverde recovers from a
storage node failure much faster than OpenStack’s Swift and
Gluster. Again, we believe that the use of multicast instead of
DHTs is the main reason. However, this cannot be the only
reason for the significant difference in recovery times. One
additional reason for Gluster to perform slower than
Compuverde Structure could be that Gluster involves proxy
servers in self-healing while Compuverde uses the many-to-
many replication pattern and only involves storage nodes in
self-healing. Another reason could be that Compuverde has
built its own recovery protocol from scratch, whereas

OpenStack’s Swift and Gluster base their protocols on existing
applications (e.g., rsync). Moreover, the processor utilization
for Gluster never exceeds 50 percent, even for high loads.
This indicates that there are internal performance bottlenecks
in Gluster, which probably contributes to the relatively long
time for self-healing.

References

[1] Zainul Abbasi, Garth Gibson, Brian Mueller, Jason

Small, Marc Unangst, Brent Welch, Jim Zelenka, and
Bin Zhou. “Scalable Performance of The Panasas Parallel
File System,” FAST’08 Proceedings of the 6th USENIX
Conference on File and Storage Technologies, USENIX
Assosiation Berkeley, CA, USA, pp. 17-33, 2008.

[2] Amplidata, “Amplistor: Unbreakable Object Storage for
Petabyte-Scale Unstructured Data,” White Paper, April
2011.

[3] Joe Arnold, Dr. Jaesuk Ahn, and Dr. Jinkyung Hwang,
“Commercialization of OpenStack: Object Storage,”
OpenStack Conference Commercialization of Object
Storage, Korea, April 2010.

[4] Andrew Beekhof, Christine Caulfield, and Steven C.
Dake, “The Corosync Cluster Engine,” Proceedings of
the Linux Symposium, Ottawa, Ontrio, Canada, July, pp.
85-99, 2008.

[5] Angelos Bilas, Michail D. Flouris, Yannis Klonatos,
Thanos Makatos, and Manolis Marazkis, “Using
Transparent Compression to Improve SSD-Based I/O
Caches,” EuroSys’10 Proceedings of the 5th European
Conference on Computer Systems, ACM NewYork, NY,
USA, pp. 1-14, 2010.

[6] Scott A. Brandt, Darrell D. E. Long, Carlos Maltzahn,
Ethan L. Miller, and Sage A. Weil, “Ceph: A Scalable,
High-Performance Distributed File System,” University
of California, Santa Cruz, Proceeding of the 7th Con-
ference on Operating Systems Design and Implemen-
tation (OSDI’06), pp. 307-320, November 2006.

[7] Caringo CAStor, “CAStor: The Market Leading Object
Storage Engine,” Product Brief, September 2011.

[8] Caringo CAStor, “Castor the Market Leading Object
Storage Engine” [Online], Available:
http://www.caringo.com/downloads/datasheets/Caringo-
CAStor-Object-Storage, pdf, September 15, 2011.

[9] Lei Chai, Ranjit Noronha, Dhabaleswar K. Panda, and
Thomas Talpey, Designing NFS with RDMA for Security,
Performance and Scalability, Technical Report OSU-
CISRC-6/07-TR47, The Ohio State University, 2007.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber, “BigTable: A Distributed Storage System for
Structured Data.” Journal: ACM Transactions on
Computer Systems (TOCS), New York, USA, Volume
26, Issue 2, Number 4, June 2008.

[11] Robert Chansler, Hairong Kuang, Sanjay Radia, and
Konstantin Shvachko, “The Hadoop Distributed File
System ” Yahoo! Sunnyvale, California USA, 2010.

 IJCA, Vol. 20, No. 4, Dec. 2013 206

[12] Ping Chen, Xuerong Gou, and Jianwei Li, “Research of
Distributed File System Based on Massive Resource and
Application in the Network Teaching System,”
Proceedings of the International Conference on
Advanced Intelligence and Awareness Internet, Beijing,
China, pp. 154-158, 2011.

[13] Santa Clara, “Amplidata Demonstrates Highly Scalable
and Reliable Storage Solutions for Massive Cloud
Deployments at Intel Development Forum,” Article at
PRNewswire, Calif., September 2011.

[14] F. Curbera, M. Duftler, R. Khalaf, N. Mukhi, W. Nagy,
and S. Weerawarana, “Unraveling the Web Services web:
An Introduction to SOAP, WSDL, and UDDI,”
Proceedings of the IEEE Internet Computing, NY, USA,
pp. 86-93, 2002.

[15] Julian Dymcek, Survey of Distributed Hash Tables, Lane
Department of Computer Science and Electrical
Engineering, West Virginia University, Morgantown,
WV, 2011.

[16] EMC Atmos, “EMC Atmos Cloud Optimize Storage for
Web Services,” Whitepaper, April 2010.

[17] Michael Factor, Kalman Meth, Dalit Naor, Ohad Rodeh,
and Julian Satran, “Object Storage: The Future Building
Block for Storage Systems,” 2nd International IEEE
Symposium on Mass Storage Systems and Technologies,
Sardinia, 2005.

[18] Bin Fan, Garth Gibson, Wittawat Tantisiriroj, and Lin
Xiao, “DiskReduce: Replication as a Prelude to Erasure
Coding in Data-Intensive Scalable Computing,” Parallel
Data Laboratory, Carnegie Mellon University,
Pittsburgh, PA, 2011.

[19] Roy T. Fielding and Richard N. Taylor, “Principles
Design of the Modern Web Architecture,” ICSE’00
Proceedings of the 22nd International Conference on
Software Engineering, ACM New York, NY, USA, pp.
115-150, 2000.

[20] William Geisel, “Tutorial on Reed-Solomon Error
Correction Coding,” Technical Memorandum, NASA,
TM-102162, August 1990.

[21] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. “The Google File System,” 19th ACM
Symposium on Operating Systems Principles, Lake
George, NY, October 2006.

[22] Garth A. Gibson and Rodney Van Meter, “Network
Attached Storage Architecture,” Magazine, Communica-
tions of the ACM, New York, November 2000.

[23] Gluster Inc. “An Introduction to Gluster Architecture”
Whitepaper, 2011.

[24] Wu Hao and Bai Songlin, “The Performance Study on
Several Distributed File Systems,” Proceedings of the
International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, Beijing, China,
pp. 226-229, 2011.

[25] Michael Jakl, REST: Representational State Transfer,
University of Technology Vienna, 2008.

[26] Roberto Lucchi and Michel Millot, “Resource Oriented
Architecture and REST,” JRC Scientific and Technical

Reports, European Communities, Luxembourg, 2008.
[27] Shunsuke Mikami, Kazuki Ohta, and Osamu Tatebe,

“Using the Gfarm File System as a POSIX Compatible
Storage Platform for Hadoop MapReduce Applications”,
GRID’11 Proceedings of the 2011 IEEE/ACM 12th Inter-
national Conference on Grid Computing, IEEE
Computer Society Washington, DC, USA, pp. 181-189,
2011.

[28] OpenStack, “OpenStack Object Storage: An Overview,”
White paper, 2010.

[29] OpenStack, LLC, “Welcome to Swift’s Documentation!”
Swift v1.4.8-dev Documentation, 2011.

[30] OpenStack Object Storage Admin Manual, OpenStack,
“Consideration and Tunning,” 2011.

[31] OpenStack, OpenStack Compute Admin Manual Manual,
November 2011.

[32] Sarp Oral, Galen Shipman, and Feiyi Wang,
“Understanding Lustre FileSystem Internals,” Technical
report, Oak Ridge National Laboratory (ORNL), Center
of Computational Science, USA, 2009.

[33] Liuis Pamies and I. Juarez, On the Design and Optimi-
zation of Heterogeneous Distributed Storage Systems,
PHD Thesis, Department of Engineering Information in
Mathematic, University Rovira in Virgili, July 2011.

[34] Dhabaleswar K. Panda and Ranjit Noronha, IMCa: High
Performance Caching Front-end for GlusterFS on
InfiniBand, Network-Based Computing Laboratory,
Computer Science and Engineering, The Ohio State
University, 2008.

[35] George Parisis, “DHTbd: A Reliable Block-Based
Storage System for High Performance Clusters,”
Proceedings of the IEEE/ACM CCGRID, UK, pp. 392-
401, 2011.

[36] Ken Pepple, “Deploying OpenStack”, O’Reilly Media,
ISBN 1449311059, August 2011.

[37] Drew Robb, “Gluster Brings Open Source to
Unstructured Data,” Storage Technology Features Article
Published, August 2010.

[38] P. Wang, “IP SAN- from iSCSI to IP-addressable
Ethernet Disks,” Mass Storage Systems and
Technologies, Proceedings, 20th IEEE/11th NASA
Goddard Conference, pp. 189-193, 2003.

Sogand Shirinbab (photo not available) is a Ph.D. student at
the School of Computing at Blekinge Institute of Technology.
She received her M.S. from Kristianstad University in
Embedded Systems. She is currently contributing in a project
on virtualized and cloud-based test environments.

Lars Lundberg (photo not available) has a Ph.D. in Computer
Science from Lund University. He has more than 14 years as
full professor in Computer Systems Engineering and is
currently the head of research at the School of Computing at

IJCA, Vol. 20, No. 4, Dec. 2013

207

Blekinge Institute of Technology. He has worked with
performance and capacity issues in a number of projects. One
of his main interest areas is efficient resource allocation, and
he has developed a number of results in real-time scheduling
for both single- and multi-processors. Professor Lundberg is
currently leading a project on virtualized and cloud-based test
environments. Dr. Lundberg has published more than 100
articles in peer reviewed journals and conferences, and been
the advisor for 11 Ph.D. students that have taken their doctoral
degrees.

David Erman (photo not available) received his Ph.D. degree
in Telecommunication Systems at Blekinge Instititute of
Technology in March 2008, where he is currently employed as
a senior lecturer. His academic background is in signal
processing and computer science, before turning to computer
networking, mainly focusing on P2P systems and overlay
networks. His research interests include distributed systems,
large-scale media distribution and streaming, P2P
communication, overlay networking, network coding,
virtualization, cloud computing and cognitive networking.
David has participated in several national and international
research projects.

208 IJCA, Vol. 20, No. 4, Dec. 2013

Budget Constrained Dataflow Scheduling for
Minimized Completion Time on the Cloud

Dabin Ding∗, Fei Cao∗, Dunren Che∗, Michelle M. Zhu∗, and Wen-Chi Hou∗

Southern Illinois University, Carbondale, Illinois 62901, USA

Abstract

Cloud computing provides high-end computing capabilities
so that users can access data and applications anywhere in the
world on demand and pay for what they use. It is emerging
as a promising computing paradigm for large-scale data inten-
sive queries, which are usually modeled as complex Directed
Acyclic Graph (DAG)-structured data processing dataflows
with arbitrary data operators as nodes and producer-consumer
interactions as directed edges. The optimization problem of
scheduling dataflows on the Cloud is a very complex and
challenging task which is similar to query optimization. Op-
timization must satisfy a variety of objectives and constraints,
while taking into account the particular characteristics of the
underlying Cloud environment. In addition to achieving mini-
mum query completion time, the commercialization of Clouds
requires policies to take users’ economic concerns as well.
In this paper, we formulate scheduling of dataflows onto
Cloud resources toward the objective of minimizing the query
completion time under certain budget constraint. A heuris-
tic scheduling algorithm, Layer-oriented Resource Allocation
within Budget constraint (LRA-B) is proposed and evaluated.
Experiments are conducted on numerous dataflows and Cloud
environment configurations, and the overall results are quite
promising and indicate the effectiveness of our algorithm.

Key Words: Cloud computing, dataflows, scheduling, query
completion time, budget constraint.

1 Introduction

Complex on-demand data retrieval and processing combining
the notions of query & search, information filtering & retrieval,
data transformation & analysis, and other data manipulations
[14] are typically represented by DAG-structured data
processing graphs (i.e., dataflows) whose nodes are arbitrary
data operators and directed edges are producer-consumer
interactions. Assume that terabytes of aerial imagery have
been collected for intelligence purposes and algorithms to
detect tanks, planes, or missile silos are available, it is a

∗Department of Computer Science, Email: {dabin, vicky}@siu.edu and
{dche, mzhu, hou}@cs.siu.edu

complex and time-consuming task to find these weapons if run
in a conventional manner. This query could be expressed in
SQL as follows:

SELECT count(Tanks), count(Planes), count(Missiles)
FROM Raw Aerial Imagery AND GPS Signal AND

WorldMap
WHERE [Analytical Requirements]
GROUP BY Location

The SQL query is optimized [15] and transformed into
an execution plan represented as a DAG-structured dataflow.
Scheduling the dataflow graph onto the resources of the un-
derlying distributed environment (i.e., Grid, Cloud, etc.) is
a well-known NP-complete problem [12]. Moreover, the
heterogeneity and dynamic status of distributed environments
complicate the scheduling optimization problem in order to
achieve objectives such as the completion time and monetary
cost.

Cloud computing has attracted much attention from the
research community [1] that evolved from a paradigm of
basic IT infrastructures to Grid computing, and to resource
provisioning services: infrastructures (IaaS), platforms (PaaS),
and software (SaaS) [11]. Meanwhile, Cloud computing
data centers are becoming increasingly popular for providing
high-end computing capabilities to end users as pay-as-you-go
services. Clouds offer their users the ability to lease resources
as long as needed, and charge based on a per time quantum
pricing policy. Moreover, data centers are making heavy use
of virtualization which allows a single server to run multiple
operating instances simultaneously [28] to achieve efficient
computing resource usage. A Virtual Machine (VM) is a
software based machine emulation technique that executes
other software in the same manner as the physical machine
for which the software is developed and executed [23].
The normal process of a data center operating with the use
of VMs for executing jobs (e.g., dataflows) is shown as follows:

(1) A data center provides various VM templates.
(2) When a job arrives at the data center, the scheduler

allocates the job with pre-configured VMs then starts it on

ISCA Copyright c© 2013

IJCA, Vol. 20, No. 4, Dec. 2013 209

proper servers.
(3) The job is executed in the VMs.
(4) After the job finishes execution, the VMs are shutdown.

To run dataflows on Clouds, dataflow characteristics (e.g.,
execution time of operators, amount of data generated, etc.),
Cloud network characteristics (e.g., bandwidth, etc.), Cloud
pricing policies, and more need to be considered. The optimal
trade-off between Quality of Service (QoS) and money spent
depends on the needs of the particular user concerned. Scien-
tific dataflow applications usually have the primary objective
of optimizing the completion time which depends on both the
data transfer time involved in staging the input and output data
and the computation time to execute them. However, users with
budget or quota constraints may not always desire the highest
possible level of QoS such as completion time.

Motivated by the above practices and concerns, we focus on
developing a dataflow scheduling algorithm on the Cloud based
on both time and money, namely, how to minimize completion
time under a budget constraint.

The key contributions of this paper are:

(1) Complex DAG-structured dataflow model intermixed
with different operator types.

(2) Novel time modeling with different operator types and
dynamic Cloud resource consideration.

(3) Novel monetary cost modeling considering both execu-
tion cost and data transfer cost.

(4) Time-dependent virtual machine allocation policy.
(5) Comprehensive comparison using various experimental

setups to show the effectiveness of our algorithm.

The paper is organized as follows. Section 2 gives an
overview of related works. Section 3 conducts analytical
models and Section 4 formulates the scheduling problem.
In Section 5, our scheduling algorithm design is described
in details. Section 6 explains the evaluation methodology,
simulation setup and the analysis of results. Section 7 presents
the conclusion and future work.

2 Related Works

Typically, some middleware are used to execute user-
defined code in distributed environments [27]. The
Condor/DAGMan/Stock set [17] is a representative technology
of High Performance Computing. It is a robust and easily
scalable mechanism for exploiting extensive scientific
infrastructures of mostly computational resources due to its
scheduling, monitoring and failure resilience capabilities.
Condor [24, 4, 5] is a specialized workload management
system for compute-intensive jobs and is designed to harvest
CPU cycles on idle machines. Directed Acyclic Graph
Manager (DAGMan) [5] is a meta-scheduler for Condor jobs
which manages dependencies between jobs at a higher level
than the Condor Scheduler. Running data-intensive workflows

with DAGMan is very inefficient [27, 21]. Many systems such
as Pegasus [8] and GridDB [18] use DAGMan as middleware.
Extensions of Condor to deal with data-intensive workflows
have been proposed [21], but they have not been materialized
yet to the best of our knowledge.

Middleware technologies such as Pegasus Workflow Manage
System [8], Gridbus Workflow Management System [29] and
so forth, are used to schedule the DAG-structured workflows
onto the distributed environments. Pagasus supports a higher
level of abstraction for both data and operations, and maps
workflows onto the Cloud to generate executable workflows
using a clustering approach to group short duration tasks as a
single task in order to reduce data transfer overhead and number
of VMs created. Therefore, it offers true optimization features,
as opposed to simple matching of operators to a fixed set of
resources. Nefeli [26] is a Cloud gateway that uses deployment
hints for efficient execution of workloads, being aware of
the resources and the actual locations of VMs. However,
this information may not be generally available especially in
commercial Clouds. Hadoop is a popular platform that follows
the Map-Reduce [6] paradigm to achieve fault-tolerance and
massive parallelism [27]. It is being used in companies like
Yahoo, Facebook, etc. to store and process extremely large
data sets on commodity hardware [25]. However, the Map-
Reduce programming model is very low level that requires
developers to write custom programs. Therefore, several high
level query languages have been developed on top of Hadoop,
such as Hive [25] and PigLatin [19]. Hive supports queries
expressed in a SQL-like declarative language (i.e., HiveQL),
which are compiled into Map-Reduce jobs that are executed
using Hadoop. In addition, HiveQL enables users to plug in
custom Map-Reduce scripts into queries [25].

Cloud computing environments facilitate applications by
providing virtualized resources that can be dynamically pro-
visioned [20]. Clouds are primarily driven by economics, the
pay-per-use pricing model is very appealing for both Cloud
providers and users [16]. However, dataflow applications
may incur large data retrieval and monetary cost when they
are scheduled taking into account only the completion time.
Therefore, in addition to optimizing completion time, data
transfer costs between resources as well as execution costs must
also be taken into account. There are several efforts that move
in the same direction as our work but solve a simpler version of
the problem. Kllapi et al [14] studied the space of alternative
schedules that arose from the optimization problem between
completion time and monetary cost, and investigated the time-
money trade-off for different types of dataflows and Cloud en-
vironments based on greedy and exhaustive algorithms. In [20],
Pandey et al. presented a particle swarm optimization based
heuristic to schedule general dataflows with one-dimensional
weighted average parameter of several metrics as the optimiza-
tion criterion. Silva et al. proposed a heuristic optimization of
independent tasks (no communication between tasks) having
the number of resources that should be allocated to maximize
speedup as the optimization criterion with a given predefined

210 IJCA, Vol. 20, No. 4, Dec. 2013

budget [22]. Moreover, parallelism and resource sharing
models for optimal scheduling of relational operators of query
execution plans with time-shared (e.g., CPUs, disks, etc.) and
space-shared (e.g., memories) resources and communications
are generalized to arbitrary operators [27, 10]. Our difference
with the aforementioned efforts falls on the following aspects:
(i) A new methodology, layer-oriented resource allocation
algorithm, is adopted to solve the scheduling problem. (ii)
A new time modeling in accordance with dynamic virtual
machine allocation policy in Cloud infrastructure is considered.
(iii) a more thorough experiment is conducted to study the
impact of different factors on our scheduling algorithm. Those
factors include data center and dataflow size, operator types,
data transfer sizes and computing and link unit cost.

3 Analytical Models

We construct the dataflow scheduling model as the dataflow
operator graph and the underlying Cloud environment (i.e.,
data center) to facilitate the mathematical formulation of the
scheduling problem.

A dataflow is constructed as a Directed Acyclic Graph
(DAG) G(ops, flows). Vertices represent arbitrary concrete
operators (ops) and edges represent data transferred between
two operators (flows). An operator in ops receives a data
input from each of its preceding operators, and is modeled
as op(exec, tran, Z, type), where exec is the execution time
of an operator, tran is the data transfer time between two
connected operators, Z denotes the aggregated and complexity
normalized input data size, and type is a flag either equal
to pipeline (PL) or store-and-forward (S&F). PL type
(e.g., from databases, select operator) means execution can
start as soon as some data inputs from its preceding opera-
tors (producer) is available, whereas S&F type (e.g., from
databases, sort operator) means execution cannot start until
all data inputs from its preceding operators (producer) arrive.
A flow between two operators, producer and consumer [14],
is modeled as flow(producer, consumer, data), where data
is the size of data transferred. To generalize our model, if a
dataflow has multiple starting or ending operators, a virtual
starting or ending operator of complexity zero can be created
and connected to all starting or ending operators without any
data transfer along the edges. The parameters of a dataflow are
given in Table 1.

The Cloud environment (i.e., a data center) is where the VMs
will be reserved, deployed and run on physical servers. We
consider a general Cloud environment where both prior VM
reservation and on-demand requests are supported. Thus, our
resource allocation status for a data center is time-dependent,
which means that the available resources of each server and
bandwidth of each network link are changing from time to time
due to the in-advance reservation requests. The parameters of a
Cloud network are given in Table 2.

For general purposes, we construct a data center as a com-
plete network graph G(servers, links) consists of a set of

Table 1: Parameter of a dataflow model

Parameters Definitions
G(ops, flows) dataflow
ops set of arbitrary concrete operators
flows data transferred between two operators
op(exec, tran, operator
Z, type)
exec execution time of an operator
tran data transfer time between two connected

operators
type operator type
Z aggregated and complexity normalized

input data size
flow(producer, a flow between two operators
consumer, data) (producer & consumer)
data size of data transferred between two

connected operators (producer &
consumer)

Table 2: Parameter of a Cloud network model

Parameters Definitions
G(servers, links) the Cloud environment
servers set of servers in a data center
links network links in a data center
server(cpu, vm) a server in a data center
cpu computing power of a server
vms set of VMs allocated on a server
vm(p, tstart, tshut, size) a VM allocated on a server
p computing power of a VM
tstart the start time of a VM
tend the end time of a VM
size size of a VM
link(bw, delay) network link between two servers
bw network bandwidth
delay minimum link delay
ξM unit executing price of a VM

M ($/hour)
λXY unit executing price of network

link from server X to server Y
($/hour)

servers and network links. A server in servers is modeled as
server(cpu, vms), where cpu is its computing power and vms
is the set of VMs allocated on the server. A VM is modeled
as vm(p, tstart, tshut, size), where p is its computing power,
tstart and tend are its start time and shut down time, respective-
ly, and size is the size of the VM. We assume 5 different sizes
of VMs: small, small-medium, medium, medium-large, and
large which consume 20%, 40%, 60%, 80%, and 100% of their
allocated server’s capacity, respectively. The unit execution
price of a VM depends on its size, the larger the size, the
higher the charge. A link between two servers is modeled as

IJCA, Vol. 20, No. 4, Dec. 2013 211

link(bw, delay) where bw is the network bandwidth between
them, and delay is the minimum link delay.

A schedule SG of a dataflow G is an assignment of its
operators onto VMs on servers in a data center (Figure 1). An
assignment is modeled as assign(op, server). Time T (SG)
and cost C(SG) denote the completion time and the monetary
cost of a schedule SG of a dataflow G. The parameters of a
schedule are given in Table 3.

Cloud Concrete Operator

Flows

Assignment

Figure 1: Dataflow scheduling with assignment of operators to
virtual machines on cloud servers

Table 3: Parameter of a schedule

Parameters Definitions
assign(op, server) assignment of op to server
T (SG) completion time of a schedule SG

C(SG) monetary cost of a schedule SG

3.1 Time Modeling

As usable Cloud resources are dynamic, the allocable com-
puting power of server X at time t is represented as cpuX,t.
Whenever the allocable capacity of a particular server changes,
a new time t′ will be used. In other words, the computing
power during time slot [t, t′] is constant. For example, during
time interval [t1, tn], the allocable computing power can be
set is CPUX,t1,tn = (cpuX,t1,t2 , cpuX,t2,t3 , ..., cpuX,tn−1,tn).
The maximum computing power we can reserve during time
interval [t1, tn] will be the minimum value of all time slots:
cpuX,t1,tn = min(CPUX,t1,tn). As in the Cloud environ-
ment, the provider always has some types of pre-configured
VMs, so the largest VM we can allocate on a server should
be the largest one which is smaller than cpuX,t1,tn , defined as
pX,t1,tn = max(pX,t1,tn < cpuX,t1,tn).

Figure 2 shows an example of three VMs scheduled on one
server during different time slots. For example, VM1 reserves
60% of the server’s general capacity from t0 to t2; VM2
reserves 20% from t1 to t4; VM3 reserves 40% from t3 to t4.

The available computing power of this server from t0 to t4 will
be sets of PX,t0,t4 = (40%, 20%, 80%, 40%), thus the maxi-
mum allocable computing power from t0 to t4 would be 20%.
Similarly, the available bandwidth of a network link is defined
in the same way: the maximum link bandwidth bwXY,t1,tn

during time interval t1 and tn will bemin(BWXY,t1,tn) where
BWXY,t1,tn = (bwXY,t1,t2 , bwXY,t2,t3 , ..., bwXY,tn−1,tn).

20%

40%

60%

80%

Timet0 t1 t2 t3 t4t0 t1 t2 t3 t4

VM1

(60%)

VM2 (20%)

VM3

(40%)

Server

Capacity

Time

Server

Capacity

100%

Figure 2: Cloud server allocated capability during the time
interval [0, t4]

The network communications which perform data
transfers are injected between the operators of a
flow(producer, consumer, data) if producer and consumer
are assigned to different servers. According to [14], always
two data transfers are injected, one attached after producer,
and another attached before consumer. To calculate the
completion time of a dataflow, two types of operators, namely
PL and S&F must be addressed separately as discussed in the
following paragraphs.

