

University of Nevada, Reno

CS 791v: Topics: Parallel Computing Spring 2018

Programming Assignment 4 Multiple GPUs programming

Assigned Date 2/15/2018

Due Date

2/22/2015

Overview

- Task: Calculate the matrix equation results by using multiple GPUs
- What should be done:
 - The equations should follow this style: M1*M2 + M3*M4 + M5*M6 + ...
 - There should be at least 8 matrices (i.e. M1*M2 + ... + M7*M8) and each matrix should be at least have 1000*1000 elements.
 - Compare the performance by using different number of GPUs and answer this question: if you use 2 GPUs instead of 1 GPU, will the throughput be doubled? Why?
 - Don't forget to change "--gres=gpu:X" in the command "srun -gres=gpu:1 ./PA4". "X" means how many GPUs will be assigned for the task in Cubix.
 - Include checks for invalid input, Chapter 3.3 cuda by example book
 - Check if allocate threads and blocks more than maximum
 - Timing -- Add statements to time the execution of the code using CUDA events or nvprof, both for the host-only (CPU) computation and with the device (GPU) computation, and display results.
 - Compute and graph the appropriate metrics (runtime, speed-up factor, throughput...).

Deliverables

- Two parts:
 - Report:

- Results: multiple timings of runs of various sizes
- Appropriate graphs
- Code ONLY GITHUB, don't use any library:
 - Sequential C part
 - Cuda part
 - Same repository and output comparing results
- Have a pdf of your report emailed to Fred Harris, Lee Barford, and Rui Wu.