
Program Standards and Conventions
CS 302 Course Requirement

Frederick Harris, Jr.,
Michael Leverington,

Devyani Tanna

7 October, 2013

Table of Contents

1.0 DOCUMENT CONTROL...1

1.1 PRESENT REVISION OF THIS DOCUMENT...1
1.2 REVISION HISTORY...1

1.2.1 Revision 1.1..1
1.2.2 Revision 1.02..1
1.2.3 Revision 1.01..1
1.2.4 Original Document...1

1.3 DOCUMENT CONTROL FOR PROGRAM CODE...1
1.3.1 All Revision Updates..1
1.3.2 Major Revision Updates...1
1.3.3 Minor Revision Updates...1

2.0 CODING PRIORITIES...2

2.1 OVERLYING GOALS ...2
2.1.1 Readability and Clarity..2
2.1.2 Correct Operation..2
2.1.3 Alignment with Specification..2
2.1.4 Generalizability..2

3.0 PROGRAM LAYOUT AND ORGANIZATION...2

3.1 GOALS..2
3.2 COMPONENT BLOCKS...3

3.2.1 Information Block...3
3.2.2 Pre-Code Blocks...3
3.2.3 Code Blocks..4
3.2.4 File End Precompiler Directives..5

3.3 SPACING AND LAYOUT...5
3.3.1 Goals...5
3.3.2 Maximum Code Width..5
3.3.3 Spacing Between Tokens and Identifiers..5
3.3.4 Braces...6
3.3.5 Indenting...6

3.4 IDENTIFIER CREATION AND USAGE..7
3.4.1 Goals...7
3.4.2 Alphabetic Character Case ..7
3.4.3 Self-documentation...8
3.4.4 Global Variables..8
3.4.5 Class and Structured Data...8

3.5 MATHEMATICAL AND BOOLEAN OPERATIONS...8
3.5.1 Goals...8
3.5.2 Mathematical Processes...8
3.5.3 Boolean Processes..9

3.6 SUBROUTINE USAGE...9
3.6.1 Goals...9
3.6.2 Subroutine Specification and Documentation..9

Program Standards and Conventions i Version 05-08-23-01

3.6.3 Parameter Usage and Management...12
3.6.4 Subroutine Design Structure..13

4.0 PROGRAM CODE REVIEW..14

4.1 GOALS..14
4.2 DESIGN LEVEL A REQUIREMENTS...14
4.3 DESIGN LEVEL B REQUIREMENTS..16
4.4 DESIGN LEVEL C REQUIREMENTS..18
4.5 TIME LOG...18

5.0 APPENDIX/REFERENCE...18

Program Standards and Conventions ii Version 05-08-23-01

1.0 Document Control

1.1 Present Revision of This Document
The present revision of this document is 1.1

1.2 Revision History

1.2.1 Revision 1.1
Amended 7 October 2013, by D. Tanna. Added Doxygen documentation.
Modified all examples to match.

1.2.2 Revision 1.02
Amended 24 August 2005, by F. Harris and M. Leverington. Added
specifications for parts A, B, and C of each programming solution design.
Modified revision documentation process in examples. Also, an Appendix/
Reference section was added to support the use of a standard default code file
called wrkbnch.cpp.

1.2.3 Revision 1.01
Amended 16 August 2005, by M. Leverington. Added document control and
revision history component; added description and requirements for document
control.

1.2.4 Original Document
Developed and reviewed 08 August 2005, by F. Harris and M. Leverington.

1.3 Document Control For Program Code

1.3.1 All Revision Updates
For all revision updates, a brief description of the update will be added to the
appropriate file (e.g., *.cpp or *.h file) in the header area. The version number
and revision date must also be changed appropriately.

1.3.2 Major Revision Updates
A major revision update includes: 1) making an interface change that affects the
programmer using the code, or 2) making a change to the program code that
significantly changes the data structure and/or the performance (e.g., speed,
overhead requirements, data storage conditions, etc) of the program. Indication
of a major revision change will be to change the whole number part of the
revision number (i.e., X of X.YY).