Pipeline: Let A and B be two connected PL operators
with flow(A,B,DA→B) (where B’s preceding operators
are all PL operators). We assume that the execution time of
both operators are fully overlapped. Let the assignments of
A and B be assign(A,X) and assign(B, Y), respectively,
with X 6= Y . Let ZA denote the aggregated and complexity
normalized input data size on A,

(1) the execution time of A during time interval [t1, tn] is
computed as:

execA,X,t1,tn = ZA

pX,t1,tn (1)

(2) the data transfer time, which is injected into the execution
ofA at various time slots [tp, tq] during time interval [t1, tn] as
shown in Figure 3 is computed as:

tranAB,XY,t1,tn =
∑

∀[tp,tq]∈[t1,tn]
(DA→B

bwXY,tp,tq
+ delayXY)

(2)
(3) the running time of A is:

tA,t1,tn = max(A.exec+ tran,B.exec+ tran) (3)

212 IJCA, Vol. 20, No. 4, Dec. 2013

Time
t1 t2 t3 t4 t5 t6 ...… tn-2 tn-1 tn

Server

Capacity

100%

Operator A

Execution Time

Data Transfer

Time

Figure 3: PL operator A intermixed with data transfer time
during the time interval [t1, tn]

Store-and-Forward: Let A be a S&F operator with
assign(A,X). For every operator B (either PL operator or
S&F operator) with flow(A,B,DA→B) and assign(B, Y)
with X 6= Y ,

(1) the execution time of A during time interval [t1, tn] is
computed as:

execA,X,t1,tn = ZA

pX,t1,tn (4)

(2) the data transfer time, which is attached after the execu-
tion of A as shown in Figure 4, is computed as:

tranAB,XY,t1,tn = DA→B

bwXY,t1,tn
+ delayXY (5)

Time

Server

Capacity

100%

Operator A

Time
t1 t2 t3 t4 t5 t6 ...… tn-2 tn-1 tnt1 t2 t3 t4 t5 t6 ...… tn-2 tn-1 tn

Execution Time

Data Transfer

Time

Figure 4: S&F operator A with data transfer time attached
during the time interval [t1, tn]

(3) the running time of A is:

tA,t1,tn = A.exec+ tran (6)

3.2 Cost Modeling

Cloud providers lease resources that are typically charged
based on a per time quantum pricing policy which is typically
one hour [14], and Cloud resources are charged for exactly the
time being used. We define the total monetary cost C(SG) of a

schedule SG as the sum of costs of executing each operator and
the sum of costs of all the data transfers:

(1) Cost of executing operator A on VM M :

Cexec(A) = ξM × exec(A) (7)

Note that VMs with different sizes have different unit execu-
tion prices.

(2) Cost of data transfer of flow(A,B,DA→B) from VM
M located on server X to VM N located on server Y :

Ctran(DA→B) = λXY × tran(AB)
(8)

(3) Total monetary cost C(SG) of a schedule SG:

C(SG) =
∑

∀A∈ops
Cexec(A) +

∑
∀DA→B∈flows

Ctran(DA→B)

(9)

4 Problem Formulation

4.1 Query Language Abstractions

Generally, user requests take the form of queries in some
high-level declarative or visual language such as SQL, Hive
[25], etc. The optimization process examines all execution
plans that could answer the original query(s) and choose
the one that is optimal and satisfies user’s quality of service
requirements. As introduced in [27], our optimization process
has the following three different layers of abstractions:

Operator Graphs: These are the query(s) decomposed into
data operators as nodes, and operator interactions in the form of
producing and consuming flows as directed edges. Operators
encapsulate data processing algorithms and could be custom-
made by end users. These processing algorithms include
compositions, aggregations and partitions, and be more specific
like filtering, ranking, sorting and so on.

Concrete Operator Graphs: Similar to operator graphs
except that their nodes are concrete operators, i.e., software
components that implement operators in a particular way and
carry all necessary details for their execution. For this layer,
the critical step is to determine an operator’s implementation.
In general, there might be multiple alternative implementation
for an operator, e.g., a fast but limited by memory version and a
slow but only limited by disk size one. A more specific example
is the JOIN operator, which has multiple implementations:
hash join has short execution time but limited by memory;
nested − loops join has little memory consumption but long
execution time.

Execution Plans: Similar to concrete operator graphs except
that their nodes are concrete operators that have been allocated
resources for execution and have their initialization parameters
set. The modeling and methodology presented in this paper
belong to this stage of optimization. The main focus is to

IJCA, Vol. 20, No. 4, Dec. 2013 213

allocate the resource needed for execution of operators and
flows.

4.2 The Scheduling Problem

We define the scheduling problem as follows:

Definition 1. Cloud users can submit dataflow applications G
(e.g., queries) from anywhere around the world. Our objective
is to find the scheduling such that the completion time of the
dataflow T (SG) is minimized within a pre-specified financial
budget constraint (Figure 5).

min
all possible schedules

T (SG), such that C(SG) ≤ budget
(10)

Time

Monetary

Cost

Time

Budget Constraint

Schedule

Figure 5: The optimization problem (the chosen schedule is
shown with an arrow)

5 Algorithm Design

We develop a Layer-oriented Resource Allocation within
Budget constraint (LRA-B) for budget constrained users. The
general steps of our algorithm are as follows:

Step 1. Create Virtual Execution Plan (VEPlan).
Step 2. Adjust VEPlan to satisfy the budget constraint if

necessary.
Step 3. Map the VEPlan to the Cloud, and generate VM

allocations.
The pseudocode of LRA-B is provided in Algorithm 1 and

the details of the algorithm will be discussed in the following
sections.

5.1 Virtual Execution Plan

A VEPlan is a virtual schedule for the execution of the
given dataflow based on the basic configuration of the Cloud
environment, such as the node power, link bandwidth, etc.
It is called virtual because it does not consider the mapping
to VMs and creating of VM allocations. For example, after
acquiring the VM power, we can calculate the time required
to compute each operator, and by acquiring the link bandwidth

Algorithm 1 LRA-B
Input:
G(ops, flows): The dataflow graph
G(servers, links): The Cloud environment
budget: The budget constraint

Output:
SG: The schedule that minimizes the T (SG) under budget

constraint

1: C(SG) = createMinV EPlan();
2: if C(SG) > budget then
3: return NO POSSIBLE SCHEDULE;
4: end if
5: C(SG) = createMaxV EPlan();
6: if C(SG) > budget then
7: adjustV Eplan();
8: end if
9: mapV EPlan();

and link delay, we can calculate the data transfer time of each
link. With this information, an execution plan is constructed
and query completion time and cost can be estimated. As the
Cloud environment usually provides different VM templates,
the VEPlan can be constructed with different VM templates,
which leaves the space for adjusting VEPlan to satisfy the
budget constraint. A Max-VEPlan is a virtual execution created
with the maximum processing power, i.e., 100% of server
capacities. On the contrary, a Min-VEPlan is created with the
minimum processing power, i.e., 20% of server capacities. A
Min-VEPlan gives out the longest query completion time and
usually requires least cost for estimation purpose. When the
VEPlan is mapped onto the actual servers in the Cloud, the
final query completion time and cost might vary a lot from
the estimation got from this step: firstly, operators may share
servers which save the data transfer cost; secondly, when an
operator is scheduled to be executed in a certain time slot,
the query completion time might be prolonged due to time
slot unavailability. The technique we adopted to make precise
estimation of the cost of the VEPlan will be discussed in the
following section.

5.2 Cost Estimation

A Min-VEPlan is used to estimate the minimum cost required
to execute the dataflow. If the budget is lower than the
minimum cost, then there is no possible schedule within this
budget (Line 1-4 in Algorithm 1). The ideal case is that the
estimated cost of the VEPlan is the same as the actual execution
cost. However, it is impossible since the scheduling problem is
NP-Hard.

Proposition 1. To achieve better query completion time, an
operator with indegree > 1 can share the server with at least
one of its preceding operators to save the data transfer time.

214 IJCA, Vol. 20, No. 4, Dec. 2013

By taking the savings on the data transfer time into consider-
ation, to make the estimation more precise, the cost of at least
one of data transfer cost for each operator with indegree > 1
can be deducted from the estimated cost of the VEPlan.

5.3 Adjust Virtual Execution Plan

As shown in Algorithm 1, a Max-VEPlan will be created
at the beginning. If the estimated cost is greater than budget,
then a swapping procedure is invoked to adjust the VEPlan and
lower the cost, as shown in Algorithm 2. The objective of this
procedure is to reassign those operators on non-critical paths
to result in the minimum increase in T (SG) for the largest cost
savings under the budget limit. The operators on the critical
path will not be reassigned. In each iteration, an operator is
selected and the VM template is swapped to a lower one if
available. The iteration ends up with a reduced total cost with
similar T (SG). To determine the swapping strategy, Increase
for operator A as the iteration increase between the current and
new configurations are computed in (11):

Algorithm 2 adjustVEPlan
Input:
G(ops, flows): The dataflow graph
G(servers, links): The Cloud environment
V EP (ops, flows): The VEPlan
Budget: The budget constraint

Output:
V EP ′(ops, flows): The new VEPlan that satisfies the

budget constraint
1: V EP ′ = V EP ;
2: Calculate C(SG)Cur;
3: while C(SG)Cur > Budget do
4: findCriticalPath(V EP ′);
5: for all operator A ∈ G do
6: if A ∈ CriticalPath then
7: Continue;
8: end if
9: Calculate IncreaseA by assigning A to smaller VM;

10: end for
11: A = min{Increase};
12: V EP ′ = updateVEP(V EP ′, A.smallerVM());
13: Calculate C(SG)Cur;
14: end while
15: return V EP ′;

IncreaseA = T (SG)New−T (SG)Cur

C(SG)Cur−C(SG)New (11)

where T (SG)Cur and C(SG)Cur are the query completion
time and cost of current schedule, respectively; T (SG)New

and C(SG)New are the query completion time and cost of
A reassigned with a smaller VM size, respectively. The

algorithm keeps reassigning by considering the smallest values
of Increase. Our selection criteria of having large cost saving
and small query completion time increase will result in small
value of Increase.

5.4 Mapping Virtual Execution Plan to the Cloud

This procedure is to find the available resources on Cloud
servers to assign dataflow operators. The goal is to achieve
the minimum query completion while mapping the VEPlan
generated in the previous step to the Cloud environment. It
starts with a layer-oriented sorting and then schedules the
operators layer-by-layer that optimizes the query completion
time T (SG).

5.4.1 Layer-oriented Sorting. A layer-oriented sorting of
a DAG is a linear ordering of its vertices constrained by the
edge dependencies [3]. By applying layer-oriented sorting to
the DAG-structured dataflow, we can separate operators into
different layers starting from layer 1 based on happen-before
dependencies and operator types. Operators in the same layer
can be executed simultaneously. To decide which layer should
an operator A belong to, as there are two types of operators:

Case 1: if A is a PL operator and all its preceding operators
pre(A) are PL operators, then A will be assigned to the same
layer as its preceding operators, e.g., operator 3 in Figure 6;

Case 2: ifA is a PL operator but at least one of its preceding
operators pre(A) is a S&F operator, then A will be assigned
to the next layer, e.g., operator 9 in Figure 6;

Case 3: if A is a S&F operator then A will be assigned to
the next layer, e.g., operator 7 in Figure 6;

S&F

PL

PL

PL

S&F

S&F

S&F

PL

S&F

S&F

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

1

2

3

4

5

6

7

8

9

10

Figure 6: Layer-oriented sorting of DAG-structured dataflow

Such layer-based sorting can be done in linear time. Each
operator will be given a priority value depending on their
computing and communication loads. Operators on the CP
(shown in dark shade in Figure 6) will be given the highest
priority value compared with other operators from the same
layer. If there are more than one CP operators in one layer,
the higher priority gives to producer. An example is shown in
Figure 6 (both operator 2 and 3 are CP operators, but higher
priority will be given to operator 2).

IJCA, Vol. 20, No. 4, Dec. 2013 215

5.4.2 The Resource Allocation Procedure. The resource
allocation procedure seeks to assign operators to servers with
the goal of minimizing query completion time. Operators
starting from layer 1 will be scheduled on the appropriate
VMs allocated on different servers with the lowest partial
earliest completion time from the starting operator. If there
are multiple starting/ending operators, a virtual starting/ending
operator with zero complexity is inserted and connected to all
starting/ending operators. The shaded operators in Figure 6
compose the CP. The order to schedule these operators is
indicated by the numbers. Whenever we start to schedule
operators from a new layer, operators with higher priorities
will be scheduled first to have a better chance to utilize good
resources.

Algorithm 3 mapVEPlan
Input:
G(ops, flows): The dataflow graph
G(servers, links): The Cloud environment
V EP (ops, flows): The VEPlan
Budget: The budget constraint

Output:
SG: The schedule that minimizes the T (SG) under budget

constraint
1: Apply layer-oriented sorting to G(ops, flows);
2: for i = layer 1 to MaxLayer do
3: Sort operators in current with descending order of

priority.
4: for all operator A ∈ current layer do
5: for all server Sk ∈ available servers do
6: Calculate partial query completion time pT (SG)k

and partial cost pC(SG)k if A is assigned to Sk;
7: end for
8: Select the schedule(s) with minimum pT (SG), if there

are several schedules with the same pT (SG), choose
the one with minimum partial cost;

9: end for
10: end for
11: Calculate T (SG) and C(SG) ;
12: return T (SG), C(SG);

In Algorithm 3, line 1 applies layer-oriented sorting to all
operators. Lines 2-10 aim to schedule operators layer-by-layer.
Line 3 sorts the operators in the current layer according to
their priorities. For all the operators in the current layer, lines
5-7 seek to find the allocation that will give the best partial
query completion time as well as minimum partial cost. For
example, for operator A, the computing power requirement
and time span needed can be obtained from the VEPlan and
schedules for preceding operators. To allocate operator A to
a server S, we need to find an appropriate time slot on S to
satisfy the time requirement of A. After looping through all
the severs, A will be assigned to the server that achieves the
minimum partial query completion time. Line 11 calculates the
final query completion time T (SG) and cost C(SG). Line 12

returns the T (SG) and C(SG).

6 Experimental Evaluation

In this section, we describe the overall experimental setup
and the analysis of results.

6.1 Experimental Setup

6.1.1 Data Center and Dataflow Configurations. The
experiments conducted are characterized by three elements:

Cloud Environment: In our experiments, we realistically
assume that all the servers within a data center are homoge-
neous, i.e., they have the same resources (CPUs, memories, and
network, etc.).

Dataflow Structure: There are several commonly used
families of dataflows such as: Montage [13], Ligo [7], Cy-
bershake [9] and more generally Lattice [14], etc. The first
three are abstractions of actual dataflows that are used in real
applications, and Lattice is a purely synthetic dataflow family
that generalize the typical Map-Reduce dataflow [14]. To
ensure the generality of our model, dataflows with multiple
starting or ending operators can be converted to our general
model (as discussed in Section 3) by creating a virtual starting
or ending operator of complexity zero and connect it to all
starting or ending operators without any data transfer along the
edges.

We experiment with several sizes of dataflows which are
represented by a two-tuple (m,n) in Table 4, where m is the
number of operators, and n is the number of flows as defined in
the dataflow model.

Table 4: Dataflow Configurations

Dataflow Dataflow Size
ID m,n

1 10, 21
2 20, 43
3 40, 79
4 50, 96
5 50, 500
6 100, 205
7 200, 438
8 300, 601
9 400, 784
10 500, 1138

We develop a dataflow generator to randomly generate our
test dataflows. By giving two attributes of dataflows, m for
number of operators and n for number of flows, our dataflow
generator can automatically generate random dataflows with
varying parameters within a suitably predefined range of val-
ues: (i) aggregated and complexity normalized input data size;

216 IJCA, Vol. 20, No. 4, Dec. 2013

(ii) operator type; (iii) the number of flows and the data transfer
size between two operators. This generator will ensure that
each operator has at least one input edge and one output edge.

Operator Types: In our experiments, we examine complex
dataflows with intermixed PL and S&F operators. For the
dataflows with the same size, we examine the following five
cases:

(1) all operators being S&F operators
(2) 25% operators being PL operators, and 75% being S&F

operators
(3) 50% operators being PL operators, and 50% being S&F

operators
(4) 75% operators being PL operators, and 25% being S&F

operators
(5) all operators being PL operators

6.1.2 Performance Metrics and Experimental Scenarios.
The following performance metrics are considered:

• Dataflow query completion time
• Monetary cost

We evaluate our algorithm from the following experimental
scenarios:

• Impact of data center size
• Impact of unit execution price of servers and network links
• Impact of operator types
• Impact of data transfer sizes
• Impact of budget constraint
• Impact of dataflow size

By default for plotting figures, if not specify otherwise, the
dataflow used for demonstration is the 4th one G(50,96) in
Table 4 and the data center contains 100 nodes. The ratio of
server and link unit cost is set as 10:1.

6.2 Analysis of Results

6.2.1 Impact of Data Center Size To study the impact of
data center size, we create two data centers of different sizes.
Data center 1 contains 10 nodes and data center 2 contains 1000
nodes. Individual node and link capacities are the same in both
data centers. Impact of data center size on query completion
time (bar) and cost (plot) is given in Figure 7. We evaluate
two dataflows running on two data centers. Case 1 and Case
2 are the results of dataflow 6 running on data center 1 and
Case 2 is dataflow 6 running on data center 2. Case 3 is the
result of dataflow 10 running on data center 1 and Case 4 is on
data center 2. We can conclude from the figure that for smaller
sized dataflows the performance is irrelevant to the size of data
center, but for larger dataflows (e.g., dataflow 10 contains 500
operators compared to 100 in dataflow 6) the performance is
better on larger data center although the costs are almost the
same in different sized data centers for a same dataflow.

1 2 3 4
0

300

600

900

1200

1500

Case ID

T
(S

G
)

1 2 3 4
0

1

2

3

4

5

6

7

8

9

10
x 10

4

C
(S

G
)

T(S
G
) − VEPlan

T(S
G
) − Actual

C(S
G
) − Actual

Figure 7: Impact of data center size

6.2.2 Impact of Unit Execution Price of Servers and
Network Links. We consider the following seven different
ratios of server unit execution prices vs. network link unit
execution prices (as shown in Table 5). For all cases, the sum
of server and link unit price remains the same. Impact of server
and link price on query completion time (plot) and cost (bar)
are given in Figure 8.

Table 5: Unit Execution Price Ratios: Server vs. Network link

Case ID Ratio
1 1 : 100
2 1 : 10
3 1 : 5
4 1 : 1
5 5 : 1
6 10 : 1
7 100 : 1

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

Case ID

C
(S

G
)

1 2 3 4 5 6 7
150

200

250

300

350

400

450

T
(S

G
)

C(S
G
) − VEPlan

C(S
G
) − Actual

T(S
G
) − VEPlan

T(S
G
) − Actual

Figure 8: Impact of unit execution price of servers and network
links (Dataflow ID = 4)

IJCA, Vol. 20, No. 4, Dec. 2013 217

From the figure, we can see that the cost of dataflow is
sensitive to link cost, as the ratio of link vs. server decreases,
the total cost decrease. The difference between VEPlan and
actual cost is huge for the first few cases, and decreases as
the ratio of link vs. server decreases. The reason for this is
the node sharing between operators, as the link transfer cost
composes a great potion in VEPlan while it does not in actual
plan. Meanwhile, the changing of ration have no effect on the
completion time.

6.2.3 Impact of Operator Types. For the dataflows with
the same size intermixed with different percentages of PL and
S&F operators, we examine the five cases indicated in the
experimental setup section. As we can observe from Figure
9, generally, the completion time decreases as percentage of
PL increases, but the cost increases since the PL operators
will consume more server time while they are waiting for data
inputs from predecessors. For Case 4, where there are 75% of
PL operators and 25% of S&F , there is a huge increase for
the actual cost and completion time. The few scattered S&F
operators might be the bottleneck for execution and cause the
increase in time and cost.

1 2 3 4 5
2500

3500

4500

5500

6500

7500

8500

9500

10500

11500

Case ID

C
(S

G
)

1 2 3 4 5
0

100

200

300

400

500

T
(S

G
)

C(S
G
) − VEPlan

C(S
G
) − Actual

T(S
G
) − VEPlan

T(S
G
) − Actual

Figure 9: Impact of operator types

6.2.4 Impact of Data Transfer Sizes. We examine two
dataflows, 4 and 5, for the impact of data transfer sizes and
the results are shown in Figure 10. Dataflow 4 contains 50
nodes and 96 links, while dataflow 5 contains 50 nodes and
500 links. For each link in dataflow, take the original transfer
size as 1, we double the transfer size as the test case increases.
For Case 1 to 5, the transfer size increase by 1, 2, 4, 8 and
16 times. Although the transfer size increases exponentially,
for dataflow with smaller number of links, the cost (bar) and
query completion time(plot) only have linear increases; but for
dataflow with relatively large number of links, the cost (bar)
and query completion time (plot) have polynomial increase.

6.2.5 Impact of Budget Constraint. The impact of budget
constraint is studied for dataflow 4. The result is shown in

1 2 3 4 5
2000

3000

4000

5000

6000

7000

8000

Case ID

C
(S

G
)

1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

T
(S

G
)

C(S
G
) − VEPlan

C(S
G
) − Actual

T(S
G
) − VEPlan

T(S
G
) − Actual

1 2 3 4 5
1

2

3

4

5

6

7

8

9

10
x 10

4

Case ID

C
(S

G
)

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

T
(S

G
)

C(S
G
) − VEPlan

C(S
G
) − Actual

T(S
G
) − VEPlan

T(S
G
) − Actual

Figure 10: Impact of data transfer sizes (top: Dataflow ID = 4,
bottom: Dataflow ID = 5)

Figure 11 and the budgets are set to the cost of Min-VEPlan
adding 0%-100% of the difference between the cost of Min-
VEPlan and Max-VEPlan).

1 2 3 4 5 6 7 8 9 10 11
900

1400

1900

2400

2900

3400

3900

4400

4900

5400

Case ID

C
(S

G
)

1 2 3 4 5 6 7 8 9 10 11
0

100

200

300

400

500

600

700

T
(S

G
)

C(S
G
) − VEPlan

C(S
G
) − Actual

T(S
G
) − VEPlan

T(S
G
) − Actual

Figure 11: Impact of budget (Dataflow ID = 4)

From Figure 11 we can conclude that the completion

218 IJCA, Vol. 20, No. 4, Dec. 2013

time(plot) remains the same after a certain point, while the
actual cost still decreases as the budget decreases. From the
user’s point of view, if the completion time is not a big concern,
the budget should be set as close to minimum as possible,
otherwise the budget should be set as close to maximum as
possible.

6.2.6 Impact of Dataflow Size. To evaluate the impact of
dataflow size on query completion time and monetary cost, we
experiment with 9 dataflows of sizes from small to large as
indicated in Table 4. The fifth dataflow in Table 4 is excluded
in this study since its links number is incomparable with others.
The actual query completion time (plot) and cost (bar) are given
in Figure 12. The budget for each dataflow is set to 80% of
its Max-VEPlan. Generally, as the size of dataflow increases
linearly, the query completion time and cost increase linearly
too.

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5
x 10

4

Case ID

C
(S

G
)

1 2 3 4 5 6 7 8 9
0

400

800

1200

1600

2000

2400

2800

3200

T
(S

G
)

C(S
G
) − Actual

T(S
G
) − Actual

Figure 12: Impact of dataflow size

7 Conclusion

In this paper, we formulate scheduling of dataflows on-
to Cloud resources under the objective of minimizing the
query completion time under certain budget constraints. A
heuristic scheduling algorithm, Layer-oriented Resource Al-
location within Budget constraint (LRA-B) is proposed and
evaluated. LRA-B first calculates a Min-VEPlan to check
if scheduling is available under the given budget constraint,
and then calculates a Max-VEPlan and adjust the VEPlan
by keeping reassigning the operators on non-critical paths to
results in the minimum increase in query completion time
for the latest cost savings until the cost is within the budget
constraint. Finally the VEPlan is mapped to the Cloud while
minimizing the query completion time by adapting a layer-
oriented mapping strategy and keeping selecting the minimum
partial query completion time for each operator. Experiments
are conducted on numerous dataflows and Cloud environment
configurations, and the overall results are quite promising and
indicate the effectiveness of our algorithm. Our future plan
is to run our experiments on a local private Cloud, called

Saluki Cloud established and managed by Eucalyptus with a
few Beowulf clusters. We also would like to extend our model
to consider various factors such as energy consumption and
resource utilization of data centers.

References

[1] R. Agrawal, A. Ailamaki, P. A. Bernstein, E. A. Brewer,
M. J. Carey, S. Chaudhuri, A. Doan, D. Florescu, M. J.
Franklin, H. G. Molina, J. Gehrke, L. Gruenwald, L. M.
Haas, A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis,
H. F. Korth, D. Kossmann, S. Madden, R. Magoulas, B.
C. Ooi, T. O’Reilly, R. Ramakrishnan, S. Sarawagi, M.
Stonebraker, A. S. Szalay, G. Weikum, The Claremont
Report on Database Research, SIGMOD Record, 37(3):9-
19, 2008.

[2] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-
Hui Su, K. Vahi, Characterization of Scientific Workflows,
Third Workshop on Workflows in Support of Large-Scale
Science, pp. 1-10, 2008.

[3] F. Cao and M. Zhu. A Fault-tolerant Workflow Mapping
Algorithm under End-to-end Delay Constraint, Proceeding
of the Symposium on Advances of High Performance
Computing and Networking (AHPCN-2011) in conjunction
with the 13th IEEE international conference on High
Performance Computing and Communications (HPCC-
2011), Banff, Canada, September 2-4, 2011.

[4] Condor, http://www.cs.wisc.edu/condor.
[5] Condor, http://www.cs.wisc.edu/condor/dagman.
[6] J. Dean and S. Ghemawat, MapReduce: Simplified

Data Processing on Large Clusters, 6th Symposium on
Operating System Design and Implementation, pp. 137-
150, 2004.

[7] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L.
Pearlman, K. Blackburn, P. Ehrens, A. Lazzarini, R.
Williams, S. Koranda, GriPhyN and LIGO, Building
a Virtual Data Grid for Gravitational Wave Scientists,
Proceedings of 11th IEEE International Symposium on
High Performance Distributed Computing (HPDC-11), pp.
225-234, 2002.

[8] E. Deelman, G. Singh, M. Su, J. Blythe, and Y. Gil, C.
Kesselman, G. Mehta, K. Vahi, G. Berriman, J. Good,
A. Laity, J. Jacob, D. Katz, Pegasus: A Framework for
Mapping Complex Scientific Workflows onto Distributed
Systems, in Sci Program., 13:219-237, July 2005.

[9] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R.
Graves, N. Gupta, V. Gupta,T. H. Jordan, C. Kesselman,
P. Maechling, J. Mehringer, G. Mehta, D. Okaya, K.
Vahi, L. Zhao, Managing Large-scale Workflow Execution
from Resource Provisioning to Provenance Tracking:
The Cybershake Example, Second IEEE International
Conference on e-Science and Grid Computing (e-Science
’06), pp. 14, 2006.

