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Abstract 
 
       In a genomic sequence, the oligonucleotide signature 
represents the ratio of the observed to expected number of 
occurrences of all possible nucleotide words of a specific 
length.  Word absence is also found in genomic sequences 
whereby specific words are not observed despite their 
expected presence in a random nucleotide distribution.  
This research uses a combination of word absence and 
oligonucleotide signatures to quantify differences 
between inter-epidemic and intra-epidemic Influenza A 
virus (H3N2) genomic sequences.  In addition, word 
absence/presence patterns are examined for their 
discrimination of sequences from distinct epidemics or 
geographic origins within the same epidemic.  Inter-
epidemic sequences are well delineated by word absences 
and difference measures into epidemic specific groups. 
Intra-epidemic sequences are not consistently well 
separable in terms of their geographic origins, but show 
similarities across geographic regions.   
 
Keywords:  Oligonucleotides, word absence, alignment-
free, nullomers,  k-mers, Minimal Markov Model. 
 
1.  INTRODUCTION 
 

 Finding patterns in genomic sequences lends to 
understanding their internal mechanisms for conservation 
of order and functionality. Processes such as replication, 
gene expression level, gene coding and defense against 
invasive DNA are driven by embedded sequences which 
contribute to nucleotide patterns throughout a genome [7]. 
A genome describes the complete DNA or RNA sequence 
which “encodes” an organism.  Genomic patterns refer to 
patterns in the nucleotide ((A)denine, (C)ytosine, 
(G)uanine, (T)yrosine) makeup of whole genomes or 
subset sequences.  These enable the comparison of 
sequences from different classes of organisms. These 
classes can be derived to compare phylogeny, subspecies 
strains, or even subspecies characteristics, i.e. virulence. 
A genomic signature derives frequency patterns by 
calculating the over- and under- representation of specific 

base pair sequences (words) when compared to random 
expectations. If genomic sequences were randomly 
organized, most short nucleotide words would have an 
equal probability of being found within any given 
sequence of sufficient length. The study of short word 
frequencies has shown a biased distribution of words 
which deviates from random, leaving some words over- 
and some under- represented to differing levels [5, 6, 10]. 
Genomic signatures of short word lengths are similar for 
organisms within kingdom groupings [6] and are 
sometimes consistent enough to be used in the regrouping 
of mixed fragments from multiple species genomes [1, 13, 
15].   

Some words have been found to be commonly absent 
from species groups [9] and have been referred to as 
nullomers and primes.  While the reason as to why certain 
words are absent and others present in particular genomes 
is most likely complex, the inheritance of absent words 
has been examined on a broad evolutionary scale.  It has 
been proposed that word absence is an inherited 
characteristic through the observation that human and 
chimp DNA contain 28 common absent words of length 
11 and 14 absent words which differ by only one 
nucleotide [2].  It could also be expected that word 
absence is inherited by the immediate progeny of 
microbial samples in a micro-evolutionary sense.  Absent 
words are an integral part of any genomic sequence as 
much as present words, and by inheriting a nucleotide 
sequence, or a close derivative of it, a microbial offspring 
should also inherit many of the words absent from that 
sequence as well. This may offer the delineation of 
closely related microbes, including viral pathogens. 
Researchers in [8] found word absence/presence to show 
more correlation between genomes within the same 
species than between genomes of different species. Even 
so, less correlation was found between same species 
genomes than was statistically expected, and it was 
suggested that word absences may offer delineation 
within species groups as well.  How detailed the 
distinction of subspecies groups through word absence 
can be has yet to be examined.       
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While genomic word signatures show consistencies 
within higher level phylogenetic groups, examining 
differences at subspecies levels may reveal differences 
that could enable pathogen transmission mapping and 
give insight into strain evolution. In addition, efficient 
methods for strain identification and differentiation are 
becoming increasingly important in the threat of epidemic 
outbreaks and the possibility of biothreat agents [4, 16]. 
Most current methods for genotypic subspecies 
comparisons focus on computationally expensive 
sequence alignment, although global pattern based 
methods have reported. In [3], Average Mutual 
Information (AMI) profiles enabled the clustering of 
subtypes of the HIV-1 virus.  In [12] a triplet Markov 
model was used to derive a phylogenetic tree which  
grouped subspecies samples of human pathogens 
Escherichia coli, Staphylococcus aureous, and Yersinia 
pestis into appropriate branches.  Oligonucleotide word 
signatures present another global method for comparing 
whole genomes without the need for sequence alignment. 
In addition, it is possible to select aspects of word 
signature sets with the intent of exposing subtle 
subspecies differences which may otherwise be masked 
by a high degree of sequence similarity.  Word absence 
offers such a selection criteria through which the 
expression level of any word present in one genome but 
absent in another may be considered in the calculation of 
a sequence difference measure.  This research examines 
the potential use of word absence in conjunction with 
oligonucleotide signatures for determining Influenza A 
virus (H3N2) isolate relatedness.  Section 2.2 describes 
the derivation of word over- and under- representation 
using Minimal Markov Models.  In section 3.1, word 
absences are first examined for pattern similarities across 
inter- and intra-epidemic sequences. In section 3.2, a 
sequence difference measure is described and tested on 
both groups of sequences to quantify relationships among 
them.    
          
