
A Visual Environment for Characterization of
State Changes in Computer Systems

Gregory Vert, Sergiu Dascalu, Frederick Harris, Sermsak Buntha

Department of Computer Science and Engineering

University of Nevada, Reno, NV 89557, USA
E-mail: {gvert, dascalus, fredh, buntha}@cse.unr.edu

Abstract: Traditional state modeling techniques
have several limitations. One of these is the
reduced ability to model a large number of
variables simultaneously. Another limitation is
that understanding such models can be difficult
as they are often represented as a series of
graphs with a large number of transitions. In
order to address the above issues, we propose a
geometric approach to modeling state changes in
computer systems. Geometric models are often
descriptive of complex mathematical
combinations and can be very useful for
representing large quantities of intricate,
interrelated data. Visualizations are powerful
instruments of communication, therefore such
geometric models can be processed very well by
human beings. Visual state models can be
utilized in a wide range of computer-related
activities, from monitoring system operation to
system security enhancement and data
authentication. In this paper we describe a
geometric model for visually representing various
pieces of information pertaining to a computer
system’s security and operation aspects.
Furthermore, we describe the main elements of a
prototype software environment that supports
such model and its related visualizations.

Keywords: spicule, computer state changes,
visual model, visual environment.

1 Introduction

Operation and security of a computer system
often requires processing large quantities of audit
data, making it both computationally expensive
and error prone [2]. To reduce computational
requirements to a realistic level, administrative
management of systems typically focus on a
limited set of system and user attributes [3, 4].
Many types of sub systems in a computer need
monitoring; among these are the network,
processor, and file systems. Very little work has
been done in this area. One such system FABS
provides a user interface for monitoring
anomalous accesses to a computers file system
[5]. This system was conceived to deal with
security threats and intrusion in a computer
system.

Visualization of system information can be a
powerful mechanism for comprehending complex
and varied data. As an example, in the summer
of 2000, the National Safe Skies Alliance
awarded a project to the Applied Visualization
Center at the University of Tennessee to develop
a 3D computer tool to assist the US Federal
Aviation Administration security group, in
evaluating new equipment and procedures to
improve airport checkpoint security. To date,
several detection models have been developed
for a few airports [6]. This effort demonstrates the
broad range of areas that visualization of system
operation can be applied to. However, a dynamic
and comprehensive view of system operation
(especially across a network of computers) is
hard to encapsulate with just a few variables.
Furthermore, system operation data has
traditionally been presented in text form, which,
given the typical volume, is difficult for
administrators to process.

In order to answer the need to examine large
quantities of data while alleviating the difficulty of
comprehending such massive quantities, we
propose enhancements to a prior geometric
approach to modeling state changes in system
data, based on using visual components. This
model is called a Spicule [7]. Geometric models
are often descriptive of intricate mathematical
combinations and algebras and can be very
useful for representing large quantities of
complex, interrelated data. Visualizations are
powerful instruments of communication, hence
such geometric models can be efficiently
processed by human beings. Visual state models
can be utilized in a wide range of computer-
related activities, from monitoring system
operation to authentication of data and
strengthening system security. In this paper we
describe a geometric model based on vector
mathematics intended to be used in computer
system administration, security operations, and
certain types of data authentication. Moreover,
we present the main elements of a prototype
software tool (environment) intended to support
the model and allow the management and the
displaying of its related visualizations.

The remainder of this paper is organized as
follows: Section 2 reviews prior work where the

Spicule model was first introduced and describes
the evolution and the proposed enhancements to
the model, Section 3 presents excerpts of the
software specification for the supporting
visualization tool we propose, Section 4 provides
details of the prototype GUI of the tool, and
Section 5 finalizes the paper with directions of
future work and conclusions.

2 Spicule Visualization

2.1 Previous Work

The concept of a Spicule was originally
presented in [7]. In this work, the authors (led by
the first author of this paper) presented a tool for
intrusion detection that moved the data from
standard text form to geometric primitives (circles
in the 2D plane) with vectors emanating from the
center.

The authors of [7] indicated that two things were
needed to improve the performance of an
intrusion detection system:

• A standard by which we can encode and

represent complex computer systems in a
unified way;

• A visual model for presenting information in a
context where data may be represented and
clearly seen as relationships between
components.

In the above referenced work, the entire focus
was on intrusion detection and categorization of
attacks. The authors achieved their goals and
presented a tool for IDS, but at that time they did
not look completely into the power of the model
they had presented.