1.3.3 Minor Revision Updates
A minor revision update includes any other changes to the program code.
Indication of a minor revision will be to change the fractional part of the revision
number (i.e., YY of X.YY).

Program Standards and Conventions 1 Version 05-08-23-01

2.0 Coding Priorities

2.1 Overlying Goals

2.1.1 Readability and Clarity
Unless a program or component specification requires specific speed
enhancement or special overhead management, clarity and readability are the
most important priorities. While correct operation is critical, if there is any
problem with the code, no matter how well it was tested, it will be important that it
is easy to understand, trace, and ultimately debug.

2.1.2 Correct Operation
Correct operation of the program or code is obviously critical. Test cases should
be generated, implemented, and documented to verify correct operation as well
as to provide support for programmers who may need to maintain or extend the
code segment.

2.1.3 Alignment with Specification
The program code must demonstrate its ability to safely and appropriately
conduct the operations specified by the designer. While generalizability is
desired, it may not be used as a rationale to depart from the specifications
provided.

2.1.4 Generalizability
The program code or segment should be written so that it can handle variations
in size and type of data, and other potential changes driven by maintenance or
extension of the program or code.

3.0 Program Layout and Organization

3.1 Goals
The primary goal for organizing the layout of program code is to promote safe
and efficient creation, implementation, and management of the code. Secondly,
programmers who may not have previously worked with this code should be able
to easily find various segments of the code in order to conduct maintenance,
debugging, or extension of the code. Finally, it should be easy for the
programmer to identify various programming components, such as data
acquisition, input or output processes, branching, algorithmic processing, etc.

Program Standards and Conventions 2 Version 05-08-23-01

3.2 Component Blocks

3.2.1 Information Block
The first block should provide information about the program, its author(s), any
updates implemented, etc. The information block should contain at least the
following:

- file name
- description of program or code
- version number, author, and date formatted as shown below with the

most recent version and activity at the top of the list

Example:

/**
 @file Restaurant.cpp

 @brief This program manages hotel and restaurant financial
operations

 @version Revision 1.02 (08/15/2005) - M.E. Designer
 redesigned the data structure for storing restaurant
 financial transactions; data structure now uses linked
 list in place of the array that was used previously

 @version Revision 1.01 (08/10/2005 - E.E. Developer
 added CalcTax function to support taxable sales

 @version Original Code 1.00 (08/05/2005) - C.S. Student

*/

3.2.2 Pre-Code Blocks
There should be blocks for the following:

- program description or support, such as:
o associated support files
o arguments required by a command line program
o special use conditions for the program or code
o description of the program operation, as needed

- pre-compiler directives
- header files and controls
- global constant definitions
- class and/or data structure definitions
- free function prototypes

Program Standards and Conventions 3 Version 05-08-23-01

Example:

// Program Description/Support /////////////////////////////////////
/**
 @mainpage
 This program uses a small file (r_cfg.ini) to support user
 configuration. If the file is not found, defaults will be
 created and used by the program.
*/
// Precompiler Directives //
//
 #ifndef REST_CPP
 #define REST_CPP
//
// Header Files ///
//
 #include <cstdio>

 using namespace std;
//
// Global Constant Definitions ////////////////////////////////////
//
 const int SUCCESSFUL_OPERATION = 0;
//
// Class Definitions //
//
///// NONE
//
// Free Function Prototypes ///////////////////////////////////////
//
///// NONE
//

3.2.3 Code Blocks
There should be blocks for the main function if used, free function
implementations if used, and class or data structure implementations if used, as
shown:

// Main Function Implementation ///////////////////////////////////
//
 int main()
 {
 //
 // program code
 //
 return SUCCESSFUL_OPERATION;
 }
//
// Free Function Implementation ///////////////////////////////////
//
 int myFunc(int a, int b, int c)
 {
 // free function code
 }
//