2.  METHODOLOGY 

 
2.1  Data   
  

All sequences were acquired through the publicly 
available National Institute of Allergies and Infectious 
Disease (NIAID) Influenza resource [2].  

Influenza virus genomes naturally exist in eight 
disjoint segments. Thus data from each segment (1-8) was 
kept disjoint during processing and sequences were not 
concatenated.  In addition, Influenza viruses are single 
stranded, and so reverse complementation of data sets was 
not required.         

Inter-epidemic data included eight strains of 
Influenza A virus (H3N2) representing three distinct 
epidemics.  Two strains were from Hong Kong in 1980, 
three strains from Managua, Nicaragua in 2007, and three 

from New South Wales in 1999.  Identifier strings are 
listed:   

 A/Hong Kong/46/1980(H3N2), 
A/Hong Kong/45/1980(H3N2), 
A/Managua/14/2007(H3N2),  
A/Managua/15/2007 (H3N2),   
A/Managua/16/2007 (H3N2),  
A/New South Wales/20/1999(H3N2),  
A/New South Wales/21/1999(H3N2),  
A/New South Wales/22/1999 (H3N2).  

      
Intra-epidemic data included nine Influenza A virus 

(H3N2) isolates collected in the United States within a 
three month period during the 2007 flu season.  Three are 
from New York collected between 3/5-3/6. Three isolates 
were collected in Colorado all on 1/8, and three are from 
Vermont collected between 2/27-3/1. Identifier strings are 
listed:   

 A/New York/UR06-0510/2007(H3N2), 
 A/New York/UR06-0515/2007(H3N2), 
 A/New York/UR06-0529/2007(H3N2), 
 A/Vermont/UR06-0469/2007(H3N2), 

A/Vermont/UR06-0470/2007(H3N2), 
A/Vermont/UR06-0471/2007(H3N2), 
A/Colorado/UR06-022/2007(H3N2), 
A/Colorado/UR06-023/2007(H3N2), 
A/Colorado/UR06-024/2007(H3N2). 

 
 2.2  Markov Chain Selection 
    

In genomic word expression analysis, Markov 
Models are often used as a means of calculating the 
expected count of each word (E(w)) in a signature set [11, 
14, 17]. In Markov chains, the current state of a system is 
predicted by its previous states. In word signature 
analysis, this translates to predicting a word frequency 
based on the observed frequencies of its sub words. 
Depending on the order of the Markov model, bias 
contributed to a word of length m from sub words of 
lengths 1,…,m-1 can be removed.  For example, assume a  
sequence is dominated by di-nucleotides TA and AG.  
Unless specifically selected against, TAA and AAG, 
which are the concatenations of the dominant sub words 
will naturally show high frequencies.  Separating the 
degree of selection for or against exactly these tri-
nucleotides from the contributions of their sub words may 
require the removal of their sub word frequency bias.  
With the ultimate goal to match genomic internal word 
selection mechanisms, the optimal degree of Markov 
Model to use remains undetermined. Consistent with 
findings in [14] and [18], minimal order Markov Models 
allowed the most differentiation between genomic 
signatures of different prokaryotic species and were thus 
used to calculate expected values for signature 
calculations in this research.  
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A minimal order Markov model does not remove bias 
from sub words longer than one character.  The expected 
count of a word E(w), in a genomic sequence of length N 
is expressed as: 

 
E(w) = [(Aa*Cc*Gg *Tt)* N] 

 
A, C, T and G represent specific nucleotide 

frequencies in the total sequence N and a, c, t, g are the 
number of each nucleotide in a word w.  As described in 
[14], the ratio of the observed count over its expected 
count, O(w)/E(w) was then used to derive the degree of 
over- or under- representation of each word in a signature 
set.  