[10] M. N. Garofalakis and Y. E. Ioannidis, Parallel Query
Scheduling and Optimization with Time- and Space-Shared

IJCA, Vol. 20, No. 4, Dec. 2013 219

Resources, VLDB, pp. 296-305, 1997.
[11] L. M. V. Gonzalez, L. R. Merino, J. Caceres, and

M. Lindner, A Break in the Clouds: Towards a Cloud
Definition, Computer Communication Review, 39(1):50-
55, 2009.

[12] R. M. Karp, Reducibility among Combinatorial Problems,
Plenum Press, 1972.

[13] J. Kleinberg and E. Tardos, Algorithm Design, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2005.

[14] H. Kllapi, E. Sitaridi, M. M. Tsangaris and Y. Loannidis,
Schedule Optimization for Data Processing Flows on the
Cloud, SIGMOD’11, Athens, Greece, June 12-16, 2011.

[15] D. Kossmann, The State of the Art in Distributed Query
Processing, ACM Comput. Surv., 32(4):422-469, 2000.

[16] Y. C. Lee, C. Wang, A. Y. Zomaya, and B. B. Zhou, Profit-
Driven Service Request Scheduling in Clouds, Proceedings
of the 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing (CCGRID ’10), pp.
15-24, 2010.

[17] M. J. Litzkow, M. Livny, and M. W. Mutka, Condor - A
Hunter of Idle Workstations, 8th International Conference
on Distributed Computing Systems, pp. 104-111, 1972.

[18] D. T. Liu and M. J. Franklin, The Design of GridDB: A
Data-Centric Overlay for the Scientific Grid, In VLDB, pp.
600-611, 2004.

[19] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins, Pig Latin: A Not-so-foreign Language for
Data Processing, In SIGMOD Conference, pp. 1099-1110,
2008.

[20] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, A Particle
Swarm Optimization-based Heuristic for Scheduling Work-
flow Applications in Cloud Computing Environments, IEEE
AINA, pp. 400-407, 2010.

[21] S. Shankar and D. J. DeWitt, Data Driven Workflow
Planning in Cluster Management Systems, HPDC, pp. 127-
136, 2007.

[22] J. N. Silva, L. Veiga, and P. Ferreira, Heuristic for
Resources Allocation on Utility Computing Infrastructures,
In B. Schulze and G. Fox, editors, MGC, pp. 9. ACM,
2008.

[23] J. Smith and R. Nair, Virtual Machines: Versatile
Platforms for Systems and Processes, The Morgan
Kaufmann, 2003.

[24] T. Tannenbaum, D. Wright, K. Miller, and M. Livny,
Condor - A Distributed Job Scheduler, Beowulf Cluster
Computing with Linux, The MIT Press, MA, USA, 2002.

[25] A. Thusoo, IEEE 26th International Conference on Data
Engineering (ICDE), pp. 996-1005, 2010.

[26] K. Tsakalozos, M. Roussopoulos, V. Floros, and A. Delis,
Nefeli: Hint-based Wxecution of Workloads in Clouds,
IEEE ICDCS, pp. 74-85, 2010.

[27] M. Tsangaris, G. Kakaletris, H. Kllapi, G. Papanikos, F.
Pentaris, P. Polydoras, E. Sitaridi, V. Stoumpos, and Y.
Ioannidis, Dataflow Processing and Optimization on Grid

and Cloud Infrastructures, IEEE Data Eng. Bull., 32(1):67-
74, 2009.

[28] A. Weiss, Computing in the Clouds. NetWorker, 11(4):16-
25, Dec. 2007.

[29] J. Yu and R. Buyya, A Novel Architecture for Realizing
Grid Workflow using Tuple Spaces, in GRID 04:
Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing, pp. 119-128, 2004.

Dabin Ding received his B.S. and
M.S. degree in Computer Science
from Northeastern University, China
in 2006 and 2008. He is currently
a Ph.D. student in the Department
of Computer Science at Southern
Illinois University Carbondale. His
research interests include XML Query
Processing/Optimization, and Cloud
Computing.

Fei Cao received her B.S. degree in
Software Engineering from Zhejiang
University, China in 2007, the
M.S. degree in Computer Science
from California State University
Fullerton in 2009. She is currently
a Ph.D. student in the Department
of Computer Science at Southern
Illinois University Carbondale. Her
research interests include Distributed

Networking, and High Performance Computing.

Dunren Che is currently a professor in
Computer Science at Southern Illinois
University Carbondale. He earned his
Ph.D. in Computer Science from the
Beijing University of Aeronautics and
Astronautics, Beijing, China in 1994.
His main research interests include
Database (especially XML Database
and Query Processing/Optimization)

and Data Mining, as well as Cloud Computing and Big Data
as his most recent emphasis.

220 IJCA, Vol. 20, No. 4, Dec. 2013

Michelle M. Zhu received her Ph.D.
degree in Computer Science from
Louisiana State University in 2005.
She spent two years in the Computer
Science and Mathematics Division at
Oak Ridge National Laboratory for
her PhD dissertation from 2003 to
2005. She is an Associate Professor
in the Department of Computer
Science at Southern Illinois University

Carbondale. Her research interests include distributed and
high-performance computing, remote visualization and sensor
networks.

Wen-Chi Hou received the M.S. and
Ph.D. degrees in Computer Science
and Engineering from Case Western
Reserve University, Cleveland Ohio,
in 1985 and 1989, respectively. He
is a professor of Computer Science at
Southern Illinois University Carbon-
dale. His interests are in Statistical
Databases, Mobile and XML Databas-

es, Data Streams Processing, and Query optimization.

IJCA, Vol. 20, No. 4, Dec. 2013

ISCA Copyright© 2013

221

A Cooperative Game Theory-based Approach
for Energy-Aware Job Scheduling in Cloud

Mustafa Khaleel*, Saad Alqithami*, Michelle M. Zhu*, Dunren Che* and Wen-chi Hou*

Southern Illinois University, Carbondale, IL, 62901, USA

Abstract

This paper1 addresses the problem of energy-aware job

scheduling for underlying cloud nodes using cooperative game
theory. The objectives are on resource utilization
maximization and the power consumption minimization
without violating the job’s latest completion time (Makespan).
Cloud computing can deliver platform, software, storage and
data services through web browsers as a metered service. Due
to the skyrocketed electricity cost and a large number of active
users, Cloud service providers are highly motivated to adopt a
performance guaranteed and cost-effective job scheduler with
low power consumption and high job throughput. Therefore,
an energy-aware job scheduling algorithm is proposed for a
bag of tasks based on the premise of Nash Bargaining Solution
(NBS), which can ensure Pareto-optimality. In such a
cooperative theoretical gaming, each job seeks to locate a
cloud machine that can both guarantee the low energy under
certain makespan constraint. Simulation results show that our
approach significantly reduces the power consumption by
strategically selecting appropriate mapping nodes for
prioritized task modules. Our approach consistently achieves
lower energy consumption and higher resource utilization than
some comparable methods.

Key Words: Cloud computing; game theory; NBS; power
consumption; makespan.

1 Introduction

High Performance Computing (HPC) systems are playing an

ever-increasing important role for large-scale scientific
applications that are collaborated among a group of distributed
scientists [17]. In order to meet the intensive data and
computing needs, HPC system together with the managing
software needs to be designed as a highly flexible, scalable and
cost-effective platform [49]. Cloud infrastructure provides
users with on-demand and pay-on-the-go services realized
through virtualization technology [9]. There are three
basically main types of cloud services, namely Infrastructure-
as-a-Service (IAAS), Platform-as-a-Service (PAAS) and
Software-as-a-Service (SAAS). SAAS allows users of the

* Computer Science Department, Email:{mkhaleel, salqithami, mzhu,
dche and hou}@cs.siu.edu.

cloud to run different software over web browsers remotely.
PAAS provides users with an environment to run their
applications using specific development environments.
Furthermore, IAAS has virtual machines (VMs) that can be
setup and configured on physical nodes to execute the assigned
job modules. Gartner estimated that he market opportunity for
Cloud computing will be worth around $150 billion by 2014
[18]. In recent years, the electricity cost on managing data
centers for clouds have skyrocketed [3, 5]. For example, a
typical data center with 1,000 racks consumes about 10
Megawatt of power during normal operation [17]. Over the
past decade, the cost of servers running and cooling systems
has increased by 400 percent [15]. Thus, the design and
development of a power efficient cloud infrastructure have
become a critical research area in today’s HPC system. From
the cloud provider’s view, high job throughout is desired to
satisfy as many user requests as possible with the limited
computing and networking resources. The Service level
Agreement (SLA) between provider and customers must also
be met to provide some guaranteed Quality of Service (QoS).
Many researchers have been working on efficient resource
management/job scheduling strategies to reduce the energy
consumption. Hardware manufactures on the other hand,
focus more on the power-efficient chip and technology design
(e.g., [12, 29, 44, 52]). Incorporating power management to
scheduler design adds complexity due to the difficulty of
balancing power optimization with other objectives [20, 49].
Several techniques have been applied to decrease energy
consumption [46]. Dynamic Voltage Scaling (DVS) technique
has been used as one of the effective techniques that scale the
CPU frequencies without compromising the execution end-
time [8, 19, 50]. The cloud scheduling tackles the energy issue
from a higher software level and such optimized problem has
been proven to be NP-complete [51]. Thus, we propose a
heuristic energy-aware job scheduling algorithm that takes into
account both makespan and energy consumption as well as
higher utilization rate. Since the minimized energy
consumption and execution time are two contradicting
objectives, a tradeoff is sought by using cooperative game
theory to find a better payoff for both factors (makespan and
power consumption). We formulate our problem as a min-
min-max optimization problem. Since min-min-max
optimization has a high complexity, we convert the min-min-
max problem optimization into the max-max-min problem
optimization based on previous work [25]. In addition to the

 IJCA, Vol. 20, No. 4, Dec. 2013 222

low complexity of a max-max-min problem, Pareto optimality
from the Nash Bargaining Solution can be guaranteed [25].

The rest of the paper is organized as follows. A survey of
cloud scheduling algorithms is given in Section 2.
Mathematical models for cloud meta-modules, cloud
environments, and energy consumption are constructed in
Section 3. The makespan and power consumption as two
conflicting objectives is proved in Section 4, thus optimizing
both at the same time is not possible. The problem is then
formulated as min-min-max problem optimization. The
mathematical model and a cooperative game-based approach
with the objective function of reducing both makespan and
power consumption of cloud jobs are proposed in Sections 5
and 6. The details of the algorithm are presented in Section 7.
Simulation results are given in Section 8. Finally, the
conclusion can be found in Section 9.

2 Related Works

Many researchers have studied the problem of scheduling a

bag of tasks onto heterogeneous computing nodes with
guaranteed completion time and low power consumption.
Some of these studies proposed approaches using the DVS
model to adjust the frequency of processor while others
incorporated methods to optimize the dynamic power
management [21]. Energy and time optimization using game
theory has been gently investigated in the cloud. Young
Choon Lee and Albert Y. Zomaya [30] proposed a scheduler
named Energy-Conscious Scheduling (ECS) to minimize the
energy consumption for precedence-constrained applications
with DVS. Samee Ullah Khan and Ishfaq Ahmad [25]
developed a cooperative technique for mutli-constrained multi-
objective Generalized Assignment Problem (GAP) with DVS
technique in computational grids. Kim et al. [26] proposed an
energy-aware scheduling algorithm for bag-of-tasks
applications with each subjected to specific deadline
constraint. Garg et al. [17] proposed near-optimal energy
efficient scheduling polices to determine the scheduling order
of data center to minimize some factors such as 2CO , cooling
system, and power consumption. Chen et al. [10] proposed
three online solutions strategies to control the power
consumption for running servers based on steady state
querying analysis, feedback control theory, and a hybrid
mechanism. Zhu et al. [50] proposed two novel power-aware
scheduling algorithms for task sets with and without
precedence constraints for multiprocessor systems. Their
algorithm was based on the concept of slack sharing among a
set of processors. The scheduling techniques reclaimed the
time unused by a task to reduce the execution speed. Bradley
et al. [7] presented a solution for power consumption problem
via workload history. Lawson and Smirni [28] designed an
algorithm that can dynamically scale the number of processors
in order to decrease the power consumption by turning the
nodes into sleep modes. Huang et al. [22] proposed a near
optimal solution for heterogeneous processors to minimize the
power consumption of the system and complete all tasks by
their deadline. Duy et al. [13] proposed a green scheduling

algorithm to optimize server power consumption in cloud
computing. Their algorithm focused on how to turnoff unused
servers and restart them to minimize the number of active
servers. Borgetto et al. [6] presented an integrated approach
for VM migration, reconfiguration, and Physical Machine
(PM) power management. They proposed a method to unify
all three above-mentioned methodologies. The goals of the
approach were to minimize energy consumption and minimize
SLA violations. Pinheiro et al. [37] proposed an idea of
categorizing the servers in a cluster system into two groups,
namely one group with high capacity executing the
applications with intensive data while the other one can be
switched-off to save the power. Rountree et al. [38] proposed
a technique to bound optimal energy saving using linear
programming. Ge et al. [19] proposed a distributed
performance-directed DVS scheduling strategy to reduce the
power consumption during parallel applications. hey aim to
decrease the power when the peak CPU performance is not
necessary. In general, power managements were heuristic [23,
33, 43] or stochastic approaches [39, 41]. There were several
commonly used job scheduling policies including Greedy
(First Fit) and Round Robin algorithms in open-source cloud
computing management systems such as Eucalyptus [35].
Queuing system, advanced reservation and preemption
scheduling were adopted by Open Nebula [36]. Nimbus uses
some customizable tools such as PBS and SGE [34]. The
Greedy and Round Robin were heuristic approaches that select
adaptive physical resources for the VM to deploy without
considering the maximum usage of the physical resource. The
queuing system, advanced reservation and preemption
scheduling did not consider any balanced overall system
utilization either.

To our best knowledge, the work is different from most
existing works in these two aspects: (a) time dependency on
cloud infrastructure: the underlying Cloud
infrastructure/Virtual Machine (VM) resource availability is
time-dependent because of the dual operation modes namely
on-demand and reservation instances at various Cloud data
centers. (b) Game theory in cloud management: using game
theory to calculate the Pareto optimality at a point that
guarantees the best utilization rate for cloud management.
Some previous game theory work only considers grid
environment.

3 Analytical Models

We construct the analytical cost models for cloud meta-

modules, underlying cloud computer network graph, and
energy consumption model to facilitate a mathematical
formulation of the performance constrained optimization cloud
scheduling problem.

3.1 Cloud Task Model

Cloud users submit their job modules via a job scheduler to
be executed by cloud infrastructure. To generalize our model,
we consider N concurrent modules represented as

IJCA, Vol. 20, No. 4, Dec. 2013

223

}.....,,,{ 21 NuuuT = . Each module characterized by specific
deadline uid has to schedule by a VM on a particular node jv .
Before the mapping process, modules are sorted in decreasing
order of their deadline.

3.2 Cloud Network Model

 Figure 1 shows the cloud environment which is comprised of
a set of M heterogeneous nodes that are fully interconnected.
Since each node may support multiple virtual machines which
can be reserved, deployed and run, each VM can use DVS to
adjust the frequency needed in a certain (i.e., discrete clock
frequencies starting from (minf to)maxf . Scaling the
frequency of processor jv from up to down and vice versa
depends on whether an assigned module is processor bound or
not [17]. Overhead of clock frequency transition are not
considered in this paper because it takes only (10ms-150ms)
[30]. We consider a general cloud environment where VM
reservation and on-demand requests are both supported, which
means resource allocation status for the cloud network graph is
time dependent. It implies that available computing resources
on each node and the bandwidth on each vary over time as
shown in Figure 2. We model the underlying cloud network as
an arbitrary fully directed network graph),(cmcmcm EVG = ,
where cmV consists of a set of computing nodes

)...,,,(21 Mcm vvvV = as well as directed edges between each
pair. Node jv is featured by its normalized computing power

including CPU and memory as tv jp , . The communication

link jiL , between nodes iv to jv is featured by bandwidth

tvv jib ,, and the minimum link delay
ji vvd , .

Figure 1: Cloud network graph

 Figure 3 shows an example of three reservation requests
made on one cloud node during different time slots. Lets
assume that 30 percent of the node’s general capacity is
reserved for request 1 from t0 to t2; request 2 reserves 20
percent from t1 to t4; request 3 reserves 50 percent from t3 to t4.
Taking this into consideration, we can get

%)50%,70%,30%,50min(
4,0, =ttjvp where

4,0, ttjvp is the

maximal available computing power of node jv from t0 to t4.
Each node is occupied by one or a set of VMs to execute

A
75%

A
20%

A
100%

100%

100%

100%

100%
B

100%

C
100%

D
100%

100%

20%

100%

100%

35%

20%

75%

100%

B
65%

C
100%

D
100%

(1) t 0

(2) t1‐t2

(3) t2‐t3

C
55%

B
65%

D
80%

Figure 2: Shows several allocable resource graphs for a cloud
network at different time points due to resource
allocation

0 t4t3t2t1

30%

20%

50%

VM Capacity Reservation

Request 3

Request2

Time

 0 t4t3t2t1

30%
20%

50%

VM Capacity Reservation

70%

Time

Request 1

Figure 3: An example of three reservation requests

assigned modules. The largest VM instance that can be
allocated on jv from time t0 to tn is computed as the maximum

VM instance that can be launched using
nttjvp ,0, . The

execution time of module ui on node vj during time slot t0 and tn
is then computed as:

tntvj

u
ittv P

C
uet i

nj
,0,

,,)(0 = (1)

Where

iuC denotes the computational cost of module iu .

Similarly, the maximum link bandwidth along
ji vvL , during

time slot tm and tn is).min(,,, nmji ttvvb

3.3 Energy Model

The energy model is based on the power consumption in

complementary metal-oxide semiconductor (CMOS).
Dynamic and static power are two factors that contribute to

 IJCA, Vol. 20, No. 4, Dec. 2013 224

COMS circuit power consumption [10, 17, 24, 47]. As
reported in [2, 30], dynamic power has the main rule in
adjusting power consumption of the system, which can be
reduced by lowering the supply voltage using the DVS
technique. Dynamic power consumption of a CMOS-based
microprocessor is defined to be:

 efjv CfVP ××= 2 (2)

Where V denotes the supply voltage, f is the frequency, and

feC is the effective switched capacitance of circuit. From
Equation (2), we can see that power consumption will be
reduced by lowering supply voltage which is linearly
proportional to CPU frequency [1, 14]. This implies that
reducing supply voltage will also reduce the frequency of the
processor. From this point, we consider that the frequency of
the processor for each computing node in cloud infrastructure
can be scaled down from maxf to minf using DVS model.

3.4 Meta-Module Execution Cost

The cost of running meta-modules over cloud infrastructure

is measured by the sum of the total time, during which virtual
machines are setup on node jv multiplied by the power

consumption by node jv to execute parallel modules via

deployed VMs. Power of node jv ,
nttjvp ,0,

, that shares

between all virtual machines deployed on node jv from time
slot t0 to tn consider as the major contributor to adjust the total
running cost for meta-modules which also has a significant
effect on the execution cost of cloud systems. The time spent
on deploying VMs on node vj consists of the following
components: 1) The startup time for the virtual machines
includes selecting a virtual node and transferring a virtual
image as well as the boot-up time, and is assumed to be a fixed
value of startt . 2) The running time for every assigned module
on that VM. Suppose that a set U of modules are assigned to
node vj to be executed on the KthVM, and start to run from
time ts and end at time te in a sequential manner. The running
time for assigned modules on this VM is computed as:

∑

∈∈

=
KkUu tetskv

u

i j

i

p

C
timeRunning

, ,,,
 (3)

3) When two modules run on the same VM, there could be

some idle time after one module is completed and before
the next module starts. The total idle time for kv jVM ,

can be calculated as:

 ∑

∈

−−=
kji

j
Uu

iikv etStVMIdle
,

)1()(, (4)

4) The time to shut down that virtual machine is assumed to
a constant of shutt . Consequently, we can define the
Total Energy Cost as the summation of cloud modules
computation cost cT and cloud underlying network cost

cE . Mathematically, we can formulate:

 ∑
=

=
N

i
uc iCT

1

 (5)

 ()()∑∑∑
= = =

++×=
N

i

M

j

jS

k
shutkvstartipc tVMIdletuCE jkjvvm

1 1 1
,)(

,

 (6)

 cc ETTEC += (7)

Where N is the total number of modules from a particular job,
M represents the total number of nodes that have been
allocated in the system, and kv jvm , , where k ranges from 1 to

Sj, which denotes the total number of VMs that have been set
up on a computing node vj. The Utilization Rate for one job
with single module is defined as (8-1) or for multiple modules
as (8-2):

TEC

C
UR iu

= (8-1)

TEC

C
UR iu

N
i 1=∑

= (8-2)

It is understood from equation (7) that the cloud networkcost

is linearly proportional to TEC of the system. This implies that
by lowering cE , TEC will be reduced and this results in
maximizing UR of the cloud provider due to the goal that we
achieved from equation (8), which states that UR is inversely
proportional to TEC. From this point, we can state that total
energy cost considers the dominating factor in equation (8-1)
or (8-2) that leads us to get a higher throughput. For
convenience, we provide a summary of the notations used in
the cost models in Table 1.

4 Problem Formulations

We first consider a bi-objective scheduling problem to

minimize the total energy that is required by the computational
nodes to setup VMs and execute the parallel assigned modules
over cloud infrastructure and also minimize the makespan (i.e.,
completion time) of cloud modules at the same time.
However, these are two conflicting objectives and cannot be
achieved at the same time, as stated in Theorem 1, and then we
propose a novel solution to find a Pareto-optimality point from
NBS that balances these two conflicted objectives at point that

IJCA, Vol. 20, No. 4, Dec. 2013

225

guarantees the minimum power consumption with the
minimum acceptable makespan of assigned modules.

Table 1: Notations used in the analytical models
Parameters Definition
 The number of modules

 The i – th computing module

 The computational cost of module
 The start time of module
 The end time of module

 The cloud network

 The total number of nodes in the cloud

 The j – th computer node

 The source node

 The destination node

 The total computing power of node

 The maximal percentage of computing power
of VM on node from to

 The network link between nodes and

 The bandwidth of link from to

 The minimum link delay of link

 The time spent on setting up a virtual
machine

 The time spent on shutting down a virtual
machine

 The execution time of module running on
node

 The k – th VM on the j – th node

 The total number of VMs on the j – th node

 The computing power of

 set of modules scheduled on node vj’s k th
VM

Theorem 1: The bi-objective problem of minimizing the

makespan and minimizing the power consumption is non-
approximable within a constant factor.

Proof: Assume: (1) there are two different scheduling
strategies each with a different objective function. A schedule
S has the objective of minimizing the power consumption
while schedule Q has the objective of minimizing the
completion time (2) arrange of frequencies)(maxmin ff − that
operates the processor of computing node 1v to execute the
assigned module 1u via virtual machine 1vm . Thus, two cases
exist.

Case 1: (Schedule S with the objective of minimizing

power). Schedule S starts with executing module 1u over
node 1v using)(minf to satisfy the objective of minimizing
power. According to [25], the frequency of CPU is
proportional to the energy consumption per operation in the
system which means that operating the processor of computing
node 1v at a lower frequency)(minf to execute the assigned
modules 1u over virtual machine 1vm results in decreasing the

system’s energy due to the fact that)(2fE ∝ . On the other
hand, the time required to finish the execution process for a
particular module 1u is inversely proportional to the frequency
of CPU [49]. This means that running CPU at lower
frequencies will incur more time to complete an operation.

Case 2: (Schedule Q with the objective of minimizing
makespan). In the second case, Schedule Q operates the
processor of computing node 1v at the maximum level of
frequencies and because the frequency of CPU for node 1v is
inversely proportional to the time required to execute and
finish module 1u due to)(1−∝ tf [25], the makespan of
assigned module 1u will decrease satisfying the deadline
constraint. But due to the fact that frequency is cubic
proportional to power consumption)(3fP ∝ [40], this will
result in increasing/maximizing power consumption.

Case 1 has the minimum power consumption with the
maximum makespan while case 2 results in the minimum
makespan and maximum power consumption. None of the
above cases is considered in our simulation because both cases
contradict our assumption, which focuses on finding a tradeoff
between the power consumption and the makespan for
improved utilization rate. Our algorithm tries to balance these
two conflicting objectives using the Nash Bargaining Solution
(NBS) from a theoretical cooperative game, which guarantees
a bargaining point that results in high utilization throughput.
In other words, the point that gives a minimum acceptable
makespan operates at the minimum CPU frequency with the
constraint of module’s deadline.

Definition (1): Given:

1- A module’s computation cost:

 ∑
=

=
N

i
uc iCT

1

 (9)

2- A module’s execution time:

kjv

ii
ikj

VM

uUu
uvmv p

C
et

,
)(,

∈∑
= (10)

3- An arbitrary computer network in a cloud environment
:),(cncncn EVG =

∑∑∑
= = =

++×=
N

i

M

j

jS

k
shutkvstartipc tVMIdletuCE jkjvvm

1 1 1
,))(()(

,

 (11)

4- Total Energy Cost TEC:

 IJCA, Vol. 20, No. 4, Dec. 2013 226

 cc ETTEC += (12)

5- Cloud Utilization Rate for N jobs:

TEC

C
UR iu

N
i 1=∑

= (13)

With time-dependent link bandwidth and node computing
power, we formulate the energy-aware job scheduling
algorithm as:

 ∑∑∑
= = =

⎜⎜
⎝

⎛
×=

N

i

M

j

jS

k
startipc tuCEMinimize

kjvvm
1 1 1

()(
,

) kjishutkv xtVMIdle
j ,,,))(++ (14)

 kji
VM

uUu
ivmv x

p

C
uetMinimize

kjv

ii
kj ,,,

,

)(
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ ∑
=

∈
 (15)

TEC

C
URMaximize iu

N
i 1=∑

= (16)

Subject to:

(1))())]([(, ij uikv duet <

(2) max
,,

min
jjj vkviv fff <<

(3)
⎩
⎨
⎧

otherwise
VMvmovervnodetoschedulesuulemodif

x kji
kji 0

1
,,

Constraint (1) is a deadline of each module and execution time
of module iu should be less than its deadline. Constraint (2) is

near-optimal frequency between)(minf and)(maxf such
that the utilization rate is maximized and the minimum
makespan of the system is guaranteed.