Program Standards and Conventions 4 Version 05-08-23-01

// Class/Data Structure Member Implementation //////////////////////
//
 MyClass::MyClass()
 {
 // member function code
 }
//

3.2.4 File End Precompiler Directives
At the end of the file, #endif must be added if the #ifndef was used at the
beginning. Always use a comment to specify what decision test the #endif is
terminating, as shown:

// Terminating Precompiler Directives ///////////////////////////////
//
 #endif // REST_CPP
//

3.3 Spacing and Layout

3.3.1 Goals
The primary goal of spacing and layout is to provide program code that is easy to
view and identify components of the code, and easy to identify algorithmic,
branching, or operational parts of the code. In addition, it should support and
sustain safe programming practices across the entire life cycle of the code.

3.3.2 Maximum Code Width
Maximum code width will be 80 characters

3.3.3 Spacing Between Tokens and Identifiers
There must be one space between all tokens and identifiers except single open
parentheses and brackets, increment and decrement operators, commas and
semicolons. Examples:

a = b + c;
x = r * MAX_ITEMS / NUM_USERS;
for(index = 0; index < MAX_ITEMS; index++)
 {
 // code
 }

while(index < MAX_ITEMS)
 {
 cout << "Item No " << index + 1
 << ": "
 << nameArray[index] << endl;
 index++;
 }

Program Standards and Conventions 5 Version 05-08-23-01

// Double open parentheses used below
// First one has no preceding space;
// second one requires a space
if((IS_VERBOSE) && (index < MAX_ITEMS))
 {
 // code
 }

3.3.4 Braces
All decision-making operations must use braces even if there is only one line of
code implemented. There are two strong reasons for doing this. First, it creates
effective white space around the result of the decision-making process, and
secondly, it reduces difficulty with bugs generated by programmers who add
code to the block at a later time. As a suggestion, the best way to implement the
braces is to: 1) type the decision-making statement, then 2) type in both the
opening and closing braces properly indented, and finally 3) type in the block of
code. This adds a third benefit to the process of not having to trace down
missing braces at compile time.

3.3.5 Indenting
There are two options for indenting, depending on personal style. Depending on
the editor, automatic indenting may need to be turned off in order to implement
this format. Examples:

1) Indent three spaces in from the statement above, then type an open brace,
indent four spaces in from the statement above to enter the enclosed statements,
and then indent three spaces once again for the closing brace, as shown:

if(numStudents < MAX_STUDENTS)
 {
 // code here is indented four spaces
 }

or,

2) Align the opening brace with the statement above, indent four spaces in from
the statement above to enter the enclosed statements, and then align the closing
brace with the statement above, as shown:

if(numStudents < MAX_STUDENTS)
{
 // code here is also indented four spaces
}

In either form, the opening and closing braces must be vertically aligned with
each other.

Program Standards and Conventions 6 Version 05-08-23-01

3.4 Identifier Creation and Usage

3.4.1 Goals
Implementing and maintaining common standards, or a convention, among
programmers will support maintainability and sustainability by making the
identifiers easy to recognize by any other programmers who may review your
code.

3.4.2 Alphabetic Character Case
Classes and structs start with upper case letters, and use upper case letters for
new words in identifier, as shown:

class StudentList
 {
 // class implementation
 };

struct DataItems
 {
 // struct implementation
 };

Variables start with lower case letters, but use upper case letters for new words
in the identifier, as shown:

int myInt;
double studentGrade, examScore;

Free functions start with upper case letters, and use upper case letters for new
words, as shown:

void RemoveNode();
bool InitializeArray();
double ReturnResult();

Member functions start with lower case letters, and use upper case letters for
new words, as shown in usage:

presentGrade = student.returnGrade();
birthMonth = birthDate.returnMonth();
valueOne.add(45);

Constants use all capital letters, with underscore dividers between words, as
shown:

const int MAX_STUDENTS = 100;
const bool IS_VERBOSE = true;
const double CITY_TAX_RATE = 6.75000;