 
2.3 Oligonucleotide Word Length Selection 

 
The k-nucleotide signature of a genomic sequence 

contains the degree of over- or under- representation of all 
4k possible k-length nucleotide words composed of a 
subset of {A,C,G,T}. To ensure that all words in a 
signature set can be contained in a sequence of length L, it 
is required that k be small enough so that 4k <= L-(k +1). 
It should be noted that in previous word absence studies 
[8, 9] this upper bound on the length of k was not deemed 
necessary and longer lengths of k were examined.  In the 
case of word expression in genomic sequences which do 
not adhere to random expectations, the examination of 
word absences at longer k values offers valuable 
information. For this study, word absences were noted in 
relatively high amounts at a word length of six, and so the 
upper bound proportion is adhered to.  Influenza 
sequences are ~12,000 base pairs (bp) in length while a 
hexa-nucleotide word set contains 4096 possible 
nucleotide words.  Because nucleotide words were read in 
an overlapping fashion (Figure 1), each hexa-nucleotide 
word had the probability of occurring approximately 2.9x 
under the assumption of a random nucleotide distribution. 

 
Figure 1. Overlapping words. 

  
 
3.  RESULTS and DISCUSSION 
 
3.1 Absence/Presence Word Patterns 
  

Word absence vs. presence was examined for the 
potential to discriminate between related groups of 

sequences.  Inter-epidemic sequences had the potential to 
be differentiated based on the epidemic outbreak instance 
from which they were collected; Hong Kong 1980, 
Nicaragua 2007 or New South Wales 1999.  Intra-
epidemic sequences could potentially be differentiated 
based on the specific state from which they were 
obtained;  New York, Colorado or Vermont. 

 Signature sets for each genome were reclassified in a 
binary format so that presence was indicated by a one and 
absence by a zero.  Within inter-epidemic sequences, 379  
words were commonly absent from all sequences, 3173 
were present in all sequences, and 544 word exhibited 
absence/presence variation across samples. Intra-epidemic 
sequences had 507 commonly absent words, 3299 
commonly present words, and 290 words exhibiting 
absence/presence variation across samples.   Inter-
epidemic sequences had more words exhibiting 
absence/presence variation and less commonly absent 
from all sequences. In contrast, intra-epidemic sequences 
had a higher proportion of commonly absent words than  
varied words. This is to be expected under the assumption 
that intra-epidemic sequences will show more similarity. 
In both data groups (inter- and intra-epidemic), groups of 
words exhibiting identical absence/presence patterns 
across  sequences were found. Tables 1 and 2 show absent 
vs. present word pattern clusters. Commonly absent 
words and commonly present words are not included.   

Table 1 shows a visible distinction of samples from 
the three epidemics through absence and presence.  The 
first word cluster contains 123 words that are distinctly 
absent from the Hong Kong 1980 epidemic sequences (s1, 
s2) while being present in all other epidemic sequences 
(s3-s8). Similarly, the next largest word cluster of 109 
words contains those only present in the Hong Kong 1980 
sequences while absent from all others.  The six largest 
word pattern clusters in this table are uniquely absent or 
present for one of the three epidemics, and all three 
epidemics are delineated through absence and present 
words.  For this group, such epidemic discriminating 
words account for 82% of all varied words.   

Discriminating word patterns with respect to location 
are not as evident in Table 2 for the intra-epidemic data 
set.  The two largest word clusters show distinct absence 
or presence for one sequence from the New York group 
(s2).  The third largest word cluster shows distinct 
absence for two sequences from New York (s1,s2)  and 
one from Colorado (s8).  

Interpreting results in Table 2 are not intuitive except 
that they may offer insight into intra-epidemic isolate 
relatedness Similarly, the remaining 18% or words in 
Table 1 which do not discriminate clearly between 
epidemics may also reflect relationships across epidemics.    
While results in Table 2 are not clear due to lack of 
knowledge regarding specific samples, Table 1 strongly 
supports the notion that absence/presence can delineate 
sample relatedness in a meaningful manner. 
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Table 1. Word Presence/Absence patterns and word 
 clusters from inter-epidemic samples.  Dotted 
 line indicates epidemic discriminating word 
 groups.  