5 Cooperative Game Theory for Scheduling Cloud
Modules

In ordinary game, a finite number of players perform

different strategies based on their payoffs’ matrices [11]. Their
set of strategies can be a compact or a convex subset of a finite
dimension of Euclidean space [16, 32]. A game, in general,
can be either cooperative or non-cooperative as proposed by
John Nash in [16]. Cooperative game has several more
primitive advantages while non-cooperative game has a
generalization of min-max theorem aimed at zero-sum games

[16]. Cooperative games [25], a) do not require specific details
of the players’ movement, b) are more powerful since their
convergence to solution is stable and will not drift away from
the equilibrium. Nevertheless, non-cooperative games are
highly susceptible for any changes in the strategy, which may
lead to different results, and c) achieve a better performance of
each player than in anon-cooperative game at the Nash
equilibrium stage. In light of this, a cooperative game has
been used in our model since the focus is on minimizing the
total energy required by the computational nodes to setup VMs
and execute the assigned modules and maximizing the
resource utilization over cloud infrastructure. In particular,
higher efficiency of the collective benefits can be reached
through the NBS. The players usually interact through
bargaining of a partial desire of some payoffs in NBS, and they
will keep interacting unless they reach their goal. NBS ensures
the Pareto optimality. Thus, NBS provides a sufficient
outcome to the proposed problem as in the cloud system, the
cloud provider’s objective is to cooperatively minimize
module’s completion time and power consumption, and the
preference is finding the Pareto optimality. A Cooperative
game includes a set of M players who competes to achieve
better performance. Each player, j, })...,,1{(Mj∈ has an

objective function and desired initial performance 0
jv defined

as the minimum performance required to be achieved by each
player without any cooperation [48]. Player’s objective
function is on a subset of describing P where P is
nonempty, closed and convex set. As one of the objective’s
goals for each player is to achieve the minimum performance

0v to be able to enter the game [48], our scheme considers that
there is at least a vector })...,,,{(21 Mffff = performance
for all players each component should be equal or superior
than to 0v . This implies that there is a set of achievable
performance, L, in the system, and if we assume that 0v is part
of in case { }0

0),(vvLvV ≥∈= [48], we can define 0v as
the initial agreement point in the game where each player
should have by the system to be able to execute the assigned
job modules. Let , we define the idea
of Pareto optimality in the cooperative game as based on some
previous work [25, 48]:

Definition 2: v is Pareto optimal if for each ,, vzLz ≥∈

then z = v. In large scale cloud systems with a set of data
centers and computing machines, a set of Pareto optimal points
exist with a set of infinite number of points [48]. It is our goal
to find the point from those infinite points to operate the
scheduler that guarantees the system’s utilization rate.

To find the desired point: - first, we define fairness axioms
because it is considered as the satisfactory method in game
theory [48], then we introduce the concept of NBS which can
satisfy the above requirement. Thus, the concept of NBS is
defined according to the definition proposed by [25, 48]: A
mapping is said to be a NBS under two
conditions: a) 0

0),(VvLS ∈ and b)),(0vLS is Pareto

IJCA, Vol. 20, No. 4, Dec. 2013

227

Optimal and it should satisfy axiom (1), (2), and (3). The
details of each axiom can be found in references [25, 48].

Definition 3: when ∗v is given by),(0vLS , we can say

that:

1) ∗v represents the Nash Bargaining Point.
2))(1 ∗− vf represents the set of Nash Bargaining Solutions.

After defining NBS, we need to define the bargaining point

as explained in references [25, 48].

Theorem 2: according to [25, 48], if jf is injective on 0X

where Jj∈ , and based on theorem 1 in [25], there are two
problems that can be considered)(jvp and)(jvp ′ :-

)(jvp ()∏
∈

−
Jj

jj vxfMax 0)(0Xx∈ (17)

)(jvp ′ ()∑
∈

−
Jj

jj vxfMax 0)(ln 0Xx∈ (18)

Depending on the above considerations, we achieve:

a))(jvp has a unique solution; the Nash Bargaining

Solution set will be considered as a single point.
b))(jvp ′ is a convex and has a unique solution.

c) It is understood that)(jvp and)(jvp ′ is equivalent

with each other which makes the unique solution of
)(jvp ′ as NBS.

There are two reasons behind the objective of)(jvp ′ :

1) The low complexity of)(jvp ′ .
2))(jvp ′ always can guarantee the NBS

From this point, we need to optimize the cloud scheduling
problem as)(jvp ′ .

6 Optimality and Fairness Scheduling Scheme for
Cloud Meta Modules

A few grid-scheduling schemes have been proposed based

on the usage of the game theory. Some of them simulated the
algorithm based on the idea of Nash equilibrium point [27, 42]
while other applies the concept of the Pareto-optimal points
[25]. In [25], the Nash bargaining point was proposed as a
suitable solution for scheduling a set of tasks each with
deadline constraint onto heterogeneous computational grids.
Our mathematical models are different from [25] in two
aspects: (1) The underlying Cloud infrastructure/Virtual

Machine (VM) resource availability is time-dependent because
of the dual operation modes namely on-demand and advance
instances reservation supported by various cloud data centers.
(2) Using game theory in cloud management to calculate the
Pareto optimality at a point that guarantees the best utilization
rate for cloud management. Similar to [25] we consider the
Nash bargaining point as the desired point for the cloud
scheduler to schedule the cloud meta-modules onto cloud
infrastructure and execute over deployed VMs due to the
Pareto optimality and fairness property related to NBS [48].
Achieving Nash bargaining point depends on the initial
performance)(0v required for each machine by the system.
Machines with the least minimum performance can compete
for assigned job modules in the system. To generalize our
model: - first, we assume that there are N job modules,
i= {1, …, N}, each with deadline constraint and M cloud

computing nodes, j= {1, …, M}, each with j
kvm virtual

machines, k= {1, …, M}. Each node jv aims to increase its
performance better than its initial performance for assigned
modules. All nodes in the cloud infrastructure have the same
goal. In this case, the cloud scheduler has to schedule the
cloud modules such that the scheduling should be fair for all
machines. To address such an issue, we need to find the NBS.
Because cloud architecture needs to meet the requirements of
both the cloud users and cloud provider, NBS can be defined
as solving the energy optimization problem for provider and
also satisfying the deadline for each assigned module for users.
Assuming that there are M nodes each with VM virtual
machines compete for N job modules. Each computing node is
characterized by: a) The Minimum Performance Rate (MPR)
b) Peak Power Rate (PPR) c) Achieving performance higher
than MPR with power consumption less than or equal to PPR
d) the capacity for assigned job module iu should be less than
or equal to capacity of deployed VM. Based on this
assumption and according to theorem 2, NBS can be the
solution of the following optimization problem as stated in
[48]:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∈∈≤
∈≤
∈≥

−

=

∏
=

}...1{},...1{)()(
}...1{
}...1{

)(max
1

vmkNivmCuC
MjPPRf
MjMPRf

MPRf

Y

ki

jj

jj

M

j
jjf j

 (19)

To construct our optimization problem defined by equation

(19) and search the NBS for our cloud infrastructure, we need
to firstly transform our problem into a cooperative game theory
problem which considers each computing node as a player
with the objective function of: a) achieving at least the
minimum performance to be able to enter the game and
compete for assigned job modules b) executing assigned
modules with the minimum completion time (under deadline
constraint) and consuming the minimum power as much as

 IJCA, Vol. 20, No. 4, Dec. 2013 228

possible. Similar to what is described in [25], the cooperative
game theory in the context of cloud computing scheduling
system is defined by the following:

(1) ∑∑∑
= = =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

N

i

M

j

jS

k
kjitip xCuC

kjvvmkjvvm
1 1 1

,,,,
)(min

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛)(
, ip uC
kjvvm

 is a power to execute module

iu on computing node jv over virtual machine kvm .

∑
=≤≤

N

i
kjiiv

kmj
xuet kj

1
,,

),(1
)()2(,maxmin

Subject to:

(1))())]([(, ij uikv duet <

(2) max
,,

min
jjj vkviv fff <<

(3) 0≥kvmp

(4) ∑
=

≤

vm

k
PPRvmkp

1

(5)
⎩
⎨
⎧

otherwise
vmovervnodetoschedulesuulemodif

x kii
kji 0

1
,,

We add constraint (3) because the power of each VM

deployed on jv should be a positive number to satisfy the
cooperative game theory which states that the objective
function,)(xf j , for each player is closed, nonempty, and
convex set [25] that makes the dimension of the set a positive
number. Constraint (4) indicates that the total power
consumption by VMs should be less than the total power of jv .
According to [25], to reduce the complexity of our problem
and guarantee the bargaining point, we convert the min-min-
max problem into the max-max-min problem which is
equivalent to the above definition:

(1) ∑∑∑
= = =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−

N

i

M

j

jS

k
kjitip xCuC

kjvvmkjvvm
1 1 1

,,,,
)(max

(2) ∑
=

≤≤
−

N

i
kjiiv

kmj
xuet kj

1
,,

),(1
)(,minmax

 Subject to:)5(and),4(),3(),2(),1(′′′′′ .
Cloud providers are always interested in decreasing the power

and increasing the resource utilization of cloud infrastructure
which is also the same objective as players in the second
definition. Based on equation (19), the NBS can be achieved
by solving the optimization problem of total cost of cloud
infrastructure as:

∑∑∑
= = =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−

N

i

M

j

jS

k
kjitipj xCuCv

kjvvmkjvvm
1 1 1

,,
0

,.
)(max

and ∑
=

≤≤
−

N

i
kjiiv

kmj
xuet kj

1
,,

),(1
)(.minmax

 Subject to:)5(and),4(),3(),2(),1(′′′′′ .

6.1 The Strategy for Each Player/Machine

The game starts with the condition that each player has to
have initial performance 0

jv to be able to execute the assigned
modules. Players satisfying this condition can enter the game
and each one has an objective of optimizing both the energy
and makespan. Because the objective is to optimize
cumulative performances, players collectively cooperate to
find a decision that is both energy and makespan efficient.
When the scheduler receives a new task, the players interact
with each other and use their best strategies to determine some
factors such as how long the execution time takes and how
much power is needed to execute the task in a way to reduce
the makespan while keeping the power consumption low. In
our cloud system, each computer node/machine has a different
capacity during a different time slot. Machines collectively
search and find the best capacity from various nodes that
guarantee both energy and makespan requirements. This
cooperative action continues until overall system performance
improves.

Theorem 3: The total cost for cloud infrastructure depends

on two factors while executing the assigned cloud modules:

(a) Power consumption: Inspired by previous work [25], the
power that consumed by VMs for executing job modules
during different time slots:

n

kjvvm

tt

ip
jS

kjsMs
N
i

c vm

PPRuC
p

,

1,1

0

,
)(

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ −∑∑∑
=

=≠∈∀=

 (20)

To prove that for each machine kv there is a unique solution

jf , we apply Lagrange method [45] for our optimization
problem, which is defined as:

IJCA, Vol. 20, No. 4, Dec. 2013

229

∑∑∑ ∑∑∑
= = = = = = ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+−α=δ,α

N

i

M

j

jS

k

N

i

M

j

jS

k
kck PPRvPvf

1 1 1 1 1 1
)(),(lnl

∑∑∑
= = =

−δ+
N

i

M

j

jS

k
ckj Pv

1 1 1
)((21)

Where vmik ...,...2,1;0,0 =≤δ≤α denotes the Lagrange
multipliers. It is observed that constraints are linear in kv , and

)(xf of each machine is to reduce
kjvvmpC

,
 which implies that

the first-order Kuhn–Tucker conditions are necessary and
sufficient for optimality [48]. The proof can be found in [25].

(b) VM overhead: Each computer node has an overhead
caused by deployed VMs to execute job modules defined as:

))((),,(,1 shutkvstartnjv tVMIdletttvpO jj ++×= (22)

Based on equation (20) and (22) we can define the NBS for
total energy cost as:

n

kjvvm

tt

ip
jS

kjsMs
N
i

c vm

PPRuC
E

,

1,1

0

,
)(

⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ −∑∑∑
=

=≠∈∀=

⎟
⎟
⎟

⎠

⎞
++×))((, shutkvstart tVMIdlet j (23)

7 Algorithm Design

The power cost in cloud consists of two parts, namely useful

power for VMs to execute assigned modules and the overhead
to setup and tear down VMs as well as idle VM time. By
incorporating the equation (20) to mathematical model (12),
we calculate the total energy and propose a heuristic Job
scheduling approach referred to as Energy-Aware job
Scheduling Algorithm (ESAD) within Deadline constraint for
each assigned module. Our algorithm aims to maximize the
Utilization Rate (UR) in equation (25) by balancing the
following two factors: a) reducing the power consumption, b)
reducing the makespan or execution time of assigned modules
in meta-task structure under certain deadline constraints. The
proposed algorithm starts with sorting the entire task modules
in decreasing order of their deadlines and scheduling each
module with a different deadline value. When ESAD starts to
schedule the job modules onto cloud infrastructure, it takes
into account two levels of optimization: a) Minimizing the
overhead incurred by deploying and shutting down VMs
including the VM idle time. Existing VMs are considered as
candidate to be reused for new module execution. Reducing
VM’s overhead improves the resource utilization rate as fewer
resources are wasted. b) Selecting appropriate nodes by cloud

scheduler in cloud infrastructure to execute assigned module
that satisfy the module’s deadline. Controlling the frequencies
that operate the processors of cloud infrastructure is done by
DVS model as stated in section (4).

n

kjvvm

i

tt

N

i

ip
vm
kjsMs

N
i

u vm

PPRuC
CTEC

,
1

1,1

0

,
)(

∑
=

=≠∈∀=

⎜⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ −∑∑∑
=

⎟
⎟
⎟

⎠

⎞
++×))((, shutkvstart tVMIdlet j

 (24)

 TEC

C
UR iu

N
i 1=∑

= (25)

Satisfying phases 1 and 2 can achieve the objective of
maximizing the utilization rate of cloud system. The pseudo
code of ESAD is presented in Algorithm 1.

Algorithm 1: Energy-aware job scheduling algorithm

(ESAD) within Deadline constraint

Input: Meta-modules and set of DVS-enabled processors
Output: A task scheduling scheme with the minimum power
consumption and minimum makespan

1 Sorted-Array1: Sort modules in decreasing order of their
deadlines

2 for all ∈iu Sorted-Array1 do
3 compute power consumption for each node jv where

}{Mj∈

4

n

kjvvm

tt

ip

c vm

uC
p

,0

,
)(

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

5 Sorted-Array2: sort computing nodes in decreasing
order of their power consumption

6 for all ∈jv Sorted-Array2 do

7 if the node jv

can satisfy the module iu ’s deadline

then
8 if jv has allocated VMs then

9 if)(
jvvm pp ≤ and))()((VMCuC i ≤ then

10 call ReuseVM() to see the chance of reusing a
VM on jv

11 break
12 end if
13 end if
14 call AllocateNewVM() to allocate a new VM on jv
15 end if
16 end for

 IJCA, Vol. 20, No. 4, Dec. 2013 230

17 Update
jvp

18 end for

We provide below a brief description of the functions and
methods that applied in Algorithm 1. We categorize the
functionality of the methods into two phases:

Phase 1) Sorting job modules and cloud nodes: Sorting both
job modules and cloud nodes based on their deadlines and
power consumption respectively. Modules with critical
deadlines are mapped onto computing nodes that result in
reduced acceptable makespan with power consumption as
much as possible. Figure 4 illustrates an example of a
mapping process for modules each with different deadline
restriction onto cloud nodes.

Figure 4: Cloud meta-modules mapped onto cloud

infrastructure

Phase2) Mapping Process: To schedule module iu onto
computing node jv , three considerations have to be taken into

account: a) How long it takes by node jv to deploy VMs and

how much power consumed to execute assigned module iu b)
Whether or not deployed VMs on node jv has enough capacity

to handle the computation cost of module iu c) The processing
cost of module iu on node jv over virtual machine kvm

should be less than the power cost of node jv due to the peak
power provided. To address these considerations, first we
compute the power consumption by each node in cloud
infrastructure and then we sort all nodes in decreasing order of
their power consumption. Because each node is equipped with
DVS model, the frequencies that operate the processors for the

system have been controlled by the proposed algorithm. ESAD
always seeks for a frequency that operates the node jv ’s

processor to execute module iu with the minimum acceptable
makespan and the minimum power consumption as much as
possible. Cloud nodes with the minimum power consumption
execute the assigned job modules under two conditions: a) if
and only if it guarantees the module’s deadline and b) matching
between modules’ required capacity and VM’s capacity should
be satisfied. Two functions are called in this process:

1) ReuseVM(): ESAD calls this method when the
computing node jv has allocated VMs. ESAD starts
checking whether or not we can reuse one of these VMs
on node jv . Two conditions must be satisfied if we reuse
a particular VM: a) The available VM resource should be
sufficient to run the module iu . b) Any possible idle time
between two assigned modules should be less than the
time to shut down a VM and start up a new one.

2) AllocateNewVM (): If the computing node jv has no
VMs or those VMs cannot be reused, ESAD calls
AllocateNewVM () to allocate a new VM for module iu .
The AllocateNewVM () includes creating a new VM with
the maximum allocable resource. With Figure 5 as an
example, we can calculate the end time of the module iu
as iET . We have three different strategies to deploy a
VM as VM1, VM2 or VM3. Let xve be the VM’s end
time and xvs be its start time. We calculate the running
time for module iu to be mapped on each VM as:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

kjv

i

VM

u

p

C

,

, and allocable resource cost on a VM is

)(,, xxvm vsvep
xvsxvejv −

Figure 5: Three different VMs to execute module iu with end
running time of

The complexity of our heuristic, ESAD algorithm, is in
0(nm log(m)), where n represents the number of modules and

IJCA, Vol. 20, No. 4, Dec. 2013

231

m denotes the number of computing nodes in the cloud system.
Although finding NBS considers as NP-Hard problem [25], the
heuristic polynomial time complexity is quite efficient due to
convex objective functions in the game.

8 Results and Discussion

We implement the proposed ESAD in Visual C++ on

windows 8 desktop PC equipped with Intel Centrino2 CPU of
2.27 GHz and 4.0 GB memory. In the experiments, we
compared the system utilization rate, job makespan, and power
consumption with that from the Greedy (FirstFit) and Rank
Match algorithms in [31]. For the Rank algorithm, we used the
cost of each possible scheduling result as the rank value. In the
Greedy algorithm, the computing nodes were selected for VMs
to be deployed without considering the maximum usage of the
nodes. We ran four tests on a set of random modules and
network each with different number of edge as illustrated in
Table 2. The job scheduling results in term of utilization rate
and makespan are presented in Table 3 and 4. Also the charts
of utilization rate, makespan, and power consumption are
explained in Figures 6, 7, and 8, respectively.

Table 2: Test cases used in the analytical models
Test Case Number of Modules Number of

Nodes/Edge
1 5 6 / 29
2 10 6 / 29
3 10 10 / 66
4 15 10 / 70

Table 3: Mapping experimental in (%) for utilization rate
Algorithms Test Case

1
Test Case

2
Test Case

3
Test Case

4
Greedy 0.37 0.41 0.41 0.53
Rank 0.48 0.51 0.52 0.67
ESAD 0.61 0.63 0.64 0.71

Table 4: Mapping experimental in (sec) for makespan
Algorithms Test Case

1
Test Case

2
Test Case

3
Test Case

4
Greedy 21.84 61.6 58.47 59.51
Rank 19.06 50.43 45.71 41.1
ESAD 18.14 26.91 24.25 40.1

The results demonstrate that our algorithm achieves better
mapping performance compared in terms of utilization rate,
makespan, and power consumption. In each of the first two
cases, we map cloud meta-modules in cloud infrastructure with
six computing nodes. Because we define the rank algorithm
based on the cost, the rank always achieved a better utilization
rate compared with the greedy algorithm. Since neither of these
two algorithms considers the module’s makespan, this
considerably increases the execution time for modules as the
utilization rate increases. It implies that that there is no balance
between these two performances. However, since our
algorithm is based on a trade-off between power and execution

Figure 6: Comparison of UR among different algorithms

Figure 7: Comparison of makespan among different algorithms

Figure 8: Comparison of power consumption among different

algorithms

time under module’s deadline constraint using NBS, it can
produce high utilization rate. In each of the last two cases, we
map job modules to a cloud infrastructure with 10 computing
nodes. The rank algorithm achieves better results than the
greedy algorithm in terms of utilization rate.

 IJCA, Vol. 20, No. 4, Dec. 2013 232

 Because the matching between module’s requirements and
VM’s capacity needs to be met at each level of mapping
process, the common available cloud computing nodes may be
different due to the deadline constraint. Figure 9 illustrates an
example of 5 test jobs each with different deadline constraint
mapped onto cloud infrastructure with a different number of
computing nodes. Axis (x) represents the nodes that have the
capacity to handle the module’s requirements while axis (Y)
represents the execution time in (sec) that each node needs to
execute the assigned modules. For each job, the number of
computing nodes is different due to: (1) resource capacity that
each computing node has (b) matching between the module’s
and node’s requirements. Because our time-dependent
algorithm uses a cooperative game theory to seek and find
Pareto-optimality at point that guarantees both the execution
time and the power consumption without violate the deadline
constraint, the results in Figure 9 show that our algorithm
achieves smaller execution time than that of greedy and Rank
due to the efficiency of mapping results. For instance in Mode
l#1 for all computing nodes, the execution times for our
algorithm are smaller than that of the greedy and Rank.

9 Conclusions

In this paper, we presented a cooperative game theory based
approach for job scheduling in a cloud environment under some
constraints. Apparently, it is of the cloud service provider’s
interest to improve the system throughout in order to satisfy
more user requests with the limited hardware resources. The
resource utilization rate is a very important performance metric.
Furthermore, minimizing the job’s execution time and power

Model 1

Model 3

Model 2

Model 4

Model 5

Figure 9: Execution time of scheduling cloud modules onto
different cloud nodes using various algorithms

consumption are also very important. Our approach aims to
achieve multiple goals, namely minimizing the energy
consumption given certain maximum makespan bounds. Such
trade-off between these two objectives is realized by using
Nash Bargaining from cooperative game theory, which
guarantees the Pareto optimality from bargaining points.

Our simulation experiment results have demonstrated that our
algorithm significantly improved the utilization rate compared
with two other scheduling algorithms of greedy and rank
matching. It is of our future interest to incorporate the task
consolidation and VM migration technique into our algorithm
for better system performance.

References

[1] H. Aydin, R. Melhem, D. Mosse, and P. Mejya-Alvarez,
“Dynamic and Aggressive Scheduling Techniques for
Power-Aware Real-Time Systems,” Proc. of the 22nd
IEEE on Real-Time Systems Symp.(RTSS ’01), pp. 95-
105, Dec 3-6, 2001.

[2] H. Aydin, R. Melhem, D. Mosse, and P. Mejya-Alvarez,
“Determining Optimal Processor Speeds for Periodic
Real-Time Tasks with Different Power Characteristics,”
Proc. Of the 13th Euromicro Conference on Real-Time
Systems, Delft, HollandX, pp. 225-232, 2003.

[3] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-
Aware Resource Allocation Heuristics for Efficient
Management of Data Centers for Cloud Computing,”
Future Generation Computer Systems, 28:755-768, 2012.

[4] P. Bertsekas, “Nonlinear Programming (Second ed.),”
Cambridge, MA.,1999.

[5] R. Bianchini and R. Rajamony, “Power and Energy
Management for Server Systems,” Computer, 37(11):68-
76, Nov. 2004.

[6] D. Borgetto, M. Maurer, Georges Da-Costa, Jean-Marc
Pierson, and Ivona Brandic, “Energy-Efficient and SLA-
Aware Management of IaaS Clouds,” Proc. of the 3rd
International Conference on Future Energy Systems:
Where Energy, Computing and Communication Meet (e-
Energy), Madrid, Spain, pp. 1-10, May 9-11, 2012.

[7] D. Bradley, R. Harper, and S. Hunter, “Workload-Based
Power Management for Parallel Computer Systems,”
IBM Journal of Research and Development, 47(5):703-
718, 2003.

[8] D. P. Bunde, “Power-Aware Scheduling for Makespan
and Flow,” Proc. the Eighteenth Annual ACM
Symposium on Parallelism in Algorithms and
Architectures, Cambridge, USA, pp. 190-196, July 2006.

[9] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I.
Brandic, “Cloud Computing and Emerging IT Platforms:
Vision, Hype, and Reality for Delivering Computing as
the 5th Utility,” Future Generation Computer Systems,
25(6):599-616, June, 2009.

[10] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q.
Wang, and N. Gautam, “Managing Server Energy and
Operational Costs in Hosting Centers,” ACM
SIGMETRICS Performance Evaluation Review,

IJCA, Vol. 20, No. 4, Dec. 2013

233

33(1):303-314, June, 2005.
[11] J. Cohen, “Cooperation and Self-Interest: Pareto-

Inefficiency of Nash Equilibria in Finite Random
Games,” Proc. of The National Academy of Sciences of
the United States of America, 95(17):9724-9731, August
18, 1998.

[12] S. Darbha and D. P. Agrawal, “Optimal Scheduling
Algorithm for Distributed-Memory Machines,” IEEE
Transactions on Parallel and Distributed Systems,
9(1):87-95, Jan. 1998.

[13] T. Duy, Y. Sato, and Y. Inoguchi, “Performance
Evaluation of a Green Scheduling Algorithm for Energy
Savings in Cloud Computing,” IEEE International
Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum, Atlanta, GA, USA, pp. 1-8,
April 19-23, 2010.

[14] E. N. Elnozahy, M. Kistler, and R. Rajamony, “Energy-
Efficient Server Clusters,” Proc. of the 2nd International
Conference on Power-Aware Computer Systems,
Cambridge, USA, pp. 179-197, 2003.

[15] D. Filani, S. G. J. He, M. Rajappa, A. Kumar, P. Shah,
and R. Nagappan. “Dynamic Data Center Power
Management: Trends, Issues, and Solutions,” Intel
Technology Journal, 12(1):59-68, 2008.

[16] J. Friedman, “A Non-Cooperative Equilibrium for
Supergames,” The Review of Economic Studies, 38(1):1-
12, January 1971.

[17] S. Garg, C. Yeo, A. Anandasivam, and R. Buyya,
“Energy-Efficient Scheduling of HPC Applications in
Cloud Computing Environments,” arXiv preprint
arXiv:0909.1146, 2009

[18] Gartner Newsroom, Gartner says Worldwide Cloud
Services Market to Surpass $68 Billion in 2010,
http://www.gartner.com/it/page.jsp?id= 1389313,” 2010.

[19] R. Ge, X. Feng, and K. W. Cameron, “Performance
Constrained Distributed DVS Scheduling for Scientific
Applications on Power-Aware Clusters,” Proc. of the
ACM/IEEE Conference on Supercomputing, p. 34, Nov.
12-18, 2005.

[20] T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr., and R.
Bianchini, “Energy Conservation in Heterogeneous
Server Clusters,” Proc. of the 10th ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming,
Chicago, IL, USA, pp. 186-195, 2005.