Program Standards and Conventions 7 Version 05-08-23-01

3.4.3 Self-documentation
All programmer-created identifiers including constants, variables, functions, and
so on must clearly specify the usage or representation of the identifier that is
used, with the following qualifications:

- abbreviations of identifier segments are acceptable as long as they are
easily understandable by others

o example: taxAmt, rentalPymnt

- loop or other counter variables may use i, j, k or x, y, z as long as
the counter usage is clear; otherwise, the counter variable must represent its
action with names such as nameCtr, rowCtr, colCtr, arrayIndex, or
just index, etc

- no literals may be used other than zero (0) or one (1); all other literal or
constant usage must be defined as constants

o examples: DAYS_IN_WEEK, MONTHS_IN_YEAR, etc
- characters used in mathematical or processing operations must be

used as characters, not as ASCII code; using numbers in code reduces
readability, and using numbers to represent characters may not be portable

o example: testChar - 'a', NOT testChar - 97

3.4.4 Global Variables
There are very few cases where the use of global variables outweighs the need
for safe, maintainable programming. For that reason, unless it is specified or
required to support speed or data management enhancement, global variables
are not to be used.

3.4.5 Class and Structured Data
With the exception of classes or objects that are used as simple data structures
or nodes, all data used within a class must be protected from external access,
and managed with accessor and modifier subroutines.

3.5 Mathematical and Boolean Operations

3.5.1 Goals
Mathematical and Boolean operations must be clearly presented in code so that
it is clear to the author that the code is doing what it should be doing, and the
author's intent is clear to other programmers who will be reviewing the code.

3.5.2 Mathematical Processes
If there are more than three operands in a mathematical expression, they must
be organized and contained using parentheses as needed; it may also be
desirable to create interim variables to break down complex mathematical
processes into smaller, more easily understandable quantities. This increases
programming safety, and it will also make debugging and tracing the
mathematical processes easier.

Program Standards and Conventions 8 Version 05-08-23-01

3.5.3 Boolean Processes
All Boolean expressions must be enclosed in parentheses. This will normally be
the case for simple expressions, but when multiple component expressions are
implemented, clarity and accuracy will be improved when each expression is
contained. It is also a good idea to put separate parts of the expression on
separate lines. Example:

leapYear = (((year % 4 == 0)
 && (year % 100 != 0))
 || (year % 400 == 0)));

In some cases, it may be clearer and more robust to create Boolean variables for
each of the components, and then implement the expression, as shown:

bool divisibleByFour, notAnOddCentury,
 isAnEvenLeapYearCentury, leapYear;

divisibleByFour = (year % 4 == 0);
notAnOddCentury = (year % 100 != 0);
isAnEvenLeapYearCentury = (year % 400 == 0);

leapYear = ((divisibleByFour
 && notAnOddCentury)
 || isAnEvenLeapYearCentury);

3.6 Subroutine Usage

3.6.1 Goals
The most important part of a given program are the modular components that
make up the building blocks of that program. These modules, or subroutines
(i.e., functions in C++, methods in Java, functions or procedures in PASCAL)
must be implemented in a well-managed format, or they will become difficult to
use, debug, extend, and maintain. Carefully constructed subroutines will support
a superior program development process, testing and refinement processes, and
debugging processes when they are necessary. Poorly constructed subroutines
commonly increase the difficulty of these processes. The construction and
development of subroutines will define the level of difficulty with managing a
segment of code throughout its life cycle.

