[image: image1.jpg]Laboratory 8: Expression Tree ADT

')

Laboratory 8: Cover Sheet

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to you. Attach this cover sheet to the front of the packet of materials you submit following the laboratory.

	Activities
	Assigned: Check or list exercise numbers
	Completed

	Implementation Testing
	(
	

	Programming Exercise 1
	
	

	Programming Exercise 2
	
	

	Programming Exercise 3
	
	

	Analysis Exercise 1
	
	

	Analysis Exercise 2
	
	

	
	Total
	

[image: image2.jpg]L2

Laboratory 8: Expression Tree ADT

Laboratory 8: Implementation Testing
Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period or during lab.

	Test Plan 8-1 (Expression Tree ADT operations)

	Test case
	Arithmetic expression
	Expected result
	Checked

	One operator

Nested operators

All operators at start

Uneven nesting

Zero dividend

Single-digit number
	+34

*+34/52

-/*9321

*4+6-75

/02

7
	
	

[image: image3.jpg]Laboratory 8: Expression Tree ADT

*J

Laboratory 8: Programming Exercise 1

Name __ Date _______________________

Section ___

	Test Plan 8-2 (Logic Expression Tree ADT)

	Test case
	Logic expression
	Expected result
	Checked

	One operator

Nested operators

NOT (Boolean value)

NOT (subexpression)

NOT (nested expression)

Double negation

Boolean value
	+10

*+10+01

+*10*1-0

+-1-*11

-*+110

--1

1
	
	

	Test Plan 8-3 (1-bit addition)

	X
	Y
	C = *XY
	S = +*X–Y*–XY
	Checked

	0

0

1

1

	0

1

0

1
	*00 =

*01 =

*10 =

*11 =
	+*0–0*–00 =

+*0–1*–01 =

+*1–0*–10 =

+*1–1*–11 =
	

[image: image4.jpg]L4

Laboratory 8: Expression Tree ADT

Laboratory 8: Programming Exercise 2

Name __ Date _______________________

Section ___

	Test Plan 8-4 (commute operation)

	Test case
	
	Arithmetic expression
	Expected result
	Checked

	
	
	
	
	

[image: image5.jpg]Laboratory 8: Expression Tree ADT

*J

Laboratory 8: Programming Exercise 3

Name __ Date _______________________

Section ___

	Test Plan 8-5 (isEquivalent operation)

	Test case
	Arithmetic
Expression #1
	Arithmetic
Expression #2
	Expected
result
	Checked

	
	
	
	
	

[image: image6.jpg]L6

Laboratory 8: Expression Tree ADT

Laboratory 8: Analysis Exercise 1

Name __ Date _______________________

Section ___

What type of tree traversal (inorder, preorder, or postorder) serves as the basis of your implementation of each of the following Expression Tree ADT operations? Briefly explain why you used a given traversal to implement a particular operation.

	Build

Traversal:

Explanation:

	Expression

Traversal:

Explanation:

[image: image7.jpg]Laboratory 8: Expression Tree ADT

' J

	Evaluate

Traversal:

Explanation:

	Clear

Traversal:

Explanation:

[image: image8.jpg]LB

Laboratory 8: Expression Tree ADT

Laboratory 8: Analysis Exercise 2

Name __ Date _______________________

Section ___

Consider the functions writeHelper1() and writeHelper2() given below:

void ExprTree<DataType>::writeHelper1 (ExprTreeNode *p) const {

if (p != 0) {

writeHelper1(p->left);

cout << p->dataItem;

writeHelper1(p->right);

}

}

void ExprTree<DataType>::writeHelper2 (ExprTreeNode *p) const {

if (p->left != 0) writeHelper2(p->left);

cout << p->dataItem;

if (p->right != 0) writeHelper2(p->right);

}

Let root be the pointer to the root node of a nonempty expression tree. Will the following pair of function calls produce the same output?

writeHelper1(root); and writeHelper2(root);

If not, why not? If so, how do the functions differ and why might this difference be important?