[21] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu,
“Dynamic Voltage Scaling in Multitier Web Servers with
End-to-End Delay Control,” IEEE Transactions on
Computers, 56(4):444-458, April, 2007.

[22] Tai-Yi Huang, Yu-Che Tsai, and Chu E.T.-H, “A Near-
Optimal Solution for the Heterogeneous Multi-Processor
Single-Level Voltage Setup Problem,” IEEE
International Parallel and Distributed Processing
Symposium, Long Beach, CA, USA, pp. 1-10, March 26-
30, 2007.

[23] Chi-Hong Hwang and A. C.-H Wu, “A Predictive System
Shutdown Method for Energy Saving of Event-Driven
Computation,” IEEE/ACM International Conference on

Computer-Aided Design, San Jose, CA, USA, pp. 28-32,
Nov. 9-13, 1997.

[24] R. Jejurikar and R. Gupta, “Dynamic Slack Reclamation
with Procrastination Scheduling in Real-Time Embedded
Systems,” Proc. of the 42nd Conference on Design
Automation, pp. 111-116, June 13-17, 2005.

[25] S. Khan and I. Ahmad, “A Cooperative Game
Theoretical Technique for Joint Optimization of Energy
Consumption and Response Time in Computational
Grids,” IEEE Transactions on Parallel and Distributed
Systems, 20(3):346-360, Oct. 2009.

[26] K. Kim, R. Buyya, and J. Kim, “Power Aware
Scheduling of Bag-of-Tasks Applications with Deadline
Constraints on DVS-Enabled Clusters,” Proc. of the
Seventh IEEE International Symposium on Cluster
Computing and the Grid, Rio de Janeiro, Brazil, pp. 541-
548, May 14-17, 2007.

[27] Z. Lan, and Z. Zhao-xia, “A Deadline and Cost
Optimization Algorithm for Scheduling Task in Grids
and Nash Equilibrium in Auction-Based Systems,"
Chinese Control and Decision Conference (CCDC),
Yantai, Shandong, China, pp. 2431-2436, July 2-4, 2008.

[28] B. Lawson and E. Smirni, “Power-Aware Resource
Allocation in High-End Systems via Online Simulation,”
Proc. of the 19th Annual International Conference on
Supercomputing, Cambridge, USA, pp. 229-238, 2005.

[29] Y. C. Lee and A. Y. Zomaya, “A Novel State Transition
Method for Metaheuristic-Based Scheduling in Hetero-
geneous Computing Systems,” IEEE Transactions on
Parallel and Dist. Systems, 19(9):1215-1223, Sept. 2008.

[30] Y. C. Lee and A. Y. Zomaya, “Minimizing Energy
Consumption for Precedence-Constrained Applications
Using Dynamic Voltage Scaling,” Proceedings of the
2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID '09), Shanghai,
China, pp. 92-99, May 18-21, 2009.

[31] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-
Crummey, B. Liu, and L. Johnsson, Scheduling
Strategies for Mapping Application WorMows onto the
Grid, Proc. of the IEEE International Symposium on
High Performance Distributed Computing (HPDC), pp.
125-134, 2005.

[32] J. Nash, “Non-Cooperative Games,” The Annals of
Mathematics, Second Series, 54(2):286-295, 1951.

[33] R. Nathuji, C. Isci, and E. Gorbatov, “Exploiting
Platform Heterogeneity for Power Efficient Data
Centers,” Fourth International Conference on Autonomic
Computing (ICAC), Jacksonville, FL, USA, p. 5, June
11-15, 2007.

[34] Nimbus, http://nimbusproject.org.
[35] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.

Soman, L. Youseff, and D. Zagorodnov, “The Eucalyptus
Open-Source Cloud-Computing System,” Proc. of the
9thIEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid’09), Shanghai, China,
pp. 124-131, May 18-21, 2009.

[36] Open Nebular, http://www.opennebula.org.

 IJCA, Vol. 20, No. 4, Dec. 2013 234

[37] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath,
“Load Balancing and Unbalancing for Power and
Performance in Cluster-Based Systems,” Proc. of the
Workshop Compilers and Operating Systems for Low
Power (COLP), 180:182-195, 2001.

[38] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B.
R. de Supinski, and M. Schulz, “Bounding Energy
Consumption in Large-Scale MPI Programs,” Proc. of
the ACM/IEEE Conference on Supercomputing, Reno,
NV, USA, pp. 1-9, Nov. 10-16, 2007.

[39] C. Rusu, A. Ferreira, C. Scordino, and A. Watson,
“Energy Efficient Real-Time Heterogeneous Server
Clusters,” Proc. Real Time and Embedded Technology
and Applications Symp. (RTAS ’06), pp. 418-428, April
4-7, 2006.

[40] E. Seo, Y. Koo, and J. Lee. “Dynamic Repartitioning of
Real-Time Scheduleon a Multicore Processor for Energy
Efficiency,” Proc. Of the International Conference on
Embedded and Ubiquitous Computing, Seoul, Korea, pp.
69-78, 2006.

[41] T. Simunic, “Dynamic Management of Power Con-
sumption,” Power Aware Computing, pp. 101-125, 2002.

[42] M. O. Spata, “A Nash-Equilibrium Based Algorithm for
Scheduling Jobs on a Grid Cluster,” 16th IEEE
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE),
Evry, France, pp. 251-252, June 18-20, 2007.

[43] M. Srivastava, A. Chandrakasan, and R. Brodersen.
“Predictive System Shutdown and Other Architectural
Techniques for Energy Efficient Programmable
Computation,” IEEE Transaction VLSI Systems, 4(1):42-
55, March, 1996.

[44] H. Topcuouglu, S. Hariri, and M.-Y. Wu, “Performance
Effective and Low-Complexity Task Scheduling for
Heterogeneous Computing,” IEEE Transactions on
Parallel and Distributed Systems, 13(3):260-274, March
2002.

[45] I. B. Vapnyarskii, “Lagrange Multipliers,” Hazewinkel,
Michiel, Encyclopedia of Mathematics, 2001.

[46] V. Venkatachalam and M. Franz, “Power Reduction
Techniques for Microprocessor Systems,” ACM
Computing Survey, 37(3):195-237, September 2005.

[47] L. Wang and Y. Lu, “Efficient Power Management of
Heterogeneous Soft Real-Time Clusters,” Proc. of the
Real-Time Systems Symposium, Barcelona, Spain, pp.
323-332, Nov. 30 -Dec. 3, 2008.

[48] H. Yaïche, R. Mazumdar, and C. Rosenberg, “A Game
Theoretic Framework for Bandwidth Allocation and
Pricing in Broadband Networks,” IEEE/ACM Trans-
actions on Networking (TON), 8(5):667-678, Oct. 2000.

[49] Y. Yu and V. K. Prasanna, “Power-Aware Resource
Allocation for Independent Tasks in Heterogeneous Real-
Time Systems,” Proc. of the 9th IEEE International
Conference on Parallel and Distributed Systems, pp.
341-348, Dec. 17-20, 2002.

[50] D. Zhu, R. Melhem, and R. Bruce, “Scheduling with
Dynamic Voltage/Speed Adjustment using Slack

Reclamation in Multiprocessor Real-Time Systems,”
IEEE Transaction on Parallel and Distributed Systems,
14(7):686-700, July 2003.

[51] M. Zhu, Q. Wu and Y. Zhao, “A Cost-Effective
Scheduling Algorithm for Scientific Workflows in
Clouds,” IEEE 31st International Performance
Computing and Communications Conference (IPCCC),
Austin, TX, USA, pp. 256-265, Dec. 1-3, 2012.

[52] A. Y. Zomaya, C. Ward, and B. S. Macey, “Genetic
Scheduling for Parallel Processor Systems: Comparative
Studies and Performance Issues,” IEEE Transactions on
Parallel and Distributed Systems, 10(8):795-812, Aug.
1999.

Mustafa Khaleel received the B.S
degree in Computer Science from
Salahaddin University, Erbil, Iraq, in
2006, and Master degree from the
University of Sulaimani, Sulaimani,
Iraq, in 2008. He is currently a Ph.D
student in the Department of Computer
Science, Southern Illinois University,

U.S.A. He is also a lecturer in the Department of Computer
Science at Sulaimani University. His interests are in cloud
computing system, wireless communication system, network
security, game theory and robotics.

Saad Alqithami is currently a PhD.
candidate in the Department of
Computer Science, Southern Illinois
University, where he had his Masters
with honor in 2012. He is also a
lecturer in the Department of Computer
Science and Information Systems at
Albaha University. His interests are in

distributed AI, multiagent systems, game theory and robotics.
He is also a Member of IEEE, ACM and others that can be
found on his website (http://www2.cs.siu.edu/~salqithami).

Michelle M. Zhu received her Ph.D.
degree in Computer Science from
Louisiana State University in 2005. She
worked as a Research Associate in the
Computer Science and Mathematics
Division at Oak Ridge National
Laboratory on her Ph.D. dissertation
from 2003 to 2005. Dr. Zhu is currently
an Associate Professor in Computer

Science Department at Southern Illinois University at
Carbondale. Her research interests include grid and cloud
computing, distributed and high performance computing,
remote visualization and bioinformatics.

IJCA, Vol. 20, No. 4, Dec. 2013

235

Dunren Che is currently a Professor in
Computer Science at SIUC (Southern
Illinois University Carbondale), USA.
He had earned a PhD in Computer
Science from the Beijing University of
Aeronautics and Astronautics, Beijing,
China in 1994, and had numerous years
of post-doc research experience
thereafter until he joined SIUC in 2001.

His main research interests include database (especially XML
database and query processing/optimization) and data mining,
as well as cloud computing and big data as his most recent
emphasis.

Wen-Chi Hou received the MS and
Ph.D. degrees in Computer Science and
Engineering from Case Western
Reserve University, Cleveland Ohio, in
1985 and 1989, respectively. He is
presently Professor of Computer
Science at Southern Illinois University
Carbondale. His interests are in
statistical databases, mobile databases,

XML databases, and data streams processing, and query
optimization.

 IJCA, Vol. 20, No. 4, Dec. 2013

ISCA Copyright© 2013

236

Moving Energy Consumption Control into the
Cloud by Coordinating Services

Genoveva Vargas-Solar*
CNRS, LIG-LAFMIA labs, Grenoble, FRANCE

Catarina Ferreira da Silva†, ParisaGhodous†

Claude Bernard Lyon I University, Lyon, FRANCE

José-Luis Zechinelli-Martini‡
Universidad de lasAméricas Puebla, San Andrés Cholula, MEXICO

Abstract

 In this paper we present a cloud-based service oriented
approach for collecting, integrating, storing, and analyzing
energy consumption data. Our approach models energy
sensors as services that can be composed to provide value
added information with various granularity levels that best suit
users’ needs and requirements: home-owners, energy
providers, local and regional planning authorities, etc. The
resulting system is a layer oriented service network where each
layer provides information at different levels of aggregation
based on a polyglot persistence approach.1
 Key Words: Cloud computing, data integration, service
based querying, smart energy.

1 Introduction

 Cloud computing has recently emerged as a new computing
paradigm where unlimited computing and storage resources
can be allocated for building and delivering applications and
services over the Internet. Cloud infrastructures manage such
resources transparently without requiring the application to
have code to manage them or to reserve more resources than
those it really requires. The difference with the conventional
paradigms is that the application can have an ad hoc execution
context and that the resources it consumes are not necessarily
located in one machine. Cloud infrastructures provide data
management functions as services that must be tuned and
composed for efficiently and costly managing, querying and
exploiting huge data sets (e.g., big data).
 Consider a smart home scenario where intelligent control
technology enables homeowners to monitor and reduce energy

* LIG-LAFMIA, 681 rue de la Passerelle, 38402 Saint

Martind’Hères, France, genoveva.vargas@imag.fr.
† Department of Informatics, 43 bvd du 11 novembre 1918, 69622

Villeurbanne, France, catarina.ferreira@univ-lyon1.fr,
parisa.ghodous@recherche.univ-lyon1.fr.

‡ Department of Computing, Electronics and Mechatronics, Ex-
hacienda CatarinaMártir s/n, 72820 San Andrés Cholula, Mexico,
joseluis.zechinelli@udlap.mx.

consumption of smart home electronics, conserve resources,
and save money without sacrificing comfort or convenience.
Smart energy monitors measure energy consumption and
production in real-time, and exploit the histories of available
energy management devices to provide consumers and
managers with real-time information on electricity use and
costs. A homeowner can monitor each and every aspect of
electricity usage, from appliances to heating and lighting, and
view her entire electricity usage or production at home or
remotely. On a larger scale, energy providers, local and
regional planning authorities can follow the behavior and the
energy consumption trends of energy consumers to provide
new energy provision plans, facilities and costing models more
adapted to consumers needs and requirements. However,
providing such monitoring and analysis capabilities involves
handling considerable amounts of raw data that need to be
processed, analyzed and stored. Moving data aggregation and
analysis to the cloud can be interesting for many reasons.
First, it allows process of huge amounts of produced data in an
efficient way with the existence of unlimited and adaptable
computation and storage resources. Second, it can provide an
ad hoc personalized energy consumption analysis to different
types of users.
 In this paper we present a multi cloud-based service oriented
approach for collecting, integrating, storing, and analyzing
energy consumption data. Our approach models energy
sensors as services that can be composed to provide value
added information with various granularity levels that best suit
users’ needs and requirements: home-owners, energy
providers, local and regional planning authorities, etc.
 The remainder of the paper is organized as follows.
Section 2 analyses related works and puts our work in context
with respect to existing results regarding data integration,
polyglot persistence and query rewriting. Section 3 describes
our approach that is based on the notions of view for modeling
data, and computations; and strata for describing the
aggregation levels associated with data related to energy
consumption. Section 4 presents our three-layer service
architecture providing a polyglot data store [6] for storing
energy consumption data histories and associated models.
Section 5 concludes the paper and discusses future work.

IJCA, Vol. 20, No. 4, Dec. 2013

237

2 Related Work

 Cloud storage represents a paradigm to store, retrieve and
manage large amounts of data, using highly scalable
distributed infrastructures. This area has received a great deal
of attention in recent years, due to a growing interest in the
challenges and opportunities associated to the NoSQL
movement [2]. However, unlike traditional environments,
where the use of the relational model is pervasive, there is a
wide variety of data models that can be used in cloud
applications. These data models include [2]: key-value,
document, extensible record, graph and relational repositories.
Each of these data models are designed for different use cases,
and provide different support for functional and non-functional
requirements of distributed systems [3], such as different
degrees of consistency, scalability, replication and concurrency
[2]. Moreover, there is also a wide variety of both public and
private providers for the distributed infrastructure that is
required for cloud data storage [9]. These providers offer
different combinations of pricing, support, service levels, and
usually have different APIs to store, retrieve and manage data.
These differences make it difficult to design and deploy
applications targeting different cloud environments [10]. In
our polyglot system we use existing SpringRoo binding
generation tools and we also developed bindings that were
plugged in this environment. The idea is to couple our
integration rewriting strategies with the spring code that
implements the actual calls to the NoSQL stores participating
in the polyglot solution.
 Query rewriting using views (a.k.a. query answering using
views) is the process of reformulating a query Q expressed
over a mediated schema in terms of a set of views V1...Vn
expressed over the same schema [7] (where a view is a named
query). The obtained query is called a rewriting. The problem
of query rewriting using views has been considered for two
different purposes: (i) query optimization using materialized
views, and (ii) data integration.
 In the context of query optimization, the goal is to find an
expression that uses the materialized views (which represent
cached data) and is equivalent to the original query. The
rationale behind query reformulation here is that using cached
data (i.e., the materialized views) is much faster than accessing
the actual database relation directly. In the context of data
integration, the views describe a set of autonomous
heterogeneous data sources. Users queries over the mediated
schema need to be formulated to refer to the data sources the
mediated schema itself does not contain any data.
 In this context we usually cannot find a rewriting that is
equivalent to the user query because of the data sources limited
coverage (i.e., the data inside data sources are incomplete).
Instead, we search for a ”maximally contained rewriting”,
which provides the best answer possible, given the available
data sources. When both the query and the views are
conjunctive queries, the maximally contained rewriting is the
union of all rewritings that are possible given the views.
Different query rewriting algorithms were proposed in the

literature including, the MiniCon [8], Inverse Rules [5] and
Bucket algorithms for the relational model, [12] for XML
queries and recently [3] for RDF queries.
 An advantage of modeling services as views is that queries
can be resolved “on the fly” by combining relevant services
using a query rewriting algorithm (e.g., Inverse Rules,
Minicon, Buckets, etc.) [7]. Similarly, value-added aggregated
views (that could be needed in higher layers) can be
constructed and populated on the fly. Application developers
need only to express their data needs as queries over the global
schema, the query rewriting algorithm can then select the
relevant services and combine them to answer the queries; i.e.,
application developers are relieved from the painstaking task
of selecting and combining services manually.
 We believe that the challenges introduced by energy data
integration must be supported both by cloud based polyglot
persistence and query rewriting techniques as shown in the
following sections.

3 Service-Oriented Approach for Collecting and
Integrating Energy Data

 Figure 1 shows an overview of our approach for energy data
integration. In our approach, energy sensors organized as an
observation network are represented as services (called
Sensing Services see 1 in Figure 1). The semantics of sensing
services are modeled as relational views. Our approach
combines the data produced by sensing services to provide
value added integrated views with different aggregation levels,
called Strata (see 2 in Figure 1).
 Continuing with the example scenario described in the
introduction, in-house sensors and smart energy counters in a
monitored area form a network of services that can be
combined to construct strata. Strata provide useful
information about, for example, the average energy
consumption (per hour) at the scales of room, house, blocks of
houses, quarter, city.
 Since the construction of strata necessitates considerable
processing and storage capabilities (as it is performed on huge
data histories), our approach relies on computing services (e.g.,
data transformation services, indexation services, etc. see 3 in
Figure 1) and on a polyglot [6] distributed data store to manage
data histories and their associated analysis results. We define
below the notions of view and strata that are fundamental in
our approach.

3.1 Services and Views

 This section introduces how data produced on demand and
continuously by data services are modeled using the notion of
view. Views are then used to compute Strata that provide
aggregated views of data. Such aggregations are done by
computing services defined in the following lines.

 Sensing Services: are data services that represent the
sensors in the monitored area. We model the semantics of a
sensing service as a relational view over a mediated schema.

 IJCA, Vol. 20, No. 4, Dec. 2013

238

Figure 1: Stratified data flow consumption and delivering for analyzing energy consumption behavior

Formally, a sensing service is defined as:

WS(Xb, Yf):- R1(X, Y, Z),..., Rn(X, Y, Z)

Where WS(Xb, Yf) is the view head, it is a relational predicate
containing the service inputs Xb and outputs Yf. Inputs should
be bound in order to invoke the service, therefore marked with
the superscript b, outputs are free, therefore marked with the
superscript f; Ri is a relational predicate and X, Y, and Z are
attributes. For example a service monitoring the status of an
air conditioner is represented as follows:

 Air Conditioner WS (timeb, statusf, tempf) : -

Apparatus(status, time, location),
Temperature(time, temp, location),
Location = home

 A service monitoring the presence of people in a given
location is represented as follows:

 Presence WS(timeb, locationb, statusf) : -
 Person(status, time, location)

 Concretely, the data returned by sensing services are stored
in views (that correspond to the view heads in the previous
definition) in a polyglot data store that we present in
subsequent sections.
 Sensing services can produce data on demand or as streams
according to their exported interfaces. Data is gathered from
on-demand data services by invoking their methods with the
appropriate parameters, producing tuples as output. Stream

services export subscription methods that after invocation, will
produce a stream. For example, a location service is a
streaming service that exports:

subscribe()→ ⎡location:〈id, coor〉⎤

which is a subscription method that after invocation, will pro-
duce a stream of location tuples with a nickname that iden-
tifies the object coordinates. Note that a stream is a continuous
(and possibly infinite) sequence of tuples ordered in time.
 Computing Service: performs data management and
processing tasks (e.g., data analysis, indexation, storage, etc.)
or particular calculations (e.g., mathematical functions), which
can be useful for processing data. These operations are used
for computing data aggregations, correlations and other
processing operations necessary for providing an analytic view
of energy consumption.

Computing services can be simple or composite. They are
simple when they provide a basic functionality. For example,
a distance computation service computes the geographical
distance between two points, for instance, by using Vincenty’s
formula2.
 They are composite when they combine multiple simple or
composite services to realize a complex functionality. They
are specified as a workflow-based service coordination of basic
computation services. This approach enables us to take
advantage of existing services for programming more complex
data processing operations. By developing data processing

2http://en.wikipedia.org/wiki/Vincenty%27s_formulae

IJCA, Vol. 20, No. 4, Dec. 2013

239

operations by either simple or composite computation services,
we can develop the core functionality required for observing
energy consumption.
 As we will describe in the following lines, data and
computing services are coordinated to answer hybrid queries
used for expressing data consumption requirements. Details
on how these computation services are built and implemented
are out of the scope of this paper. The interested reader can
refer to [4] for details.

3.2 Stratified Data Integration

 As we mentioned, a monitored area corresponds to a
network of sensing services (refer to Figure 1). The data
produced by these services are aggregated to form data
(providing) services (or simply views) with different levels of
granularities that we call Strata. Strata, simply, provide a
logical organization of data provision represented by a
hierarchy of aggregated granularities. A granularity denotes a
set of (complex) types (its extension). In this work, we
identified the following strata:

room → house → block → quarter → city

 Sensing services that are located in the same room form a
data service corresponding to the Room stratum. The different
room-level data services in a given house form a data service
called inHouseMasterNode that corresponds to the house
stratum. Similarly, inHouseMasterNodes can be grouped into
block, quarter and city strata. Data services of the types
house, block, quarter and city can have attributes to
characterize their geographic locations.
 A granularity also has an associated aggregation function
that applies to the aggregated data (i.e., the aggregation
function computes the tuples set that is stored in the view
based on the sensed data). Examples of aggregation functions
include: the average energy consumed during a day in the
kitchen for all the days of the year, the pick of consumed
energy during a day in the living room during winter.
 The hierarchy of strata also defines transformation functions
among granularities. The functions for the strata room are
classic aggregation functions like average or maximum and
they are computed on data windows. Transformation functions
among room → house → block → quarter → city are defined
by statistical analysis that compute the behavior of energy
consumption using the data of the lower level as input for
computing the measure of a more general level. These
computations are done by computing services.
 Data consumers can access data by combining data from the
same or more general granularities. As shown in Figure 1, in
our work we rely on a logical network of data services that are
devices represented logically grouped for defining the stratum
room. For example, sensing services are connected to a device
with more computing capacity that is connected with the
external world called the inHouseMasterNode and that
represents the stratum house. So, this strata provides an
aggregated view of the energy consumption in a whole house
during specific periods of time.

 The nodes of type inHouseMasterNode are also services that
form networks organized in layers called block, quarter and
city. inHouseMasterNodes can be geographically located and
they can be logically organized according to spatial geographic
regions that denote either their location (lowest granularity),
and then concentric regions grouped into quarters, and cities.
The organization of the network and the computing capacities
of the services are exploited to have different levels of
aggregation and analysis views of such data.

3.3 Consuming Data

 Energy consumption data can also be correlated with data
stemming from other homes in order to determine the behavior
on energy consumption of communities of homes, quarters,
cities, regions and countries. More critical decision making for
determining how to deliver energy to consumers can be done
using such information.
 “Software as a service” like solutions interact with these
nodes for providing analysis and decision making support to
different actors. For example give me the a graphic
representing the average energy consumption between 17:00 -
23:00 during summer of the private consumers living at rue
Alembert in Grenoble.

meteringDashboardService (nodeIDb, userRoleb, timeWindowb,
 GraphicTypeb, GraphicFlowFunctinf): -
AggregatedConsumptionViewPerRole (nodeID, userRole,

timeWindow),
ConsumptionOverTime(nodeID, timeWindow, GraphicFlowFunction)

 This hybrid query [4] expresses data consumption
requirements. A hybrid query is a query that can be mobile
and continuous, and evaluated on top of on demand or
streaming static or nomad data services [11].
 An hybrid query combines data from the rooms of a house
and a meteorology service providing information about the
region where my house is located. In our approach the hybrid
query is first expressed in Data log as shown in the above
expression and rewritten according to available services.
 The evaluation of such type of queries requires data services
but also storage and computing services that can be used for
logging continuous data. This can be useful for performing
aggregations on data collected on given time windows.
 For example data can be correlated with meteorological data
histories to identify the time windows where:

−5 ≤ temperature or temperature ≥ 30.

 The query is rewritten according to the available services
exported views. In the case of our example, there are three
services of type BlockNode and a MapService shown below.

Query:

Q1〈Average, client〉:- AveragePerUser (average, user, timeWindow,

zip), StreetZips (streetName, zipA, zipB),
 zipA <= zip <= zipb, timeWindow=”17:23”, StreetName –

‘Alembert’.

 IJCA, Vol. 20, No. 4, Dec. 2013

240

 Data services:

MapService(streetNamebzipAfzipBf) : StreetZips(streetName,
zipA, zipB)

 BlockNodes:

BN1(average, user, timeWindow) : AverageaPerUser(average,

user, timeWindow, sip), zip=69101
BN2(average, user, timeWindow): AveragePerUser(averagae,

user, timeWindow, sip), zip=69106
BN3(average, user, timeWindow): AveragePerUser(average,

user, timeWindow, zip), sip=20100

 The query is rewritten into two sub-queries expressed in
Data log below: the first one retrieves the region in which rue
d’Alembertis located; the second one computes the average
energy consumption per user (house) within a predefined time
window and filters the result with respect to the geographic
location.

 Q1 = Q2 ∧ Q3

Q2(zipA, zipB) :- Streetzips(streetName, zipA, zipB,
StreetName=”Alembert”.

Q3(average, client) :- AveragePerUser(average, user,
timeWindow, zip), zipA <= xip <= zipB.

 A hybrid query is implemented by a query workflow that
coordinates services for consuming and retrieving data in a one
shot or a continuous manner. The query workflow (see
Figure 2) is a program that runs continuously for executing the
query and generating new results. In a query workflow,
activities can call several services for computing the average
consumption of users located within a specific geographic
region and at a specific time interval (i.e., [17:00, 23:00]).
The query workflow runs as a data processing service and is
supported by a polyglot data store service for storing partial
and final results (see the following section).
 Home control and energy consumption observation need

huge amounts of heterogeneous data flows produced by data
services (sensors, temperature and meteorology services) that
must be processed and stored by computing services. We
addressed the storage problem by defining a polyglot data store
solution based on NoSQL and relational models, as shown in
the following section.