3.6.2 Subroutine Specification and Documentation
All subroutines (i.e., functions, methods, etc) must have the following information
commented in the file preceding the implementation of the subroutine:

Program Standards and Conventions 9 Version 05-08-23-01

1. Precondition: Expected status of all incoming data. Example:

/** @pre
 -# double scoreData[] contains student scores 'a'
 such that 0.00 <= a <= 100.00
 -# int numScores contains the number of student scores 'n'
 such that n > 0
 -# doubles mean and median are uninitialized
 -# integer mode is uninitialized
*/

2. Postcondition: Expected status of data after processing. Example:

/**
 @post
 -# double scoreData[] and int numScores are not changed
 in the calling function
 -# double mean holds the average value
 of all the scoreData[] scores
 -# if numScores is an odd number, double median holds
 the exact middle value of the scoreData[] list
 -# if numScores is an even number, double median holds the average
 of the two middle values in the scoreData[] list
 -# mode holds the highest number of identical values found
 in the scoreData[] list
*/

3. Algorithm: Process by which the function will implement its task(s).
Example:

/** @detail @bAlgorithm
 -# mean is calculated by adding all the values in scoreData[]
 and dividing them by numScores
 -# median is found by sorting the scoreData[] list by value,
 and then finding the middle value of an odd numbered list,
 or the average of the two middle values in an even numbered list
 -# mode is found by sorting scoreData[] list by value,
 and then iterating through the list searching
 for the largest number of identical scores
*/

4. Exceptional/Error Conditions: Conditions that might cause failure of
correct results, or of program operation, and the actions implemented to
resolve them. Examples:

/** @exception out_of_range if numScores <= 0, zero (0) is returned
 without further processing
 @exception out_of_range if a value 'a' in scoreData[], is found
 with a value a > 100.00 or a < 0.00,
 a negative one (-1) is immediately returned
 to reflect the error in the data
*/

Program Standards and Conventions 10 Version 05-08-23-01

5. Alternative form containing all the above information.
/**

@pre
 -# double scoreData[] contains student scores 'a'
 such that 0.00 <= a <= 100.00
 -# int numScores contains the number of student scores 'n'
 such that n > 0
 -# doubles mean and median are uninitialized
 -# integer mode is uninitialized
 @post
 -# scoreData[] and numScores are not changed
 in the calling function
 -# mean holds the average value
 of all the scoreData[] scores
 -# if numScores is an odd number, median holds
 the exact middle value of the scoreData[] list
 -# if numScores is an even number,
 median holds the average of the two middle values
 in the scoreData[] list
 -# mode holds the highest number of identical values found
 in the scoreData[] list
 @detail @bAlgorithm
 -# mean is calculated by adding all the values
 in scoreData[] and dividing them by numScores
 -# median is found by sorting the scoreData[] list by value,
 and then finding the middle value of an odd numbered list,
 or the average of the two middle values
 in an even numbered list
 -# mode is found by sorting scoreData[] list by value,
 and then iterating through the list searching
 for the largest number of identical scores
 @exception out_of_range if numScores <= 0, zero (0) is returned
 without further processing
 @exception out_of_range if a value 'a' in scoreData[], is found
 with a value a > 100.00 or a < 0.00,
 a negative one (-1) is immediately returned
 to reflect the error in the data
*/

Note: The above subroutine accomplishes more than one task which contradicts
subroutine standards specified below. If this function were implemented as
designed and followed good subroutine creation standards, it would likely have
been used to call the three processes as subroutines of their own. However, the
above is used as an exaggerated example for purposes of demonstrating the
specifications of this part.

Program Standards and Conventions 11 Version 05-08-23-01

3.6.3 Parameter Usage and Management
1. All parameters must be specified in comment form. This may be

accomplished in different ways, as shown.

Example Form 1, as part of the subroutine specifications:

/**
 @param scoreData[] holds student exam scores
 @param numScores holds number of exam scores
 @param mean will provide mean statistic result
 @param median will provide median statistic result
 @param mode will provide mode statistic result
*/
void Calculate Statistics(double scoreData[], int numScores,
double &mean, double &median, int &mode)
 {
 // function implementation
 }

Example Form 2, implemented within the parameter list:

void Calculate Statistics
 (
 double scoreData[], /**< holds student exam scores */
 int numScores, /**< holds number of exam scores */
 double &mean, /**< returns the mean of the scores */
 double &median, /**< returns the median of the scores */
 int &mode /**< returns the mode of the scores */
)
 {
 // function implementation
 }