2.2 Evolution of the Spicule Model

One important characteristic of a Spicule model
is that it is not a static model. In other words,
Spicule states change over time. Such a property
is the basis for modeling state changes in a
system. This allows for blending the visually
intuitive with the mathematically quantifiable.

As we showed in the previous sub-section, the
concept of a Spicule was originally developed for
intrusion detection [7] but was not generalized to
system state modeling. In the previous work, the
Spicule was primarily described as a 2D object,
while at this time we are expanding it more to a
3D sphere.

In addition to the central spheroid of the
visualization, Spicules [7] incorporate feature
vectors, each modeling a facet of system’s
activity. There are two types of feature vectors

associated with a spicule. The first of this is
referred to as a tracking vector and is utilized to
represent system state data that can be mapped
onto an interval ranging between 0% - 100%. As
an example of a tracking one might consider
CPU utilization, which is always at most 100%. A
second type of vectors is referred to as fixed
vectors. These vectors can not be mapped to a
range but have the mathematical property of:

Tv = [0 … α]

Tracking and fixed vector behaviors differ. A
tracking vector grows from the equator and is in a
plane parallel to the ground. As the feature value
increases, the tracking vector moves along a
track on the surface of the spicule to the vertical
axis, which represents 100% of the feature's
value. Because this vector is a normalized vector,
a mathematical signature may be computed from
the angles of the tracking vectors.

In contrast, fixed vectors are located at the
equator of the spicule, coplanar to the ground,
and growing in magnitude parallel to the ground.
For example, a fixed vector feature might be the
representation of number of child processes
spawned for a program [7]. One can see that
there is no upper bound of 100% on this type of
value and therefore fixed vectors can grow in
magnitude infinitely. As such, fixed vectors
provide magnitude of feature value information.

The three components of the spicule, namely
security fitness, fixed vectors and the tracking
vectors synthesize current approaches to
visualization of state information and changes in
state information for a system. Application to the
determination of state changes can be performed
in the following way. The angles and magnitudes
of any vector can be pre-set for a normal state
system and therefore thresholds can be
established. Secondly, a set of tracking vectors
with characteristic angles or fixed vectors with
magnitudes for either normal or abnormal
systems can be determined, providing a
geometric signature. Comparing a system's
model with this set of signatures lends itself to
implementation of traditional state transition
techniques.

In addition to the concept of classes of vectors
representing state information about a computer
system, the Spicule has the ability to model an
infinite number of state variables at any given
moment in time. This is a significant improvement
over current state transition models that often
model a transition based on the change in a
single variable’s value. For instance, if we model
vector locations on the spicule to be discrete
integer values, and the spicule is composed only
of tracking vectors, the number of variables we

can model is 360 and the number of states for
the 360 variables is given as:

360 * 180 → 64,800 state locations

If we model tracking vectors on the real number
system R the number of states and variables that
can be modeled simultaneously becomes:

R * R →α

The extremely large modeling capacity of the
Spicule dictates that it should have a very rapid
method of communication with humans and thus
we use a visualization because of the large
amount of information content that can be
conveyed to a user looking at a visualized state
model. Because the spicule model is based on
vector mathematics, a given spicule can be
operated upon with vector algebra to eliminate
unchanged information and display only
information that has had state changes. The
application of these properties ranges from
intrusion detection, data authentication, system
administration to creation of visual taxonomies of
the characteristics of an attack on a computer
system. A representation of a Spicule model is
shown in Figure 1.

Figure 1: Representation of a 3D Spicule
(top and side views)

In this figure the thick arrows are fixed vectors
that grow in magnitude and thickness and the
thin arrows are vectors that track from 0 degrees
to 90 degrees on the spheroid.

2.3 Characterization of State Changes

As mentioned previously Spicules are expected
to change states over time [7]. Therefore, we use
the notation Ati to represent a Spicule’s state
model for node A at time ti. The state of the
spicule for the same node at t0 is At0. As such, we
can have the notation of a set of state changes
for a system represented as:

A = { At0 … Ati …Atj}

Additionally, regions on a Spicule can be partition
into categories of related information. As an
example, consider a Spicule with four information
classifications regions in the upper hemisphere,
grouped as system resources vectors, user

processes vectors, system files vectors and
system processes vectors. These quadrants may
vary in number and type depending upon the
information being represented. The appropriate
set of feature vectors is dependent on those
system characteristics, which are deemed most
useful to a user for modeling purposes.