4 Description of our Cloud-Based Architecture

 This section describes the implementation of our approach.
The use of multiple and heterogeneous data stores within a
single information system is a common practice in real-life
application development. Modern applications very often rely
on a polyglot approach [6] to data persistence, where
conventional databases, non-relational data stores, and scalable
systems associated to the emerging New SQL movement, are
used simultaneously. We followed this approach for building
our system and we adopted a service-oriented multi-cloud
architecture for deploying our solution. We implemented a
three layer system that integrates a data provision layer with a
SaaS layer, thanks to a data integration layer implemented as a
polyglot database system (see Figure 3).
 As shown in the Figure 3, our system is comprised of three
Spring Java web applications that are in charge of different
data collections, and expose services through REST interfaces
(i.e., the metering dashboard, the energy business intelligence
analysis, the energy load control). These business services rely
on data services, such as on the sensing services and aggregate
this information. For instance, the energy load services
(composite activity). In Figure 2 the activity Get control relies
on the information of the sensing service and on business rules
to act on actuators that can automatically reduce temperature
of an air conditioner system. The applications are deployed in
different Platform as a Service (PaaS) providers, and access
data through Database as a Service (DaaS) vendors providing
NoSQL data stores: relational, document and graph databases,
deployed on multiple cloud providers (OpenShift,
CloudFoundry, Xeround and MongoLab).

Figure 2: Query workflow example

Select�
Block�Nodes�

Get�Zip�
codes�

σprivate�

Caching
HT

Get
consumption

Rue�d’Alembert�

Monitor�

σ[]
Summer��
17:00�–�23:00�

Graphic�

IJCA, Vol. 20, No. 4, Dec. 2013

241

Figure 3: Energy data management multi-cloud polyglot architecture

4.1 Physical Layer

 The physical layer is composed of services for collecting
raw energy consumption data from sensors and electrical
devices. Each sensing service collects data from one or more
sensors and sends its measurements as messages via Internet
protocols (i.e., XML messages in SOAP for SOAP-based
service implementations). Services are clustered in the
physical layer based on their functionalities and registered in a
service registry. These services communicate with a MySQL
server deployed on Xerund for periodically storing their data.
 The services are proprietary devices of an energy company
and because of confidentiality issues we cannot give technical
details of their characteristics. A sensor is a monitoring device
programmed for reading analogical data that can be
transformed to a digital representation. A sensor has specific
computing, storage, information transmission/reception
capacities and limited energy. In the paper, it is enough to say
that sensors that are wrapped as OSGi services (www.osgi.org)
exporting an interface that enables the retrieval of measures
from the sensor buffer.
 We profit from the OSGi technology for building a sensor
network that integrates the data they produce in the so-called
InHouseMasterNode. The InHouseMasterNode is a sensor
with more storage and computing capacity that communicates
recurrently with the data integration layer deployed in the
Xerund cloud provider for flushing data histories. The
InHouseMasterNode serves as global controller for
synchronizing sensors so that they can beat under the same
global clock. The views associated to services (sensors and
InHouseMasterNodes) are recurrently computed due to the
arrival of new data flows. This is done by services that are

continuously observing data consumption by interacting with
the data integration for storing views given their reduced
storage capacity. The arrival of new data triggers views
computation.

4.2 Data Integration Layer

 Data integration and processing requires alot of storage and
computing capabilities as well as data processing functions
that can vary according to the analysis requirement of different
consumers. This layer implements a polyglot approach for
integrating data from different services to provide value added
information.
 Data integration is based on a data pivot model [1]
associated to a polyglot distributed database. The data model
used in this layer relies on four main constructs (Structs, Sets,
Attributes and Relationships), that can be used to represent
data modeled using the key-value, document and column-
family and graph data models. Data stemming from different
NoSQL stores can be transformed into this model and made
available to the application. In our scenario the representation
of the logical nodes network is stored on the graph oriented
Neo4J vendor deployed on Open shift cloud provider. The
data produced by computation and data services that in general
produce JSON documents, are stored on the document store
MongoDB deployed on the MongoLab cloud provider.

 Graph Database: the information about the devices
networks at different levels is managed by the system Neo4J
that supports graph oriented databases. The description of the
networks organized by strata where each stratum is a graph
managed by a service that stores it persistently for maintaining

 IJCA, Vol. 20, No. 4, Dec. 2013

242

information about the network state: which nodes join or leave
the network. At the creation of the system, the graph database
was tuned using the Eclipse UML tool. Given the classes that
implement the service functions for managing information
about the networks of the different Strata (e.g., sensor
networks), we use the Model2Roo plugin3 for generating a
SpringRoo4 binding to the Neo4J data store.
 For the time being the graph database serves for answering
queries and guiding the aggregation of data. For example
given a query asking for the average energy consumption of
the rooms that are near the kitchen in my house, the graph
database will help to determine which are the sensors that will
participate as data providers for answering the query (i.e., the
sensors that are installed in the room for solving the query
presented in the previous section). The database is updated
every time nodes adhere or leave the network. This is not very
often for the time being because we consider that the network
is rarely modified. In a future version of our system we will
consider that the network is dynamic and that this database
will have to be updated.
 Document Database: Our system uses information
stemming from Web services, for example the meteorology
service, for correlating the data produced by the energy
consumption physical layer. For example, for determining that
the temperature sensed in a house corresponds in fact to the
second week of summer 2013. The meteorology data are
recurrently retrieved according to specific geographical
locations and points in time (hours, weeks, seasons). These
services produce data as JSON documents that are stored in the
MongoDB document database. As for the graph data store we
used tour Model2Roo plug in for configuring the database and
generating the SpringRoo binding for storing the documents
produced by the Web services.
 Polyglot Database System: integrates these databases into
a global view used for querying and exploiting them. As said
above, these stores are populated as new data arrive from the
networks. Views associated to services are computed
recurrently and stored in Neo4J. The polyglot database system
enables then the evaluation of queries on continuous data.
Therefore, our system exploits query-rewriting techniques to
automatically determine the data services that are needed to
answer data requests. For instance, to determine the services
for constructing a desired stratum, or for answering a given
data analysis query. This is possible as the semantics of our
services are modeled as relational views. Strata developers
and data analysis applications need only to specify their data
needs as queries over a mediated schema. Then, the system
rewrites that query in terms of calls to relevant services. Our
system uses the MiniConquery rewriting algorithm [8].
 Running Example: assume we are interested in studying the
energy extra consumption related to the use of cooling systems
in summer. At the InHouseMasterNode level, we are
interested in constructing a view (or a service) to observe the
working of air conditioners, along with the house temperature

3http://code.google.com/p/model2roo/
4http://www.springsource.org/

and whether or not there are people in proximity of
conditioners. Such data needs can be expressed using the
global schema (in the Data log notation) as follows:

 InHouseMasterNode_View1 (time,status,temp,presence,location):

Apparatus (status, time, location),
Temperature (temp, time, location),
Presence (presence, time, location),
location = 65266 Lyon

 Assume the existence of the following services:

- Service observing an air conditioner:

ACWS(timeb, statusf) : -
Apparatus (status, time, location),
location = 65266 Lyon

 - Service observing the house temperature:

TempWS (timeb, tempf) : -
Temperature (temp, time, location),
location = 65266 Lyon

- Service observing the presence of people:

PresenceWA (timeb, presencef) : -

Presence (time, presence, location),
location = 65266 Lyon

 Given these services, the query-rewriting algorithm rewrites
the InHouseMasterNodeView1 as follows:

InHouseMasterNode_View1 (time,status,temp,presence,location):-
ACWS (timeb, statusf),
TempWS (timeb, tempf),
PresenceWS (timeb, presencef),

 Similarly, blockNode Strata views can be constructed using
InHouseMasterNode Strata views. For instance, assumes we
are interested in constructing a block view observing the
working of air conditioners in houses located between 65250
Lyon and 65260 Lyon. Such view can be expressed as follows
over the global schema:

 BlockNode_View (time, status,temp, location) : -

Apparatus (status, time, location),
Temperature (temp, time, location),
65250 Lyon <location< 65260 Lyon

 Such view could be rewritten in terms of the
InHouseMasterNodeviews as follows:

BlockNode_view(time, status, temp, location) : -
InHouseMasterNode_View1 (time,status,temp,-,65251 Lyon)
InHouseMasterNode_View2 (time,status,temp,-,65252 Lyon)
…

 Once the query has been rewritten the system generates a
workflow using another rewriting algorithm that transforms
Data log expressions into a query workflow. This algorithm is
out of the scope of this paper, but the interested reader can see
details in [4]. The workflow can implement continuous or one

IJCA, Vol. 20, No. 4, Dec. 2013

243

shot queries, according to the arrival rate of new data to the
stores. The data integration layer serves as mediator between
the physical layer. The physical layer produces data and the
energy consumption analysis layer that consumes data. The
layer consists of services that implement analysis applications
that deliver information to final users. This layer is described
in the following section.

4.3 Energy Consumption Analysis Layer

 The energy consumption analysis layer implements the
business logic to offer decision maker assistance applications
to homeowners and planning authorities. This layer is
deployed on the CloudFoundry cloud provider. The business
services made available by this layer compose external
information (such as energy tariff) with the data provided by
the sensing services of the data integration layer of our
architecture. These business services are the following:

 The Metering Dashboard provides graphical energy
monitoring by exhibiting the analyzed energy consumption
behavior. It provides aggregated information concerning
energy consumption about specific zones such as rooms, or
aggregated views of building and city zones. The metering
dashboard also gives the ability to alert excessive energy
consumption provided that the user has previously defined
corresponding thresholds. Graphical functionalities are
configured with Google Charts Visualization API.5
 The Energy Business Intelligence Analysis supports
managers in the decision making process. It offers energy
benchmarks by combining the energy consumption
information with energy tariff information, pricing and peak
demand usage. This business intelligence service generates
energy audit reports and provides energy consumption
simulation forecasts based on past energy usage.
 The Energy Load Control implements energy saving
strategies for automating local load control e.g., automatically
turning off room lights if enough daylight is available and if
the preset energy threshold is exceeded. This service enables
the definition of periodic schedules to automatically control
actuators over facilities. Each schedule communicates with the
corresponding actuators that can be programmed for scheduled
on/off periods. For this, the energy load control combines the
information provided by the sensing services and specific
business rules to trigger actuators that will automatically take
some action, such as reduce temperature of air conditioner
systems. Consider the case of the energy manager who wants
to automatically turn off air conditioner systems of office
rooms if no person is inside after working hours. The
following rule is executed: if the service observing air
conditioner ACWS(timeb , statusf) returns On for specific
office room locations and the service observing the presence of
people Presence WS(timeb , presencef) returns False then the
corresponding actuators will turn these air conditioner systems
off.

5 https://developers.google.com/chart/interactive/docs/reference?hl=en

5 Conclusion and Future Work

 This paper presented an approach for collecting and
integrating data produced by networks of energy consumption
for the purpose of providing aggregated data on energy
consumption. This energy information can be further used to
manage energy consumption and reduce energy waste.

Our approach relies on the notions of view and strata for
describing on demand and continuous data producers where
data can be relational, streams, documents and produced on-
demand and continuously.

The main contribution of our work is the proposal of a three
layer architecture that relies on a polyglot service based data
management system that benefits from the flexibility of the
cloud for deploying services for processing and analyzing of
collected energy consumption data.

We provide a service-oriented approach for our cloud-based
architecture that provides a transparent access to autonomous
services with their own resources.

Beyond the application of energy consumption, we are
currently addressing data management issues on the cloud.
Particularly, concerning polyglot persistence, we have
developed tools Model2Roo6 and ExSchema7 for supporting
the definition of polyglot data stores and its maintenance.
 We are also addressing the implementation of data
processing operations using map-reduce models for better
addressing the analysis and correlation of huge volumes of
data given a certain “unlimited” availability of computing
resources on the cloud. These current actions are being tested
and tuned for dealing with energy data management.

Acknowledgements

 We thank Mahmoud Barhamgi, University Claude Bernard,
Lyon, France for his precious help in the preparation of this
paper, for his helpful discussions and clever advises.

References

[1] J. Castrejon, G. Vargas-Solar, C. Collet, and R. Lozano,

“Model-Driven Cloud Data Storage,” First International
Workshop on Model-Driven Engineering on and for the
Cloud, 2012.

[2] R. Cattell, “Scalable SQL and NoSQL Data Stores,”
SIGMOD Rec., 39(4):12-27, May 2011.

[3] H. Chen, Z. Wu, H. Wang, and Y. Mao, “Rdf/rdfs-Based
Relational Database Integration,” Proceedings of the 22nd
International Conference on Data Engineering, IEEE, pp.
94, 2006.

[4] V. Cuevas-Vicenttín, G. Vargas-Solar, and C. Collet,
“Evaluating Hybrid Queries through Service Coordination
in Hypatia,” Proceedings of the 15th International
Conference on Extending Database Technology, AMC,

6http://code.google.com/p/model2roo/
7http://code.google.com/p/exschema/

 IJCA, Vol. 20, No. 4, Dec. 2013

244

pp. 602-605, 2012.
[5] O. M. Duschka and M. R. Genesereth, “Query Planning in

Infomaster,” Proceedings of the Symposium on Applied
Computing, ACM pp. 109-111, 1997.

[6] M. Fowler and P. Sadalage, NoSQL Distilled: A Brief
Guide to the Emerging World of Polyglot Persistence,
Addison-Wesley, 2012.

[7] Y. Halevy, “Answering Queries using Views: A Survey,” VLDB
J., 10(4):270-294, 2001.

[8] R. Pottinger and A. Y. Halevy, “Minicon: A Scalable Algorithm
for Answering Queries using Views,” VLDB J., 10(2-3):182-198,
2001.

Genoveva Vargas Solar is a Senior
Scientist of the French Council of
Scientific Research (CNRS) and
Deputy-Director the Franco-Mexican
Laboratory of Informatics and
Automatic Control (LAFMIA, UMI
3175). She is also member of the
Informatics Laboratory of Grenoble

(France) and invited research fellow of the Data and Knowl-
edge Management Group at Universidad de lasAméricas
Puebla. Her research contributes to the construction of service
based database management systems. The objective is to
design data management services guided by Service Level
Agreements (SLA). She proposes methodologies, algorithms
and tools for integrating, deploying and executing a service
composition for programming data management functions.
The results of her research are validated in the context of grids,
embedded systems and clouds.

Catarina Ferreira da Silva is
currently an Associate Professor at
the University of Lyon in France.
She has a Ph.D. in Computer
Science from this same university
(2007). Between 2009 and 2012
she worked as a researcher at the
Information Systems research
group of the Center for Informatics
and Systems of the University of

Coimbra, Portugal. Between2004 and 2007, she worked as a
researcher at the Information Technology and Knowledge
Dissemination Department (Division of Innovation and
Services) of the Scientific and Technical Center for Building at
Sophia Antipolis (France) and participated in several
international and national research projects. She gave lectures
at the Technical University of Nice Sophia-Antipolis (France)
between 2004 and 2006. Her research interests are in the areas
of Service Science, Cloud Computing Services and Semantic
Web. She is currently working on the description and
combination of complex cloud services.

[9] A. Ruiz-Alvarez and M. Humphrey, “An Automated
Approach to Cloud Storage Service Selection,”
Proceedings of the 2nd International Workshop on
Scientific Cloud Computing, Science Cloud ’11, New
York, NY, USA ACM, pp. 39-48, 2011.

[10] A. Ruiz-Alvarez and M. Humphrey, “A Model and
Decision Procedure for Data Storage in Cloud
Computing,” IEEE International Symposium on Cluster
Computing and the Grid, pp. 572-579, 2012.

[11] G. Vargas-Solar, N. Ibrahim, C. Collet, M. Adiba, J.-M.
Petit, and T. Delot, Pervasive Computing and
Communications Design and Deployment: Technologies,
Trends, and Applications, Chapter Querying Issues in
Pervasive Environments, pp. 1-20, Nov. 2010.

[12] C. Yu and L. Popa, “Constraint-Based XML Query Rewriting
for Data Integration,” SIGMOD Conference, pp. 371-382, 2004.

Parisa Ghodous is currently a
Professor at the University of Claude
Bernard Lyon 1 in France. She has
lead the collaborative information
systems in LIRIS Laboratory. Her
research interests are in the areas of
cloud computing, interoperability,
collaborative Information Systems,
concurrent engineering, Ontologies
and Web services. She has organized

several conferences in the field of CE. She is a member of
several experts groups (interop, Afnor, EPPPM, ISPE etc.).
She is also on the board of several journals (CERA, ICAE,
IJAM).

José Luis Zechinelli-Martini is an
Associate Professor of the Department
of Computing, Electronics and
Mechatronics at the Universidad de
lasAméricas Puebla (UDLA) since
2002 and he is currently Senior
Scientist at LAFMIA. He is head of
the Data and Knowledge Management
Group (DBKM) of LAFMIA. Be-
tween 2003 and 2006 he was director
of the CENTIA y coordinator of the

PhD program on Computer Science. His fundamental research
project addresses distributed databases on heterogeneous
networks. The objective is to provide data access, querying
and analysis adapted to the execution context by maximizing
heterogeneous computing resources of continuous data
production environments. He has developed his research
through research projects financed by governmental agencies.

IJCA, Vol. 20, No. 4, Dec. 2013

ISCA Copyright© 2013

245

Data Warehouse Systems in the Cloud: Rise to the Benchmarking Challenge

Rim Moussa*
University of Tunis, Tunis, TUNISIA

Hassan Badir†

Abdelmalek Essaadi University, Tangier, MOROCCO

Abstract

 The most common benchmarks for cloud computing are the
Terasort benchmark and the YCSB benchmark. Although
these benchmarks are quite useful, they were not designed for
data warehouse systems and related OLAP technologies. The
most prominent benchmarks for evaluating decision support
systems are the various benchmarks issued by the Transaction
Processing Council (TPC), namely TPC-H and its successor
TPC-DS benchmarks. TPC benchmarks mismatch cloud
rationale (scalability, elasticity, pay-per-use, fault-tolerance
features) and Customer Relationship Management rationale
(end-user satisfaction, Quality of Service features). In this
paper, we present new requirements for implementing a
benchmark for data warehouse systems in the cloud. The
proposed requirements aim at allowing a fair comparison of
different cloud systems providers’ offerings
 Key Words: Data warehouse, OLAP, cloud, TPC-H, TPC-
DS, benchmark.

1 Introduction

 Business Intelligence (BI) aims at supportting better
decision-making, through building quantitative processes for a
business to arrive at optimal decisions and to perform business
knowledge discovery. Business intelligence often uses data
provided by Data Warehouse Systems, in order to provide
historical, current and predictive views of business operations.
Nevertheless, data warehousing is very expensive, since it
requires experts, advanced tools as well as costly hardware.
Some organizations with limited means related to each of
human, software and hardware resources for data analytics, are
throwing terabytes of data away. Thus, the arrival of pay-as-
you-go Cloud Computing presents new opportunities for
decision support systems.
 The cloud computing market is booming, and many research
groups as Forrester [9] and Gartner [10], forecast a big invest
in short-time on cloud technologies. Also, the Business

* LaTICE Lab., Department of Computer Science. Email:
rim.moussa@esti.rnu.tn.
† LabTIC Lab., Department of Computer Science. Email:
hassan.badir@uae.ma.

Intelligence market continues growing and information
analysts embrace OLAP concepts and related technologies
(Microsoft Analysis Services, Oracle Business Intelligence,
Pentaho BI suite, SAP NetWeaver, …). According to Gartner’s
latest enterprise software survey, the market for BI platforms
will remain one of the fastest growing software markets in
most regions (refer to [15] for details). However, there are
hurdles around dealing with Big Data. Along Ralph Kimball,
Big data is a paradigm shift in how we think about data assets,
where do we collect them, how do we analyze them, and how
do we monetize the insights from the analysis. Therefore, a
major reason for the growth of big data is financial and
Decision Support Systems have to deal with the Big Data four
V-dimensions} namely (i) Volume-challenge of management of
huge volumes of data, (ii) Velocity-challenge of how fast data
is analyzed, (iii) Variety-challenge of dealing with
unstructured, semi-structured, relational data, and finally (iv)
Veracity-challenge of semantics and variability meaning in
language.
 Cloud computing has gained much popularity recently, and
many companies now offer a variety of public cloud
computing services, based on traditional relational DBMS,
extended RDBMS and NoSQL technologies. Traditional
software technologies tend to get quite expensive to manage,
maintain and enhance. Two architectures have emerged to
address big data analytics, which are extended RDBMS and
NoSQL technologies (Apache Hadoop/MapReduce
framework). Architectural developments for extended
RDBMS are Massively Parallel Processing (MPP) and
columnar storage systems. NoSQL has emerged as an
increasingly important part of Big Data trends, and several
NoSQL solutions are emerging with highly variable feature
sets. Cloud services differ in service models and pricing
schemes, making it challenging for customers to choose the
best suited cloud provider for their applications. Data
Warehouse Systems place new and different demands on cloud
technologies, and vice-versa. In this paper, we propose new
requirements for fair benchmarking of data warehouse systems
in the cloud.
 The outline of this paper is the following: first, in Section 2,
we discuss related work in order to highlight our contribution.
Then, we present preliminaries related to both cloud
computing and data warehouse systems. In Section 3, we

 IJCA, Vol. 20, No. 4, Dec. 2013 246

recall the most important characteristics of cloud computing,
and what a benchmark for data warehouse systems should
feature; and in Section 4, we briefly overview data warehouse
systems and well-known decision support systems
benchmarks. We argue that TPC-H benchmark-the most
prominent benchmark for decision support system, mismatches
cloud rationale (scalability, elasticity, pay-per-use, fault-
tolerance features) and Customer Relationship Management
rationale (end-user satisfaction, Quality of Service features).
In Section 5, we present new requirements for benchmarking
data warehouse systems in the cloud. The proposed
benchmark should allow a fair comparison of different cloud
systems, as well as tuning of a cloud system for a given Cloud
Service Provider (CSP) and selection of best optimizations and
best cost-performance tradeoffs. Finally, we conclude the
paper and present future work.

2 Related Work

 In this section, we overview related work. The following
research projects addressed specific issues when migrating
data warehouse systems to the cloud,

• Forrester released a Cost Analysis Tool: Cloud versus
internal file storage Excel Workbook, as a tool for
comparison of storage on-premises and in the cloud [8],

• Nguyen et al. [20] propose cost models for Views
Materialization in the cloud. Proposed cost models fit into
the pay-as-you-go paradigm of cloud computing. These
cost models help achieve a multi-criteria optimization of
the view materialization under budget constraints.

 There are few papers dealing with processing and evaluating
by performance measurement OLAP workloads on cloud
systems. Next, we overview research projects related to OLAP
experiments in the cloud,

• Floratou et al. [7] conducted a series of experiments
comparing cost of deployment in the cloud of different
DBMSs, in order to make cloud customers aware of the
high cost of using freeware software in the cloud. For
instance, they ran Q21 of the Wisconsin Benchmark, and
compared its response time using the open-source MySQL
to the commercial MS SQL Server. For the SQL Server-
based service, the user has to pay an hourly license cost,
while he does not need to pay any license fee for MySQL
usage. MS SQL server runs Q21 in 185sec, while MySQL
runs the same query in 621sec. Obviously, the end-user
bill will be affected by this 3.3X performance gap,

• In order to compare SQL technologies to NoSQL
technologies, Pavlo et al. [22] compared the performance
of Apache Hadoop/Hive to MS SQL Server database
system using TPC-H benchmark,

• In [18], we proposed OLAP scenarios in the cloud. The
proposed scenarios aim at allowing best performances,
best availability and tradeoff between space, bandwidth
and computing overheads. Evaluation is conducted using

Apache Hadoop/Pig Latin with TPC-H benchmark, for
various data volumes, workloads, and cluster sizes.

 Many cloud computing benchmarks exist, but have different
objectives than data warehouse systems. For instance,

• The TeraSort [12] benchmark measures the time to sort 1
TB (10 billion 100B records) of randomly generated data.
It is used to benchmark NoSQL storage systems such as
Hadoop and MapReduce performances.

• The Yahoo Cloud Serving Benchmark -YCSB [4] measures
the scalability and performance of cloud storage systems
such as HBase-the column-oriented database of Hadoop
project, against a standard workload.

• The CloudStone Benchmark [24] is designed to support
Web 2.0 type applications and measures the performance
of social-computing applications on a cloud. For data
analytics.

• The MalStone Benchmark [1] is specifically designed to
measure the performance of cloud computing middleware
that supports the type of data intensive computing
common when building data mining models.

 In [2], Binnig et al. presented initial ideas of requirements
towards a web-shop benchmark (i.e., OLTP workload) in the
cloud. They introduced new metrics for analyzing the
scalability, the cost and the fault tolerance of cloud services.
Later, in [14] they listed alternative architectures to effect
cloud computing for web-shop database applications and
reports on the results of a comprehensive evaluation of existing
commercial cloud services. They used the database and
workload of the TPC-W benchmark, with which they assessed
Amazon, Google, and Microsoft’s offerings.
 The CloudCMP project [14] aims at comparing the
performance and the cost of various cloud service providers. It
models a cloud as a combination of four standard services,
namely, (1) Elastic Computer Cluster Service: The cluster
includes an elastic number of virtual instances for a workload
processing; (2) Persistent Storage Servic}: The storage service
stores application data. Different types of storage services may
exist: table (SQL and NoSQL storage are considered), blob
(binary files) and queue messages (as for Windows Azure); (3)
Intra-cloud Network Service: The network inside a cloud that
connects the virtual instances of an application (4) WAN
Service: The wide-area delivery network of a cloud delivers an
application’s contents to the end hosts from multiple
geographically distributed data centers of the cloud. The
project scope is general, it does not address benchmarking data
warehouses in the cloud specifities.
 Most published research focused on benchmarking through
exclusively performance measurements of high level languages
and platforms of cloud systems, or investigation of a cost
model for a particular topic in the cloud. In this paper, we
show that TPC-H benchmark-the most prominent benchmark
for decision support system, mismatches both (i) cloud
rationale (scalability, elasticity, pay-per-use, fault-tolerance
features) and (ii) Customer Relationship Management

IJCA, Vol. 20, No. 4, Dec. 2013

247

rationale (end-user satisfaction, Quality of Service features).
Indeed, its metrics are not sufficient for assessing the novel
cloud services. Moreover, we propose new metrics which fit
to the characteristics of cloud computing and to characteristics
of OLAP workloads. The proposed requirements and metrics
are to make CSPs’ offerings comparable from capabilities, and
services perspectives.