2. If there are more than five parameters, there must be a data structure created
and used in place of some or all of the parameters, as shown:

struct DataItems
 {
 int item1;
 int item2;
 int item3;
 int item4;
 int item5;
 }

double ReturnAverage(int numItems, const DataItems &data)
 {
 // function implementation
 }

Program Standards and Conventions 12 Version 05-08-23-01

3. All classes and data structures are to be passed by reference. If the class or
data structure is not to be modified by the subroutine, it must be specified as
a constant, or otherwise protected from modification. Examples:

// data will be entered into each of the DataItems members
int EnterDataItems(DataItems &data)

// no part of PersonList is to be modified by this function
double ReturnBirthDate(const PersonList &list, string personName)

// no part of StudentList is to be modified by this function
int GetStudents(const StudentList &list, int gradeLevel)

4. Local variables must be defined at the beginning of the subroutine, including
counter or loop variables, as shown:

PersonList::processList()
 {
 int rowCtr, colCtr;
 string firstName, lastName, city, state;
 bool found, isProcessed = false;

 // subroutine implementation code
 }

3.6.4 Subroutine Design Structure
Subroutines should meet the following specifications:

1. Subroutines should accomplish one task. They should only conduct
one piece of business. They may be able to do that business repeatedly, or
in different parts of a program, or with different data types or quantities, but
they should do only one thing.

2. Subroutines should implement modularity and reusability. Since
subroutines are to accomplish one task, each one is a self-contained and
unique module (i.e., its own self contained package) that takes care of its own
business. Subroutines should do the one job they are given, but they should
be able to do it with a variety of incoming data or conditions; this makes
methods both modular and reusable.

3. Subroutines should meet specifications. They should be designed,
tested, and implemented using the specifications that were given. If a need
appears to arise where the subroutine should do something outside the
specifications, either review and modify the specifications, or design a
different subroutine to meet the new conditions.

4. Subroutines should be concise. Use no more than seven (7) significant
program statements in a subroutine, as defined below. If it appears that the
subroutine needs more significant program statements than seven, break it
down into smaller subroutines.

Program Standards and Conventions 13 Version 05-08-23-01

A Significant Statement is:

- an action statement, such as implementing a mathematical
operation

- an action statement which includes calling another function
- a branching statement, such as an if, if else, or else
- a repetition or looping process, such as for, while, or

do...while
- for branching or repetition, if there are three or fewer lines inside

the branch or loop block, the branching or looping statement may be
considered one significant statement

- an input or output statement

A Significant Statement is NOT:

- a variable definition and/or initialization at the beginning of a
function (e.g., int myVar; or int myVar = 5;)

- simple assignment operations that do not use math or other
operations (e.g., numberOfBells = 7; or taxRate = 0.075;)

- simple incrementing or decrementing of one or more variables
(e.g., myVar++; or taxableItems--;)

- for a series of similar output statements, if there are fewer than five
or six of these actions (e.g., five output statements that are generally the
same), then these may be considered one Program Step

- other less significant steps such as returning a value from a method
are also not considered significant statements, as long as there is no
processing or calculating involved

4.0 Program Code Review

4.1 Goals
The goal of the three stage design and development process is to allow peer or
supervisory programmers to evaluate and review your program as it is
developed; this process is commonly termed a "gateway" process and/or a "Third
Party Review (TPR)" process. In any event, in the industrial environment,
programs must be reviewed and evaluated as they are developed in order to
support and maintain programming quality control.

4.2 Design Level A Requirements
The first component turned into the reviewer will meet the following
specifications:

1. It will contain one or more header files as needed to meet the specifications
below

Program Standards and Conventions 14 Version 05-08-23-01

2. If the program only requires one program file, then there will be one header
file turned in. The header file will have a segment identified above as the
"Program Description/Support" where necessary files and information about
the program are found. In addition, the description area should have the
program operation and algorithm overview specified as shown in the example
below:

// Program Description/Support /////////////////////////////////////
/**

 @brief Program provides a calculation that converts Celsius
temperatures into Fahrenheit. No other files are necessary for this
program.