The process for updating vector state information
should be automated. This means employing
some sort of auditing tools to continuously collect
data and send it to the Spicule’s visualization
software, where it can be dynamically rendered
as a member of the set A. As an example, the
process of state update and visualization might
have the following steps:

The vertical component can be visualized as a
percentage of the maximum value of 100%. For
example, if the CPU usage was 20% at a given
time, the vector representing CPU usage at that
time would be visualized at 18 degrees along a
track to the North pole of the spicule.

Vectors around the 360 degrees of the spheroid
provide characteristics angles that can be
measured for particular data feature vectors.
Characteristic angles would constitute a
geometric ‘signature' for ongoing activity.

Vectors can be combined based on membership
in the same category. The recombination
property allows for geometric signature
generation. For example, if the system resources
category has the following members:

CPU usage 4% change/sec
CPU throughput 5% change/sec
port 25 traffic 1% change/sec
number writes .05/sec
number reads 2% change/sec

then the recombination might involve only the
three vectors with the highest rate of change over
time or might combine (add) all vectors in the
category.

3 Environment Specification

In this section, we briefly provide several
functional and non-functional requirements [8, 9]
of the current prototype of the visual system
(environment) that supports the model. The
functional requirements correspond to the use
cases described in the next section. The
functional requirements describe the operational
capabilities intended to be provided to the
system’s users. The non-functional requirements
are various types of constraints placed on the
system, including implementation, performance,
workload, usability, and maintenance constraints.

3.1 Functional Requirements

R1 The system shall allow adding and removing

security characteristics to the visual model
both before and during program running;

R2 The system shall represent system security
characteristics using graphical vectors for
visual modeling;

R3 The system shall display the color of the ball
to indicate the security level in the system --
the color should be in a range from gray to
red;

R4 The system shall provide a slider to allow a
user go back and forth for watching history of
the visual model. The slider should be
associated with a color strip that indicates
the historical color of the ball;

R5 The system shall show the time of the visual
model that it is currently displayed. By
default, it should show the current time. It
should show time in the past when a user
moves the slider to see the history of the
visual model.

R6 The system shall allow a user to zoom in and
out the visual model;

R7 The system shall allow a user to change the
rotation speed of the visual model;

R8 The system shall rotate the spicule on
vertical axis;

R9 The system shall provide a textual vector
description when a user moves the mouse
over the vector;

R10 The system shall show detailed information
when a user clicks on a vector on the spicule
in the visual model system.

3.2 Non-Functional Requirements

N1 The system shall support managing and

displaying of at least 360 security
characteristics in the visual model;

N2 The system shall keep the history of the
visual model for at least 24 hours;

N3 The system shall provide detailed
information on one vector at a time;

N4 The rotation speed shall be from zero to one
round per second;

N5 In the case of a very long vector the system
may be unable to display its entire graphical
representation although the maximum zoom
out is reached.

3.3 Use Case Diagram

In this section, the system behavior is described
by use case diagram as shown in Figure 2. All
use cases are designed for system
administrators or whoever is in charge for system
security. In the use case diagram, the person
who is intended to use the system is called an
“actor”. Currently, our software prototype consists
of one actor (who is both system administrator

and user) and five main use cases, as the
follows:

UC1 – Add/Remove security characteristics
UC2 – Watch previous spicule
UC3 – Zoom in/out
UC4 – Change rotational speed
UC5 – Acquire detail information of a vector

Figure 2: Use case diagram of the visual model

system

The relationship between functional requirements
and use cases is described with another software
engineering tool, a requirements traceability
matrix [8], depicted for our system in Table I. In
our design, each use case completely
implements one or more functional requirements
of the system.

Table I: Requirements traceability matrix

Req UC1 UC2 UC3 UC4 UC5
R1 •
R2 •
R3 •

R4 •
R5 •
R6 •

R7 •
R8 •
R9 •

R10 •

4 Prototype User Interface

Figure 3 shows the user interface of the
proposed prototype system for spicule
visualization. The largest portion of the
environment’s main window displays the visual
model in the form of a spicule. The spicule
consists of a ball (sphere) and a number of
vectors pointing out from the ball. The color of the
ball will change from gray to red when the system
considers that there is a higher chance of being
attacked. Each vector represents a characteristic
item. The location and length of the vectors have
already been described in the previous sections
of this paper.

When the user moves the mouse over a vector,
the brief deception value of the vector and the
percentage value of its characteristic parameter
changing will be displayed. Detailed information
about the vector will be provided after the user
clicks on the vector. On the bottom right corner of
the visual model display there is a clock that
shows the time associated with the spicule’s
activity.