3 Cloud Computing

 The National Institute of Standards and Technology (NIST)
[17] defines cloud computing as a pay-per-use model for
enabling available, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, services) that can be
rapidly provisioned and released with minimal management
effort or service provider interaction. Hereafter, we recall the
five cloud characteristics, the three cloud service models, and
we overview Cloud Service Providers (CSP) pricing models.

3.1 Cloud Characteristics

 The cloud model is composed of three characteristics of
virtualized systems, namely (1) broad network access-cloud
computing is network based, and accessible from anywhere
and from any standardized platform (i.e., desktop computers,
mobile devices, …); (2) resource pooling-the multi-tenancy
aspect of clouds requires multiple customers with disparate
requirements to be served by a single hardware infrastructure,
and therefore, virtualized resources (CPUs, memory, etc.)
should be sized and resized with flexibility; (3) rapid
elasticity-cloud computing gives the illusion of infinite
computing resources available on demand. In particular, it is
expected that the additional resources can be (a) provisioned,
possibly automatically in mere minutes, when an application
load increases (scale-up) and (b) released when load decreases
(scale-down). In addition to the aforementioned
characteristics, the cloud model is composed of two
characteristics of on-demand computing services: (4) on-
demand self-service-consumers of cloud computing services
expect on-demand, nearly instant access to resources; (5)
measured service (a.k.a. pay as you go) cloud services must be
priced on a short term basis (e.g., by hour), allowing users to
release resources as soon as they are not needed, and metering
should be done accordingly for different types of service (e.g.,
storage, processing, and bandwidth).

3.2 Cloud Service Models

 Based on user demand, cloud services include the delivery
of software, infrastructure, and storage over the Internet, either
as separate components or as a complete platform. Three
primary cloud service models exist. The first being
Infrastructure as a Service (IaaS) -An IaaS provider delivers
computer hardware (servers, network, storage) as a service. It
may also include the delivery of operating systems and
virtualization technology to manage the resources. Examples
of IaaS CSPs are: Amazon Elastic Computing Cloud (EC2),

GoGRID. The second being Platform as a Service (PaaS) -a
PaaS provider delivers infrastructure and an integrated set of
software which provides everything a developer needs to build
an application. Examples of PaaS CSPs are: Google
AppEngine, Microsoft Azure Platform. The third being
Software as a Service (SaaS) -a SaaS CSP access to software
and its functions remotely as a Web-based service. Examples
of SaaS providers for data analytics is: Google BigQuery, and
for database as a service is: Amazon Relational Database
Service.

4 Data Warehouse Systems

 Business Intelligence aims at supportting better decision-
making, through building quantitative processes for a business
to arrive at optimal decisions and to perform business
knowledge discovery. Business intelligence often uses data
provided by Data Warehouse Systems. The concept of a data
warehouse first appeared in articles published in the late 1988s
by Bill Inmon. A data warehouse is defined as a collection of
subject-oriented, integrated, non-volatile, and time variant
data to support management’s decisions. Data warehousing
definition evolved to the process of collecting, cleansing, and
integrating data from a variety of operational systems and
making the resultant information available for the foundation
of decision support and data analysis.

4.1 Typical DWS Architecture

 Figure 1 illustrates a typical architecture of a data warehouse
system. The latter is composed of three components: (1)
Source integration system, (2) Data warehouse storage system
and (3) Data analysis system. Next, we describe these
components.

Figure 1: Typical data warehouse system architecture

 4.1.1 Source Integration System. The source integration
process deals first with acquiring data from a set of relevant
data sources (e.g., legacy systems, relational databases,
spreadsheets, …), then with integrating the schemas of the
sources in order to obtain a global schema. For this purpose, it
specifies the mapping between the global schema and the
sources, and includes the specification of how to load and

 IJCA, Vol. 20, No. 4, Dec. 2013 248

refresh data according to the global schema. Integration has to
deal with the problem of cleaning and reconciling data coming
from different sources, and consequently resolving naming,
structural and data conflicts.

 4.1.2 Data Warehouse Storage System. Two main
approaches can be distinguished for storing data within a data
warehouse, namely (i) MOLAP, where both the source data
and the aggregation calculations are stored in a
multidimensional data structures; and (ii) ROLAP, the data
warehouse is physically stored using conventional Relational
Database Management System and cubes are defined logically.
There are also hybrid OLAP products (HOLAP), which allow
both direct access to relational data for multidimensional
processing, as well as having their own optimized
multidimensional disk storage for aggregates and pre-
calculated results. MOLAP is the fastest option for data
retrieval, but it requires the most storage space and it is not
very scalable.

 4.1.3 Data Analysis System. The data analysis system
embeds an OLAP server. The latter is a high-capacity, multi-
user data manipulation engine specifically designed to process
an OLAP workload. Multidimensional querying implemented
by OLAP clients is an exploratory process, performed by
navigating along the dimensions and measures, and allowing,
(i) increase/decrease the level of detail (respectively drill-down
and roll-up OLAP operations), (ii) focus on specific subparts
of the cube for on-screen viewing (slice and dice OLAP
operations), and (iii) rotation of dimensions to new on-screen
viewing (rotate OLAP operation).

4.2 Common Optimization Strategies

 Data warehouse solutions and appliances achieve better
performances with the following technologies,

 4.2.1 Hardware Technologies. Some data warehouse
appliances provide special hardware products as storage
solutions on-premises. Hardware solutions propose data
storage devices allowing high I/O throughputs such as DRAM,
Solid-State Drives (SSDs) and Parallel disks I/O. Notice that
these hardware-based solutions are expensive and obsolete
over time.

 4.2.2 Columnar Storage Technology. A column-oriented
storage system stores each record’s column value (or familty of
columns) in different data blocks. This technology allows
higher compression ratio and higher scan throughput than
ordinary row-based storage systems.

 4.2.3 Derived Data. In order to get a fast response, data
warehouses use derived data, such as OLAP indexes (e.g.,
bitmap, n-tree), derived attributes, aggregate tables (a.k.a.
materialized views), and data synopsis. There are multiple
techniques to perform approximate query processing using
data synopsis. The most popular involve histograms, wavelets,

sketches and sampling [5]. Nevertheless, derived data present
disadvantages related to complexity of derived data calculus
and refresh cost.

4.3 Decision Support Systems Benchmarks

 There are few decision-support benchmarks out of the TPC
benchmarks. Next, we overview most known benchmarks in
the community.

 4.3.1 APB-1 Benchmark. APB-1 [21] has been released in
1998 by the OLAP council, a now inactive organization. APB-
1 warehouse dimensional schema is structured around five
fixed size dimensions and its workload is composed of 10
queries. APB-1 is proved limited [8] to evaluate the
specificities of various activities. It proposes a single
performance metric termed AQM (Analytical Queries per
Minute). The metric AQM denotes the number of analytical
queries processed per minute including data loading and
computation time.

 4.3.2 TPC-H Benchmark. The most prominent
benchmarks for evaluating decision support systems are the
various benchmarks issued by the Transaction Processing
Council (TPC). Since two decades, TPC-H benchmark is the
most used benchmark in the research community. The TPC-H
benchmark exploits a classical product-order-supplier model.
It consists of a suite of business oriented adhoc queries and
concurrent data modifications. The workload is composed of
22 parameterized decision-support SQL queries with a high
degree of complexity and two refresh functions: RF-1 new
sales (new inserts) and RF-2 old sales (deletes). Scale factors
used for the test database are: 1, 10, …, 100,000; and resulting
raw data volumes are respectively 1GB, 10GB, …, 100TB.
 TPC-H benchmark, and its successor TPC-DS, report two
main metrics (see details in Appendix A)

• TPC-H Composite Query-per-Hour Performance Metric
(Qph@Size): The Qph@Size metric reflects multiple
aspects of the capability of the system under test for query
processing. These aspects include (i) the selected database
size against which the queries are executed (i.e., scale
factor), (ii) power test which is the query processing
power when queries are submitted by a single stream, and
(iii) the throughput test, which is the query throughput
when queries are submitted by multiple concurrent users.

• TPC-H Price-Performance Metric ($/Qph): The $/Qph
metric reflects the ratio of costs to performance. The
calculation of the priced system consists of (i) the price of
both hardware and software present in the system under
test, (ii) the price of the communication interface
supporting the required number of user interface devices,
(iii) the price of on-line storage for the database and
storage for all software, (iv) the price of additional
products (software or hardware) required for customary
operation, administration and maintenance for a period of
three years, and finally (v) the price of all products

IJCA, Vol. 20, No. 4, Dec. 2013

249

required to create, execute, administer, and maintain the
executable query texts or necessary to create and populate
the test database.

 4.3.3 Mismatching of TPC-H Benchmark for Evaluation
of DWS in the Cloud. The use of TPC-H for benchmarking
Data Warehouse Systems in the cloud reveals the following
problems,
 First, considering the technical evolution of OLAP
technologies in the last years, the TPC-H benchmark does not
reflect modern implementations of data warehouse systems,
and is not suitable for the benchmarking of commercial
business intelligence suites, i.e., integration services (ETL
performances), OLAP engines (OLAP hypercubes building)
and reporting tools. Most business intelligence projects query
the data warehouse system using Multi-Dimensional
eXpressions language (MDX) [18], while the TPC-H and TPC-
DS benchmarks feature an SQL workload.
 Second, the primary metric used by TPC-H -Qph@Size, is
the number of queries processed per hour, that the system
under test can handle for a fixed load. The system under test is
then considered static, and this metric does not show the
system scalability, i.e., system performance under variable
loads and for variable cluster size.
 Third, the second metric used by TPC-H -$/Qph, is the ratio
of costs to performance, such that the pricing is based on the
total cost of ownership of the system under test on-premises.
The ownership cost includes hardware pricing, software
license costs, as well as administration and maintenance costs
during three years. This is incompatible with the pay-as-you-
go model of cloud computing, since the cloud customers are
not directly exposed to the hardware, software maintenance,
and administration costs of their deployment. For the cloud,
different price-plans exist and the cost-performance ratio
depends on data volume, workload, services, selected
hardware, and consequently on the CSP pricing plan. Also, the
demand for required hardware and software resources shall
vary over time, and then is better formulated by the dynamic
lot-size model.
 Fourth, currently none of the TPC-benchmarks reports a
cost-effictiveness ratio metric. Migration to the cloud should
help the company determine the best hardware configuration
for managing efficiently its data and running efficiently its
workload. Indeed, it does not make sense to afford an Amazon
EC2 Extra Large Instance (15GB of memory and 8 EC2
compute units for $0.480 per Hour), when an Amazon EC2
Large Instance (7.5GB of memory and 4 EC2 compute units
for \$0.240 per Hour) satisfies the workload requirements. A
second motivating example for cost-effectiveness ratio is the
following: Oracle publishes a detailed DBaaS service catalog
for DBaaS [1], where the main variables are: (i) DB service
name-defined as combination of load estimate complexity and
workload type, particularly {small, medium or large} and
{OLTP or OLAP}, (ii) CPU Size -2,4,8 or 16 cores, (iii) Server
Memory -6, 8, 16, 24 or 48GB, (iv) Storage Redundancy (2-
way or 3-way), (v) Service Availability (Node, Server or Site).
Hence, a given company may choose a not cost-effective

DBaaS service. The cost-effectiveness ratio should help a
company defining its needs.
 Fifth, the CAP theorem [3], also known as Brewer’s
theorem, asserts that any networked shared-data system can
have only two of three following properties, namely, (i)
Consistency which guarantees that all nodes see the same data
at the same time; (ii) Availability which guarantees that every
request receives a response about whether it was successful or
failed; and (iii) Partition tolerance which guarantees that the
system continues to operate despite arbitrary message loss or
failure of part of the system. Benchmarking data warehouse
systems in the cloud on a networked data system should
implement all different combinations of guarantees, namely
CA, CP and AP when considering refresh functions and high-
availability.
 Finally, the TPC-H benchmark lacks adequate metrics for
measuring the features of cloud systems like scalability, pay-
per-use and fault-tolerance, and service level agreements. In
the next section, we present requirements and new metrics for
benchmarking data warehouse systems in the cloud.

5 Benchmarking Data Warehouse Systems in the Cloud

 The data warehousing process is inherently complex and, as
a result, is costly and time-consuming. The deployment of a
data warehouse system in the cloud is very different than its
deployment on-premises. Indeed, the relationship between the
CSP and its customers is different than the relationship
between a company and its BI department. Migration to the
cloud should improve end-user satisfaction and induce greater
business productivity. Thus, benchmarks designed for
evaluation of data warehouse systems in the cloud should
reflect end-user satisfaction, Quality of Service (QoS), as well
as all inherent characteristics of cloud systems, namely high
performance, elasticity, scalability, pay-per-use and fault-
tolerance. Next, we first present use cases of benchmarking
data warehouse systems in the cloud, then we present new
requirements and corresponding metrics which aim at a fair
comparison of different cloud systems providers of data
warehouse systems.

5.1 Use Cases

 Two main use cases are identified of benchmarking data
warehouse systems in the cloud. First, the comparison of
different cloud systems, which aims to select the best CSP for
final deployment of a data warehouse system. Second, the
tuning of a system: which aims to select, for a given CSP, the
capacity planning (operating system, number of instances,
instance hardware configuration, …), best optimizations, best
cost-performance tradeoffs, best cost-effectiveness
tradeoffs.

5.2 Proposed Requirements

 Next, we detail new requirements and corresponding metrics
for benchmarking data warehouse systems in the cloud.

 IJCA, Vol. 20, No. 4, Dec. 2013 250

 5.2.1 High Performance Metering. Data warehousing is
intended for decision support. The latter requires high
performance for greater business productivity. Two main
features of data warehousing in the cloud affect high
performance, which are (i) data transfer to/from the CSP and
(ii) workload processing.

• Data Transfer to and from the Cloud Service Provider:
the source integration system and the data analysis system
manipulate huge data sets. Practically, big data uploads on
remote servers require a lot of bandwidth and perform
better on local networks. The operational system of the
company may be serviced at a different cloud service
provider, at the same cloud service provider (CSP)
selected for the data warehouse or on-premises. So, unless
creation of an expensive private link between the
operational system location and the data warehouse
provider location, data warehousing in the cloud is
constrained by low-speed connections and network
congestion issues. The worst case presents an operational
DB serviced at a different cloud service provider. Indeed,
in this case, data transfer from a CSP to a different CSP
should be considered. As usually data download from any
CSP is charged, the cost of data migration from a CSP to a
different CSP will be very expensive. If on-premises,
companies are confronted to I/O-bound and CPU-bound
applications, in the cloud they will confront to network-
bound applications. Indeed, the bottleneck will be the
network bandwidth available to perform huge data transfer
to/from the CSP. Most CSPs provide data transfer to their
data centers at no cost (e.g., Data Transfer IN To Amazon
EC2 From Internet costs $0.00 per GB). Nevertheless,
data download is priced (e.g., Data Transfer OUT To
Amazon EC2 From Internet $0.12 per GB per month for
data volumes comprised between 1GB and 10TB, and it
costs cheaper for higher data volumes, and it is free for
lower data volumes).

• Workload Performance: most OLAP engines implement
intra-query parallelism to provide faster performance.
Intra-query parallelism consists in breaking a complex
single query into sub-queries, processing the workload
over multiple processors, and finally performing post-
processing for presenting the final query response. Three
factors impact the final response time to a query, which
processing implies intra-query parallelism. First, Start-up
costs, which are related to starting up multiple processes
for processing simultaneously sub-queries. The time to
set-up these processes may dominate computation time if
the degree of parallelism is high. Second, Skew costs,
these costs show that in a distributed system the overall
execution time is determined by the slowest of parallely
executing tasks. Third, Interference costs, these costs
relate to the time the processes are idle. Indeed, processes
accessing shared resources (e.g., system bus, disks, or
locks) compete with each other and spend time waiting on
other processes. Most systems, relational DBMS or
NoSQL technologies [18] feature a concave curve, with an

optimum response time for a particular cluster size and
where performance degrades from this optimum onward
(see Figure 2). For cloud computing, the slope, showing
performance gain (from N to N’) should be also expressed
in a cost metric. Indeed, to obtain an improvement in
response time, the system scales-out horizontally, and
more instances are provisioned.

Figure 2: Response times of OLAP queries across cluster size

 5.2.2 Cost Metering. Even though many services look
similar from the outside, the services vary when it comes to
system architectures, performance, scalability, and cost. Cloud
Service Providers have different pricing models for storage,
CPU, bandwidth and services. Next, we present the different
charging plans adopted by cloud service providers,

• Compute Cost: There are two types of providers’ charging
for CPU cost,

- Instance-based: the CSP charges the customer for the

number of allocated instances and how long each
instance is used. This is regardless of whether the
instances are fully utilized or under utilized. Examples
of CSPs which fall in this CPU pricing model are
Amazon AWS and Windows Azure.

- CPU cycles-based: the CSP charges the customer for the
number of CPU cycles a customer’s application
consumes. Examples of CSPs which fall in this CPU
pricing model are CloudSites and Google AppEngine.

• Storage Cost: Data Warehouse Systems are IO intensive

applications. Thus, storage performance, throughput and
bandwidth capacity planning become critical for data
warehousing in the cloud. Storage devices have two
limits (i) the amount of storage available and (ii) the
amount of sustainable IOPs (Input/Output Operations per
Second). Most CSPs implement a bundling-pricing for
storage space charging (first 1 TB cost/ month, next N TB
cost/ month and so on). Nevertheless, the real measure of
storage performance is IOPS. Flash based storage
whether it be DRAM or Solid State Drives (SSDs)
maximize IOPS, but are expensive. Some CSPs charge
for IO request. For instance, MS Azure charges $.01 per
10,000 IO requests, while Amazon S3 charges more per
write operation: $.01 per 1,000 put, copy, post, or list

IJCA, Vol. 20, No. 4, Dec. 2013

251

requests and $.01 per 10,000 get requests.
• Software cost: the CSP may provide some software at no

cost. Notice that most operating systems are charged to
customers with the cost of instance. Applications are
either charged on a pay-as-you-go basis or on subscrip-
tion basis. For pay-as-you-go, the cost is aligned to usage.

• Intra-network cost: most providers offer intra-cloud
network bandwidth consumption at no cost. Basically, no
information is available about interconnectivity of nodes
within a data center. Notice that, intra-network bandwidth
is very important for distributed processing of OLAP
workloads, for both SQL and NoSQL solutions.

• WAN cost: Charges for using the wide-area delivery
network are based on the amount of data delivered through
the cloud boundaries to the end-users. Currently, most
providers have similar prices for this service, where data
upload is free of charge and data download is priced.

• Services’ cost: SaaS offers for analytics are different than
IaaS and PaaS offers. Indeed, the cost of the service is
included in the price model. For instance, BigQuery [24]
pricing for storage resources depends on data volume, and
the pricing of workload processing depends on the number
of bytes retrieved for each business question. BigQuery is
a columnar-storage system, which adopts an I/O-based
pricing model. Other cloud service providers propose a
subscription-based pricing model, for instance the
Clustrix/GoGrid DBaaS cloud solution is available on a
monthly subscription basis.

 5.2.3 Scalability Metering. Scalability is the ability of a
system to increase total throughput under an increased load
when hardware resources are added. Ideally, cloud services
should scale linearly with a fixed cost per processed business
question. Current TPC-H implementation measures the
capacity of a system for a static workload. We propose that the
benchmark for data warehousing should assess the system
under test with an ever increasing load, and measures the
throughput consequently. Scalability can be measured with
speed-up metric and scale-up metric. Speed-up metric refers to
the workload processing time gained as a consequence of
adding new nodes and keeping the workload constant, and
Scale-up metric refers to the throughput processing capacity
gained by adding new nodes and increasing the workload. In
order to quantify this requirement, we can vary the workload
on a time scale basis, every 1hour for instance, and measure
the number of business questions processed during the time
interval across a variable cluster size.

 5.2.4 Elasticity Metering. Elasticity adjusts the system
capacity at runtime by adding and removing resources without
service interruption in order to handle the workload variation.
First, the metric should assess the system capacity to
autoprovision and release resources without service
interruption, and in case it does, it reports first scaling latency,
i.e., the time required for a system to scale-down or to scale-up
horizontally, and second the scale-up cost, i.e., the cost of
newly acquired resources or the scale-down gain, i.e., the cost

of newly released resources. Finally, it reports the impact of
the scale-up or scale-down operation on system performances.

 5.2.5 High Availability Metering. Data distribution among
multiple disks increases the distributed storage system failure
likelihood. Many approaches to build highly available
distributed data storage systems have been proposed. They
generally use either (i) replication or (ii) parity calculus. The
latter approach uses systematic erasure-codes (e.g., Reed
Solomon (RS) codes, Low-Density Parity-Check (LDPC)
codes, Tornado code). With replication, data management is
straightforward. However, the storage overhead with
replication is always higher than it is with systematic erasure
codes. When a certain level of availability is targeted the
erasure codes are able to provide service with a lower storage
overhead than replication techniques. For data warehousing,
high availability through erasure codes saves storage costs,
particularly for big data of type write-once (i.e., not subject to
delete refreshes). Nevertheless, data recovery is more
complicated than replication. Indeed, first data recovery is not
a simple copy to operation as for replication, it performs
complex decoding calculus, and second data recovery involves
different servers, which send their contents to a recovery
manager and consequently it implies a high communication
overhead. Erasure codes were investigated and proved
efficient for highly available distributed storage systems [16]
and grid systems [23]. Figure 3 illustrates the storage space
requirements in different file high-availability schemes,
namely replication and erasure codes. In our example, we
show 4 blocks of a data file (m = 4) stored in such a way that
any (n - m) = 2 missing blocks can be tolerated; values n = 6
and m = 4 are used as an example. With replication, k copies
of the entire file are stored into separate places. The group of
data blocks is 2-available through replication with a
redundancy overhead of 200 percent versus the same group of
data blocks 2-available through erasure-codes with a
redundancy overhead of 50 percent.
 Some CSPs implement replication for increasing the
availability of stored data and preventing discontinuity of
service. They also offer replicas management in data centers
situated in different geographic locations. This allows disaster

Figure 3: Replication vs. erasure codes for a group of 4 data

blocks

 IJCA, Vol. 20, No. 4, Dec. 2013 252

recovery from a failure node within the data center as well as
whole data center outage. Nevertheless, most CSPs do not
customize high availability services to their customers. For
data warehousing in the cloud, the end-user should be notified
of the cost of rendering its data highly-available through
different high availability strategies (i.e., for both synchronous
and asynchronous refreshes), and different levels of
availability should be offered which enables customization of
the recovery capacity following disasters. Consequently, the
benchmark should embed metrics measuring the cost of
different targeted levels of availabilities (1-available, …, k-
available, i.e., the number of failures the system can tolerate),
as well as the recovery cost. We propose two metrics which
denote the cost of maintaining of a k-available system $@k,
with k is the targeted level of availability, and a metric
denoting the cost of recovery expressed in time and decreased
system productivity caused by the hardware failure from
customer perspective. The latter should be charged to the CSP.

 5.2.6 Cost-Effectiveness and Cost-Performance Metering.
The cloud-based solutions should help companies, which look
to optimize costs without compromising on efficiency and
quality of service. Therefore, there is an emerging need to
understand, manage and proactively control costs across the
cloud from two perspectives, namely performance perspective
and effectiveness perspective. Indeed, instead of searching for
the minimal execution time, the user may want to run his
application more cost effectively, which ensures a maximal
computation at minimal costs. The cost management plan
should include determination of the best hardware
configuration versus performance and versus effectiveness;
this assumes a systematic monitoring of resource utilization.
For these purposes, we propose measuring the ratio of

configuration cost to performance and to resource utilization.
Resource utilization is the ratio of used resources to allocated
resources. Notice that used resources and allocated resources
vary over time.

 5.2.7 Service Level Agreements and QoS Metering. A
Service Level Agreement (SLA) is a contract between a service
provider and its customers. SLAs capture the agreed upon
guarantees between a service provider and its customer. They
define the characteristics of the provided service including
service level objectives, as maximum response times,
minimum throughput rates and data consistency, and define
penalties if these objectives are not met by the service
provider. Penalty is an amount that the provider must pay to
the customers if the SLA is not met. For example, in Google
AppEngine, Microsoft Azure, or Amazon S3, if availability is
lower than 99.9 percent, then the customers receive a service
credit, according to SLA, and proportional to the revenue.
 Sousa et al. [26] proposes QoSDBC framework, an approach
to QoS for databases in the cloud. The SLAs categories for the
data warehousing in the cloud are scalability, elasticity,
performance (throughput and response time are both
considered), high-availability and independency of the CSP.
For the latter, the company should be able to easily migrate to
another Cloud Service Provider (CSP), and get its data back in
a standard format. This will limit losses in case the CSP
requires the purchase of new software, imposes exorbitant
prices, or goes bankrupt.

5.3 Summary of Proposed Metrics

 In Table 1, we propose a summary of metrics for data
warehouse systems’ benchmarking in the cloud.

Table 1: Summary of metrics for data warehouse systems’ benchmarking in the cloud
Requirement Proposed Metrics
High Performance Data Transfer IN/OUT the CSP,

• time and cost for data upload IN the CSP,
• time and cost for data download OUT the CSP
Workload Processing,
• Workload processing time

Cost • depends on cloud service provider pricing scheme
Scalability • scale-up: workload processing performances under an ever increasing workload across variable

cluster size
• speed-up: workload processing performances under a constant workload across variable cluster size

Elasticity • capacity of scale-up/ scale-down,
• scaling latency
• scale-up/ scale-down impact on system under test performances
• scale-up cost(+$) or scale-down gain (-$),

High-availability • cost of a targeted k level-of-availability,
• mean time to recovery
• decreased productivity due to discontinouity of service

Cost-Performance • ratio of cost to performance,
Cost-Effectiveness • ratio of cost to aggregated resources' usage percent,
Service Level Agreements • QoS assessment through tracking of unsatisfied service level agreements,

IJCA, Vol. 20, No. 4, Dec. 2013

253

6 Conclusion

 The rationale of migration of data warehouse systems to the
cloud, are basically thrice, (i) reduction of capital expenditure
through measured service, with infrastructure, platform,
services are provided on a pay-per-use basis (ii) rapid elasticity
for adaptive resource capacity to workload, and (iii) better
cost-performance tradeoff. In this paper, we propose new
requirements and metrics to be fulfilled by a benchmark for
data warehouses in the cloud, such as high-performance, high-
availability, cost-effectiveness, cost-performance, scalability,
elasticity, as well as SLAs. In future work, we foresee to
assess and compare most known CSPs for data warehousing in
the cloud.

References

[1] Collin Bennett, Robert L. Grossman, David Locke,

Jonathan Seidman, and SteveVejcik, “Malstone: Towards
a Benchmark for Analytics on Large Data Clouds,”
Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’10, ACM, pp. 145-152, 2010.