 @detail Program will start loop to ask user for a Celsius value.
When the user responds with a number other than -999, the program calls
the function ConverCtoF, which returns the result, and which is then
displayed
*/

3. If there is more than one header file, such as when support classes and/or
library functions are used, the overall program description should be located
in the driver file, meaning the one that has the main() function in it, and a
description of the actions and usage of the class(es) or library(s) should be
placed in the other header files, as shown

// Program Description/Support /////////////////////////////////////
/**
 @mainpage
 Program requires support from two classes, a menu class and an
 integer management class; it also requires support from a
 header file that holds some common constants and operations;
 the files are:

 constants.h - file with common constants
 and operations

 MenuClass.h - files that support the menu class
 MenuClass.cpp

 IntegerListClass.h - files that support the integer
 IntegerListClass.cpp management class

 Numerical (integer) data is entered, and the program calculates
 statistical values for the mean, median, and mode
 If the data is downloaded to a file, it will be labeled
 "statsdat.txt"; if data is to be uploaded from a file, the file
 name must be the same

 Program Overview:

 The menu operations will be conducted by an object
 of the MenuClass; menu choices will be:

 1. Enter data from keyboard, using the free function
 "KBEnter", specified below

Program Standards and Conventions 15 Version 05-08-23-01

 2. Load data from file, using the IntegerListClass
 member function "loadValues"

 3. Display results, using the free function
 "DisplayResults", specified below

 4. Clear data set, using the IntegerListClass
 member function "clearList"

 5. Store integer values list, using the IntegerListClass
 member function "storeValues"

 6. Quit, which will stop the menu loop
*/

4. After the program overview has been created, define the functions that will be
used in the program, and/or the class or library. Each free function, member
function, and/or library function must have a brief description immediately
above its declaration, as shown:

Free Function Description:

/** @brief Free Function:
 Starts a loop and uses the IntegerListClass
 "addValue" function to add items until the user enters
 a negative number; no negative values will be accepted
*/ void KBEnter(IntegerListClass &intList);

Member Function Description:

/** @brief Member Function:
 appends a new value to the list with each call.
 If the appending process succeeds, the function
 returns true, otherwise false
*/ bool addValue(int newValue);

5. Parameters are not required for the first design pass. If they are known, they
should be provided; if not, leave the parameter list blank.

6. The version number for the header file (i.e., <header file>.h) is 1.00 at this
point in the design process.

4.3 Design Level B Requirements
The second component turned in to the reviewer will be the stubbed program
capable of being both compiled and built, but not necessarily runnable. The
program and code segments must contain the following components:

1. All major functions necessary for the program to run as described in the
design above.

2. The main or driver program must be written in such a way that it would work if
the stubbed functions were operational.

Program Standards and Conventions 16 Version 05-08-23-01

3. Any constants or supporting components required to support compiling and
building the program must be included in the appropriate files.

4. Formal function documentation, including at least: 1) Preconditions, 2)
Postconditions, 3) Algorithms, and 4) Error/Exceptional Conditions. An
example stubbed function with documentation, is shown:

/**

@pre
 -# array intArray has been initialized with capacity
 arrayCapacity such that arrayCapacity > 0
 -# array intArray has numItems values,
 such that numItems >= 0
@post
 -# array intArray is resized as needed
 -# newValue is appended to intArray
 -# item count numItems is incremented
 @detail @bAlgorithm
 -# resizeCheck is used to check for and resolve
 array capacity condition
 -# newValue is appended to intArray
 -# numItems count is incremented
 @exception logic_error if resizeCheck fails, no action is taken,
 function returns false, otherwise function returns true
*/
//
 bool IntegerListClass::addValue
 (
 int newValue /**<value to be appended to the integer list array */
)
 {

cout << "Stub Function: "
 << "IntegerListClass addValue called"
 << endl;

return false;
 }

5. If changes are made to any header file(s) as a result of this part of the
process, the revision must be documented and the version number updated.