Below the visual model area, the prototype
visualization tool provides a function for watching
previous changes in characteristics (historical
evolution). The strip over the slider indicates the
historical color of the ball in the last 24 hours.
The slider is attached with five ticks and labels,
respectively: 0h, -6h, -12h, -18h, and -24h. The
marker “0h” indicates the current time and the
others are related to the last 6, 12, 18, and 24
hours, respectively. The user is able to move the
slider to observe the spicule during any selected
periods of activity (e.g., of higher danger) or at
any chosen points in time. In Figure 3, there has
been a possibility of attack during the last 12
hours because the ball changed from gray to red.
The clock on the bottom-right of the visual model
displays the current time when the slider points at
0h (zero hour). Moving the slider to watch a
previous state of the spicule makes the clock
show the time associated with that previous
state. This allows a user to investigate whether
an attack occurred while the user did not monitor
the system.

The spicule rotates to allow the user to observe it
in its entirety (the sphere in all its 360 degrees). A
user is able to change the rotation speed or even
stop the rotation by moving the rotation slider n
the bottom-left corner of the window. The slider
on the bottom-right corner of the environment’s
main window is for zooming in and zooming out.

The visual environment for spicule management
and display is currently under development and

will likely be the subject of an extended
description in one of our future publications.

Visual ModelVisual Model
File

Port 25 traffic 3%

14:34:21

Edit View Help

Rotation Speed

-6h-12h-18h-24h 0h

0.0 0.5 1.0 small large

Spicule Size

Figure 3: Proposed environment’s GUI with a

snapshot of the running program

5 Directions of Future Work and

Conclusions

This initial research presents some initial theory
and conceptual development of a system to
model state changes in a computer system. It
also presents some initial work on the extension
of such a model to consider the relationship
among Spicule systems located on distributed
computers. Some of the benefits of such a model
are: (i) the ability to model n dimensions of state
data simultaneously; (ii)the ability to comprehend
data rapidly in a visually intuitive fashion;

The application of such a model ranges from
system administration to authentication of data
with spatial components to administration of
system and the construction of visual taxonomies
of constituent Spicule models.

Furthermore, we have introduced the main
elements of a prototype visualization system that
supports the spicule model for monitoring
computer state changes. This model will be
further developed to become a useful tool in
system administration with emphasis of security
and safety concerns.

Much work remains to be done to validate and
further test this model. We need to develop a
better understanding of how to apply Spicule to
some of the potential areas mentioned
previously. Additionally, further work needs to be
done on developing metrics that model relations
among spicules. Also, data in a computer system
is typically ambiguous. For example, it may
sometimes mean one thing and at other times
mean another. Finally, future work will
concentrate on the application of fuzzy logic to
the spicule model and what the semantics of
such an application might mean.

References

[1] Chrisman, N., Exploring Geographic

Information Systems, John Wiley & Sons,
1997.

[2] Heberlein, L., Dias G., Levitt, K., Mukherjee,

B., Wood, J., Wolber, D., “A Network
Security Monitor,” Proceedings of the
Symposium on Security and Privacy, p. 296-
304, May 1990.

[3] Ho, Y., Partial Order State Transition

Analysis for an Intrusion Detection System,
Master’s thesis, University of Idaho, 1997.

[4] Valdes A., and Anderson D., “Statistical

Methods for Computer Usage Anomaly

Detection Using NIDES,” Conference on
Rough Sets and Soft Computing, November
1994.

[5] Stanton, P.T. , Yurcik, W., and
Brumbaugh, L., “FABS: File and Block
Surveillance System for Determining
Anomalous Disk Accesses, Systems,”
Proceedings of the 6th Annual IEEE Systems
Man and Cybernetics (SMC-2005),
Information Assurance Workshop, p. 207-
214, June 2005.

 [6] Koch, D.B. “3D Visualization to Support
Airport Security Operations,” IEEE
Aerospace and Electronic Systems
Magazine, vol. 19, issue 6, p. 23–28, June
2004.

[7] Vert, G., Frincke, D.A., and McConnell, J.,

“A Visual Mathematical Model for Intrusion
Detection,” Proceedings of the 21st NISSC
Conference, Crystal City, Virginia, 1998.

[8] Arlow J. and Neustadt, I. UML and the

Unified Process: Practical Object-Oriented
Analysis and Design, Addison-Wesley, 2002.

[9] Sommerville, I. Software Engineering, 7th

edition, Addison-Wesley, 2004.

.