[2] Carsten Binnig, Donald Kossmann, Tim Kraska, and
Simon Loesing, “How is the Weather Tomorrow?:
Towards a Benchmark for the Cloud,” Proceedings of the
Second International Workshop on Testing Database
Systems, DBTest ’09, ACM, pp. 91-96, 2009.

[3] Eric Brewer, “Pushing the CAP: Strategies for
Consistency and Availability,” Computer, 45(2):23-29,
February 2012

[4] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears, “Benchmarking Cloud
Serving Systems with YCSB,” Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, pp.
143-154, 2010.

[5] Graham Cormode, Minos Garofalakis, Peter J. Haas, and
Chris Jermaine, “Synopses for Massive Data: Samples,
Histograms, Wavelets, Sketches,” Found, Trends
Databases, 4:1-294, 2012.

[6] Database as a Service: Reference Architecture,
http://www.oracle.com/technetwork/topics/entarch/oes-
refarch-dbaas-508111.pdf, 2011.

[7] Avrilia Floratou, Jignesh M. Patel, Willis Lang, and Alan
Halverson, “When Free is not really Free: What does it
Cost to Run a Database Workload in the Cloud?” 4th
TPC Technology Conference on Performance Evaluation
and Benchmarking (TPCTC), pp. 163-179, 2011.

[8] Forrester, “File Storage Costs Less in the Cloud than
Inhouse,” http://www.forrester.com, 2011.

[9] Forrester, Sizing the Cloud, http://www.forrester.com,
2011.

[10] Gartner Group, Forecast: Public Cloud Services,
Worldwide, 2011-2017, 1q13 Update,
http://www.gartner.com/id=2391015, 2013.

[11] Jim Gray, Sort Benchmark Home Page. http://re
search.micro soft.com/barc/SortBenchmark/, 2008.

[12] Donald Kossmann, Tim Kraska, and Simon Loesing, “An
Evaluation of Alternative Architectures for Transaction
Processing in the Cloud,” Proceedings of the 2010 ACM
SIGMOD International Conference on Management of
data, SIGMOD ’10, ACM, pp. 579-590, 2010.

[13] Nicole Laskowski, “Business Intelligence Software
Market Continues to Grow,” http://www.gartner.com/.

[14] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming
Zhang, “Cloudcmp: Shopping for a Cloud made Easy,”
USENIX HotCloud, pp. 5-5, 2010.

[15] Witold Litwin, Rim Moussa, and Thomas J. E. Schwarz,
“With LH*RS - a Highly-Available Scalable Distributed
Data Structure,” ACM Trans. Database Syst., 30(3):769-
811, 2005.

[16] Peter Mell and Timothy Grance, “The NIST Definition of
Cloud Computing,” National Institute of Standards and
Technology, csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf, 2011.

[17] Rim Moussa, “Massive Data Analytics in the Cloud:
Tpch Experience on Hadoop Clusters,” Intl. Journal of
Web Applications (IJWA), 4:113-133, 2012.

[18] Multi-Dimensional Expressions Language, msdn.micro
soft.com/enus/library/aa216779(SQL.80).aspx.

[19] Thi-Van-Anh Nguyen, Sandro Bimonte, Laurent
d’Orazio, and Jérôme Darmont, “Cost Models for View
Materialization in the Cloud,” EDBT/ICDT Workshops,
pp. 47-54, 2012.

[20] OLAP Council: APB-1, www.olapcouncil.org.
[21] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J.

Abadi, David J. DeWitt, Samuel Madden, and Michael
Stonebraker, “A Comparison of Approaches to Large-
Scale Data Analysis,” SIGMOD Conference, pp. 165-
178, 2009.

[22] Mikko Pitkänen, Rim Moussa, D. Martin Swany, and
Tapio Niemi, “Erasure Codes for Increasing the
Availability of Grid Data Storage,” AICT/ICIW, pp.185-
197, 2006.

[23] Kazunori Sato, “An Inside Look at Google Bigquery,”
https://cloud.google.com/files/.

[24] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen,
H. Wong, A. Klepchukov, S. Patil, A. Fox, and
D.Patterson, “Cloudstone: Multi-Platform, Multi-
Language Benchmark and Measurement Tools for Web
2.0,” Proceedings of Cloud Computing and Its
Applications, http://www.cca08.org/papers/Paper33-
Armando-Fox.pdf, 2008.

[25] Flávio R. C. Sousa, Leonardo O. Moreira, Gustavo A. C.
Santos, and Javam C. Machado, “Quality of Service for
Database in the Cloud,” CLOSER, pp. 595-601, 2012.

[26] Erik Thomsen, “Comparing Different Approaches to
Olap Calculations as Revealed in Benchmarks,”
Intelligence Enterprises Database Programming &
Design, 1998.

 IJCA, Vol. 20, No. 4, Dec. 2013 254

Appendix A: TPC-H Benchmark Metrics

• Qph@SF Metric

 power_test@SF =

24
22

1

2

1

)0,()0,(

3600

∏ ∏
=

=

=

=

×

×
i

i

j

j

jRIiQI

SF

 throughput_test@SF =
SFT

S
×

×× 360022

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

interval,t measuremen theis:
queries 22different of composed is stream

asuch that steams,query ofnumber theis:
,power test theof

steamquery single e within thfinction
refresh of seconds,in interval, timing theis:)0,(

,power test
 theof streamquery single e within th

query of seconds,in interval, timing theis:)0,(
factor. scale theis:

secondsin duration hour 1 is:3600

T

S

RF
jRI

Q
iQI

SF

with

j

i

 Qph@SF = _test@SFthroughput@SF power_test ×

 $/Qph Metric
Qph@Size

miced Syste$/Qph Pr =

Rim Moussa is an Associate Professor
in the Department of Computer Science
at the University of Carthage (Tunisia),
where she is in charge of graduate
lectures, related to distributed systems,
information retrieval and business
intelligence fundamentals and practices.
She received her Ph.D. in Computer
Science from Paris IX Dauphine
University in 2004. Her research

interests include data management systems and distributed
systems.

Hassan Badir is an Associate Professor
in the Department of Computer Science
and Engineering and a member of
LabTIC Laboratory at Abldemalek
Essaadi National School of Applied
Sciences at Tangier (ENSA-Tangier).
He received a Ph.D. in Computer
Science from the INSA-Lyon and
Claude Bernard University (France) in
2005. His research interests are in the
areas of big data management, sensor

and scientific data management, cloud computing and security.

IJCA, Vol. 20, No. 4, Dec. 2013 255

Index

Authors

A

Abdallah, Emad E., see Alsarhan,

Ayoub; IJCA v20 n1 March 2013 46-
53

Abdallah, Alaa Eddien, see Alsarhan,
Ayoub; IJCA v20 n1 March 2013 46-
53

Abdelbar, Ashraf M. and Donald C.
Wunsch II; Search Context
Awareness in Several Ant Colony
Optimization Models; IJCA v20 n2
June 2013 97-110

Alomainy, Raouf and Wei Li; DSS: A
Formal Framework and a Software
Tool to Extract Object-Oriented
Design State Space and Syntax-Based
Metrics; IJCA v20 n2 June 2013 78-
96

Al-Oqily, Ibrahim, see Alsarhan,
Ayoub; IJCA v20 n1 March 2013 46-
53

Alqithami, Saad, see Khaleel, Mustafa;
IJCA v20 n4 Dec 2013 221-235

Alsarhan, Ayoub, Emad E. Abdallah,
Ibrahim Al-Oqily, and Alaa Eddien
Abdallah; An Economic Model for
Resource Adaptation in 2D Mesh
Multicomputer Networks; IJCA v20
n1 March 2013 46-53

Appiah-Kubi, Patrick, see Karne,
Ramesh K.; IJCA v20 n1 March 2013
32-45

Askildsen, Bernt A., Charles Tolle, and
Lance Weaver; Cloud Computing
Software to Simplify HVAC
Operational Performance Analysis;
IJCA v20 n3 Sept 2013 175-183

B-C

Badir, Hassan, see Che, Dunren; IJCA

v20 n4 Dec 2013 193-194
Badir, Hassan, see Moussa, Rim; IJCA

v20 n4 Dec 2013 245-254
Cao, Fei, see Ding, Dabin; IJCA v20 n4

Dec 2013 208-220
Che, Dunren, Parisa Ghodous, and

Hassan Badir, Guest Editors; Guest
Editorial: Advances in Cloud

 Computing; IJCA v20 n4 Dec 2013
193-194

Che, Dunren, see Ding, Dabin; IJCA
v20 n4 Dec 2013 208-220

Che, Dunren, see Khaleel, Mustafa;
IJCA v20 n4 Dec 2013 221-235

Chuprat, Suriayati and Saiful Amri
Mazlan; A Linear Programming
Approach for Scheduling Divisible
Real-Time Workloads; IJCA v20 n1
March 2013 23-31

D-F

da Silva, Catarina Ferreira, see

Vargas-Solar, Genoveva; IJCA v20 n4
Dec 2013 236-244

Dahiya, Deepak, see Jain, Pooja; IJCA
v20 n2 June 2013 111-126

Debnath, Narayan, see Koneru,
Sindoora; IJCA v20 n3 Sept 2013
184-191

Ding, Dabin, Fei Cao, Dunren Che,
Michelle M. Zhu, and Wen-Chi Hou;
Budget Constrained Dataflow
Scheduling for Minimized
Completion Time on the Cloud; IJCA
v20 n4 Dec 2013 208-220

Dong, Aijuan, see Wang, Baoying;
IJCA v20 n1 March 2013 2-9

Erman, David, see Shirinbab, Sogand;
IJCA v20 n4 Dec 2013 195-207

G-J

Ghodous, Parisa, see Che, Dunren;

IJCA v20 n4 Dec 2013 193-194
Ghodous, Parisa, see Vargas-Solar,

Genoveva; IJCA v20 n4 Dec 2013
236-244

Gupta, Bidyut, see Koneru, Sindoora;
IJCA v20 n3 Sept 2013 184-191

Hou, Wen-Chi, see Yu, Feng; IJCA v20
n1 March 2013 54-63

Hou, Wen-Chi, see Ding, Dabin; IJCA
v20 n4 Dec 2013 208-220

Hou, Wen-Chi, see Khaleel, Mustafa;
IJCA v20 n4 Dec 2013 221-235

Hudnall, Matthew, see York, Matthew;
IJCA v20 n2 June 2013 127-136

Jain, Pooja and Deepak Dahiya;
Knowledgeable Multi Agent System
for E-commerce (KMASE) using

 Fuzzy c-means Clustering and Case
Based Reasoning; IJCA v20 n2 June
2013 111-126

K

Karne, Ramesh K., Songjie Liang,

Alexander L. Wijesinha, and Patrick
Appiah-Kubi; A Bare PC Mass
Storage USB Driver; IJCA v20 n1
March 2013 32-45

Kashlev, Andrey, see Yang, Zijiang;
IJCA v20 n2 June 2013 65-77

Khaleel, Mustafa, Saad Alqithami,
Michelle M. Zhu, Dunren Che and
Wen-Chi Houl; A Cooperative Game
Theory-based Approach for Energy-
Aware Job Scheduling in Cloud; IJCA
v20 n4 Dec 2013 221-235

Khan, Mridul, A. K. M.
Zahiduzzaman, Mohammed Nahyan
Quasem and Rashedur M. Rahman;
Geospatial Data Mining on Education
Indicators of Bangladesh; IJCA v20
n1 March 2013 10-22

Koneru, Sindoora, Bidyut Gupta, and
Narayan Debnath; A Novel DVR
Based Multicast Routing Protocol
with Hierarchical Pruning; IJCA v20
n3 Sept 2013 184-191

L

Lee, Gordon, see Li, Shoutao; IJCA

v20 n3 Sept 2013 147-157
Li, Shoutao, Yongxue Ma, Xinglong

Pei, and Gordon Lee; An Electronic
Hydraulic Braking Based Driver
Assistance System Using Support
Vector Machines; IJCA v20 n3 Sept
2013 147-157

Li, Wei, see Alomainy, Raouf; IJCA
v20 n2 June 2013 78-96

Liang, Songjie, see Karne, Ramesh K.;
IJCA v20 n1 March 2013 32-45

Lu, Shiyong, see Yang, Zijiang; IJCA
v20 n2 June 2013 65-77

Lundberg, Lars, see Shirinbab,
Sogand; IJCA v20 n4 Dec 2013 195-
207

Luo, Cheng, see Yu, Feng; IJCA v20 n1
March 2013 54-63

 IJCA, Vol. 20, No. 4, Dec. 2013

256

M-P

Ma, Yongxue, see Li, Shoutao; IJCA

v20 n3 Sept 2013 147-157
Mazlan, Saiful Amri see Chuprat,

Suriayati; IJCA v20 n1 March 2013
23-31

Miller, Les, Guest Editor; IJCA v20 n3
Sept 2013 137

Moussa, Rim and Hassan Badir; Data
Warehouse Systems in the Cloud:
Rise to the Benchmarking Challenge;
IJCA v20 n4 Dec 2013 245-254

Pei, Xinglong, see Li, Shoutao; IJCA
v20 n3 Sept 2013 147-157

Q-R

Quasem, Mohammed Nahyan, see

Khan, Mridul; IJCA v20 n1 March
2013 10-22

Rahman, Rashedur M., see Khan,
Mridul; IJCA v20 n1 March 2013 10-
22

Ricks, Kenneth G., see York, Matthew;
IJCA v20 n2 June 2013 127-136

Rubin, Stuart H.; The Associative
Directed Mining of Big Data for
Creative Decision Support; IJCA v20
n3 Sept 2013 138-146

S-V

Shi, Yong; Towards Analyzing Data to

Find Nearest Neighbors; IJCA v20 n3
Sept 2013 158-164

Shirinbab, Sogand, Lars Lundberg, and
David Erman; Performance
Evaluation of Distributed Storage
Systems for cloud Computing; IJCA
v20 n4 Dec 2013 195-207

Tolle, Charles, see Askildsen, Bernt A.;
IJCA v20 n3 Sept 2013 175-183

Vargas-Solar, Genoveva, Catarina
Ferreira da Silva, Parisa Ghodous, and
José-Luis Zechinelli-Martini; Moving
Energy Consumption Control into the
Cloud by Coordinating Services;
IJCA v20 n4 Dec 2013 236-244

W

Wainer, Michael, see Yu, Feng; IJCA

v20 n1 March 2013 54-63
Wang, Baoying and Aijuan Dong;

Parallel Dynamic Fraud Detection on

Market Basket Data; IJCA v20 n1
March 2013 2-9

Wang, Baoying and Marietta F. Wright;
A Learning Software Tool on
Genetics Statistics; IJCA v20 n3 Sept
2013 165-174

Weaver, Lance, see Askildsen, Bernt
A.; IJCA v20 n3 Sept 2013 175-183

Wijesinha, Alexander L., see Karne,
Ramesh K.; IJCA v20 n1 March 2013
32-45

Wright, Marietta F., see Wang,
Baoying; IJCA v20 n3 Sept 2013 165-
174

Wunsch II, Donald C., see Abdelar,
Ashraf M.; IJCA v20 n2 June 2013
97-110

X-Z

Yang, Ping, see Yang, Zijiang; IJCA

v20 n2 June 2013 65-77
Yang, Zijiang, Shiyong Lu, Ping Yang,

Andrey Kashlev; Trustworthy and
Dynamic Mobile Task Scheduling in
Data-Intensive Scientific Workflow
Environments; IJCA v20 n2 June
2013 65-77

York, Matthew, Matthew Hudnall, and
Kenneth G. Ricks; Advanced Mobile
Applications for Law Enforcement;
IJCA v20 n2 June 2013 127-136

Yu, Feng, Wen-Chi Hou, Michael
Wainer, and Cheng Luo; Sufficient
Statistics for Re-Optimizing
Repetitive Queries; IJCA v20 n1
March 2013 54-63

Zahiduzzaman, A. K. M., see Khan,
Mridul; IJCA v20 n1 March 2013 10-
22

Zechinelli-Martini, José-Luis, see
Vargas-Solar, Genoveba; IJCA v20 n4
Dec 2013 236-244

Zhu, Michelle M., see Ding, Dabin;
IJCA v20 n4 Dec 2013 208-220

Zhu, Michelle M., see Khaleel,
Mustafa; IJCA v20 n4 Dec 2013 221-
235

IJCA, Vol. 20, No. 4, Dec. 2013

257

Key Words

A-B

Access control

IJCA v20 n2 June 2013 65-77
Ant colony optimization

IJCA v20 n2 June 2013 97-110
Automated metrics tools

IJCA v20 n2 June 2013 78-96
Bandwidth

IJCA v20 n3 Sept 2013 184-191
Bare machine computing

IJCA v20 n1 March 2013 32-45
Bare PC driver

IJCA v20 n1 March 2013 32-45
Benchmark

IJCA v20 n4 Dec 2013 245-254
Big bang graph

IJCA v20 n2 June 2013 78-96
Big data

IJCA v20 n3 Sept 2013 138-146
Budget constraint

IJCA v20 n4 Dec 2013 208-220

C

Case based reasoning

IJCA v20 n2 June 2013 111-126
Chi-squared analysis

IJCA v20 n3 Sept 2013 165-174
Cloud

IJCA v20 n4 Dec 2013 245-254
Cloud computing

IJCA v20 n3 Sept 2013 175-183
IJCA v20 n4 Dec 2013 195-207
IJCA v20 n4 Dec 2013 208-220
IJCA v20 n4 Dec 2013 221-235
IJCA v20 n4 Dec 2013 236-244

Clustering
IJCA v20 n1 March 2013 2-9

Commissioning
IJCA v20 n3 Sept 2013 175-183

Computer application in classrooms
IJCA v20 n3 Sept 2013 165-174

Compuverde
IJCA v20 n4 Dec 2013 195-207

D

Dataflows

IJCA v20 n4 Dec 2013 208-220
Data integration

IJCA v20 n4 Dec 2013 236-244
Data mining

IJCA v20 n1 March 2013 2-9

IJCA v20 n1 March 2013 10-22
IJCA v20 n3 Sept 2013 138-146

Data visualization
IJCA v20 n2 June 2013 127-136

Data warehouse
IJCA v20 n4 Dec 2013 245-254

Device drivers
IJCA v20 n1 March 2013 32-45

Dimension importance
IJCA v20 n3 Sept 2013 158-164

Distributed hash table (DHT)
IJCA v20 n3 Sept 2013 138-146

Distributed storage system
IJCA v20 n4 Dec 2013 195-207

Divisible load theory
IJCA v20 n1 March 2013 23-31

Driver intention recognition
IJCA v20 n3 Sept 2013 147-157

DVMRP
IJCA v20 n3 Sept 2013 184-191

E-F

Educational software

IJCA v20 n3 Sept 2013 165-174
Energy audit

IJCA v20 n3 Sept 2013 175-183
Exploratory spatial data analysis

IJCA v20 n1 March 2013 10-22
File system

IJCA v20 n4 Dec 2013 195-207
Formal syntax-based metrics

IJCA v20 n2 June 2013 78-96
Formal verification

IJCA v20 n2 June 2013 65-77
Fraud detection

IJCA v20 n1 March 2013 2-9
Fuzzy c-means clustering

IJCA v20 n2 June 2013 111-126

G-H

Game theory

IJCA v20 n4 Dec 2013 221-235
Generalization indexed sequential

access methods (G-ISAM)
IJCA v20 n3 Sept 2013 138-146

Geographic information systems
IJCA v20 n1 March 2013 10-22

Gluster
IJCA v20 n4 Dec 2013 195-207

Grammatical inference
IJCA v20 n3 Sept 2013 138-146

Hashing
IJCA v20 n3 Sept 2013 138-146

HVAC
IJCA v20 n3 Sept 2013 175-183

I-L

iPhone

IJCA v20 n2 June 2013 127-136
JADE

IJCA v20 n2 June 2013 111-126
Java NetBeans IDE

IJCA v20 n3 Sept 2013 165-174
Knowledge beads

IJCA v20 n2 June 2013 111-126
Knowledge management

IJCA v20 n2 June 2013 111-126
Law enforcement

IJCA v20 n2 June 2013 127-136
Linear programming

IJCA v20 n1 March 2013 23-31
Linear regression

IJCA v20 n2 June 2013 111-126

M

Makespan

IJCA v20 n4 Dec 2013 221-235
Market basket data

IJCA v20 n1 March 2013 2-9
Mass storage USB

IJCA v20 n1 March 2013 32-45
Mendelian genetics

IJCA v20 n3 Sept 2013 165-174
Messaging

IJCA v20 n2 June 2013 127-136
Mobile applications

IJCA v20 n2 June 2013 127-136
Mobile task

IJCA v20 n2 June 2013 65-77
Multi-agent systems

IJCA v20 n2 June 2013 111-126
Multicast

IJCA v20 n3 Sept 2013 184-191
Multiple regression

IJCA v20 n2 June 2013 111-126
Multiprocessor

IJCA v20 n1 March 2013 23-31

N-O

National criminal information center

IJCA v20 n2 June 2013 127-136
NBS

IJCA v20 n4 Dec 2013 221-235
Nearest neighbor search

IJCA v20 n3 Sept 2013 158-164
OLAP

IJCA v20 n4 Dec 2013 245-254
OpenStack (Swift)

IJCA v20 n4 Dec 2013 195-207
Outlier detection

 IJCA, Vol. 20, No. 4, Dec. 2013

258

IJCA v20 n1 March 2013 2-9

P

Parallel computing

IJCA v20 n1 March 2013 2-9
Partitionable parallel machine

IJCA v20 n1 March 2013 46-53
Power consumption

IJCA v20 n4 Dec 2013 221-235
Processors allocation

IJCA v20 n1 March 2013 46-53
Pruning

IJCA v20 n3 Sept 2013 184-191
Pseudo-diameter

IJCA v20 n3 Sept 2013 184-191

Q-R

Quantum

IJCA v20 n3 Sept 2013 138-146
Query completion time

IJCA v20 n4 Dec 2013 208-220
Query distribution

IJCA v20 n3 Sept 2013 158-164
Query optimization

IJCA v20 n1 March 2013 54-63
Query size estimation

IJCA v20 n1 March 2013 54-63
Re-optimization

IJCA v20 n1 March 2013 54-63
Repetitive query

IJCA v20 n1 March 2013 54-63
Real-time systems

IJCA v20 n1 March 2013 23-31
Resource management

IJCA v20 n1 March 2013 46-53
Retro-commissioning

IJCA v20 n3 Sept 2013 175-183

S

Scheduling

IJCA v20 n1 March 2013 23-31
IJCA v20 n4 Dec 2013 208-220

Scientific workflow
IJCA v20 n2 June 2013 65-77

Search diversity
IJCA v20 n2 June 2013 97-110

Semantic associative memory (SAM)
IJCA v20 n3 Sept 2013 138-146

Service based querying
IJCA v20 n4 Dec 2013 236-2443

Smart energy
IJCA v20 n4 Dec 2013 236-244

Spatial autocorrelation
IJCA v20 n1 March 2013 10-22

Spatial regression
IJCA v20 n1 March 2013 10-22

State space search
IJCA v20 n2 June 2013 97-110

Sufficient statistics
IJCA v20 n1 March 2013 54-63

Support vector machines
IJCA v20 n3 Sept 2013 147-157

Swarm intelligence
IJCA v20 n2 June 2013 97-110

T-Z

2D mesh connected multicomputer

network
IJCA v20 n1 March 2013 46-53

TPC-DS
IJCA v20 n4 Dec 2013 245-254

TPC-H
IJCA v20 n4 Dec 2013 245-254

USB
IJCA v20 n1 March 2013 32-45

Vehicle steering
IJCA v20 n3 Sept 2013 147-157

Z formalization of object-oriented
design state space
IJCA v20 n2 June 2013 78-96

Z specification language
IJCA v20 n2 June 2013 78-96

Instructions For Authors

The International Journal of Computers and Their Applications is published multiple times a year with the purpose of
providing a forum for state-of-the-art developments and research in the theory and design of computers, as well as
current innovative activities in the applications of computers. In contrast to other journals, this journal focuses on
emerging computer technologies with emphasis on the applicability to real world problems. Current areas of particular
interest include, but are not limited to: architecture, networks, intelligent systems, parallel and distributed computing,
software and information engineering, and computer applications (e.g., engineering, medicine, business, education,
etc.). All papers are subject to peer review before selection.

A. Procedure for Submission of a Technical Paper for Consideration
1. Email your manuscript to the Editor-in-Chief, Dr. Frederick C. Harris, Jr., Fred.Harris@cse.unr.edu.
2. Illustrations should be high quality (originals unnecessary).
3. Enclose a separate page (or include in the email message) the preferred author and address for correspondence.

Also, please include email, telephone, and fax information should further contact be needed.

B. Manuscript Style:

1. The text should be double-spaced (12 point or larger), single column and single-sided on 8.5 X 11
inch pages.

2. An informative abstract of 100-250 words should be provided.
3. At least 5 keywords following the abstract describing the paper topics.
4. References (alphabetized by first author) should appear at the end of the paper, as follows: author(s), first

initials followed by last name, title in quotation marks, periodical, volume, inclusive page numbers, month and
year.

5. Figures should be captioned and referenced.

C. Submission of Accepted Manuscripts
1. The final complete paper (with abstract, figures, tables, and keywords) satisfying Section B above in MS Word

format should be submitted to the Editor-in-Chief.
2. The submission may be on a CD/DVD or as an email attachment(s) . The following electronic files should

be included:
• Paper text (required).
• Bios (required for each author).
• Author Photos (jpeg files are required by the printer).
• Figures, Tables, Illustrations. These may be integrated into the paper text file or provided separately

(jpeg, MS Word, PowerPoint, eps).
3. Specify on the CD/DVD label or in the email the word processor and version used, along with the title of the paper.
4. Authors are asked to sign an ISCA copyright form (http://www.isca-hq.org/j-copyright.htm), indicating that they are
transferring the copyright to ISCA or declaring the work to be government-sponsored work in the public domain. Also,
letters of permission for inclusion of non-original materials are required.

Publication Charges

After a manuscript has been accepted for publication, the contact author will be invoiced for publication charges of
$35.00 USD per page (in the final IJCA two-column format) to cover part of the cost of publication. For ISCA
members, publication charges will be waived if requested; for non-members, publication charges are required.

May 2012

ISC
A

 IN
TER

N
A

TIO
N

A
L JO

U
R

N
A

L O
F C

O
M

PU
TER

S A
N

D
 TH

EIR
 A

PPLIC
A

TIO
N

S
V

ol. 20, N
o. 4, D

ec. 2013