6. The version number for the implementation file (i.e., the *.cpp file) is 1.00 at
this point in the design process.

Program Standards and Conventions 17 Version 05-08-23-01

4.4 Design Level C Requirements
Turn the running program in to the reviewer, capable of being compiled, built,
run, and tested under the conditions originally specified, with the following
considerations:

1. Significant changes to any of the files created prior to this design point must
be documented with brief explanations of the changes, and given new
version numbers as specified above. Since this is still the
creation/development phase of your program, you do not have to identify
every change at this point; however, you must identify, describe, and update
your version number for any of the following actions:
- the addition of any new functions not specified in previous design steps
- a change to the specifications of any of the functions defined in previous

design steps, particularly any changes to the algorithm(s) or process(es)
used to implement the function

- any significant changes to your initial data structure(s)

4.5 Time Log
For purposes of programming operations management, it is necessary to log the
time you work on each part of each project. The time log is kept simple so as not
to cost working time implementing it. In a text file called "timefile.txt" that is
provided to you, enter the following items where prompted. The prompts you will
find in the text file are in bold, and example responses are in italics:

Note that the time is in "military" form. You must start a new time sheet for each
programming job.

Programmer : Student, Charles S.
Project Number : 1
Date Due : 10/12/2005

| DATE | START TIME | END TIME | PART |
 10/10/2005 1400 1630 A
 10/10/2005 1800 1940 A
 10/11/2005 1300 1445 B
 10/11/2005 1600 1900 B
 10/12/2005 0800 1015 C

5.0 Appendix/Reference
It is a good idea to use the wrkbnch.cpp file as the starting point for developing
any code component. The file should be left as a Read-Only file so that it is not
accidentally changed. Once the file has been opened, it can be saved as the file
name needed, and then modified as necessary.

Program Standards and Conventions 18 Version 05-08-23-01

	1.0 Document Control
	1.1 Present Revision of This Document
	1.2 Revision History
	1.2.1 Revision 1.1
	1.2.2 Revision 1.02
	1.2.3 Revision 1.01
	1.2.4 Original Document

	1.3 Document Control For Program Code
	1.3.1 All Revision Updates
	1.3.2 Major Revision Updates
	1.3.3 Minor Revision Updates

	2.0 Coding Priorities
	2.1 Overlying Goals
	2.1.1 Readability and Clarity
	2.1.2 Correct Operation
	2.1.3 Alignment with Specification
	2.1.4 Generalizability

	3.0 Program Layout and Organization
	3.1 Goals
	3.2 Component Blocks
	3.2.1 Information Block
	3.2.2 Pre-Code Blocks
	3.2.3 Code Blocks
	3.2.4 File End Precompiler Directives

	3.3 Spacing and Layout
	3.3.1 Goals
	3.3.2 Maximum Code Width
	3.3.3 Spacing Between Tokens and Identifiers
	3.3.4 Braces
	3.3.5 Indenting

	3.4 Identifier Creation and Usage
	3.4.1 Goals
	3.4.2 Alphabetic Character Case
	3.4.3 Self-documentation
	3.4.4 Global Variables
	3.4.5 Class and Structured Data

	3.5 Mathematical and Boolean Operations
	3.5.1 Goals
	3.5.2 Mathematical Processes
	3.5.3 Boolean Processes

	3.6 Subroutine Usage
	3.6.1 Goals
	3.6.2 Subroutine Specification and Documentation
	3.6.3 Parameter Usage and Management
	3.6.4 Subroutine Design Structure

	4.0 Program Code Review
	4.1 Goals
	4.2 Design Level A Requirements
	4.3 Design Level B Requirements
	4.4 Design Level C Requirements
	4.5 Time Log

	5.0 Appendix/Reference