Inter-epidemic 

Hong 
Kong 
1980 

Nicaragua    
2007 

New South 
Wales       
1999   

s1 s2 s3 s4 s5 s6 s7 s8 # words 
0 0 1 1 1 1 1 1 123 
1 1 0 0 0 0 0 0 109 
1 1 0 0 0 1 1 1 93 
0 0 1 1 1 0 0 0 71 
1 1 1 1 1 0 0 0 32 
0 0 0 0 0 1 1 1 19 
1 1 1 1 1 0 0 1 14 
0 0 0 0 0 0 0 1 13 
0 0 0 0 0 1 1 0 11 
0 0 1 1 1 0 0 1 11 
0 0 1 1 1 1 1 0 10 
1 1 0 0 0 1 1 0 9 
0 0 0 1 0 0 0 0 5 
1 1 0 0 0 0 0 1 5 
1 1 0 0 1 1 1 1 3 
0 0 0 0 1 0 0 0 2 
0 0 1 1 0 1 1 1 2 
1 1 1 0 1 1 1 1 2 
1 1 1 1 0 1 1 1 2 
0 1 0 0 0 0 0 0 1 
0 1 1 1 1 0 0 0 1 
1 0 1 1 1 0 0 0 1 
1 1 0 0 1 0 0 0 1 
1 1 0 1 0 0 0 0 1 
1 1 1 0 0 1 1 1 1 
1 1 1 1 0 0 0 0 1 
1 1 1 1 1 1 0 0 1 
      total 544 

 
 

3.2 Sequence Difference Measure 
 

A measure for comparing two sequences based on 
word expression levels constrained by word absence was 
derived.  To compare two sequences, s1 and s2, let AP be 
the set of all words present in only one sequence so that 
for all w є AP, O(ws1)/E(ws1)>0 and O(ws2) = 0, or   
O(ws2)/E(ws2)>0 and O(ws1) = 0. AA is the set of all 
words absent from both sequences so that for all w є AA,  
O(ws1) = O(ws2) = 0.  |AP| denotes the total number of 
words in AP and |AA| denotes the total number of words 
in AA. The difference between s1 and s2 is calculated as: 
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Table 2. Word Presence/Absence patterns and word 
 clusters from intra-epidemic samples.  

Intra‐epidemic            
  

New York 
2007 

Vermont  
2007 

Colorado 
2007    

s1 s2 s3 s4 s5 s6 s7 s8 s9 # words 
1 0 1 1 1 1 1 1 1 54 
0 1 0 0 0 0 0 0 0 49 
1 1 0 0 0 0 0 1 0 22 
0 1 1 1 1 1 1 1 1 22 
0 1 1 1 1 1 1 0 1 22 
1 1 1 1 1 1 1 0 1 15 
0 0 1 1 1 1 1 0 1 15 
1 0 0 0 0 0 0 0 0 14 
1 0 0 0 0 0 0 1 0 10 
1 1 1 0 0 1 1 1 1 6 
0 0 0 1 1 0 0 0 0 6 
1 1 1 1 1 1 0 1 0 5 
1 1 1 1 1 0 1 1 1 5 
1 1 0 0 0 0 0 0 0 5 
0 0 0 0 0 1 0 0 0 5 
1 1 0 1 1 1 1 1 1 4 
1 0 1 1 1 1 1 0 1 3 
1 0 1 1 0 1 1 1 1 3 
1 0 0 1 1 0 0 1 0 3 
0 0 1 0 0 0 0 0 0 3 
1 1 1 1 0 1 1 1 1 2 
1 0 0 1 1 0 0 0 0 2 
0 0 1 0 0 1 0 0 0 2 
0 0 1 0 0 0 0 1 0 2 
0 0 0 0 0 0 1 0 1 2 
1 1 1 1 0 0 1 0 1 1 
1 1 0 1 1 0 0 1 0 1 
1 1 0 0 0 1 0 1 0 1 
1 0 1 1 1 1 0 1 0 1 
1 0 1 0 0 1 1 1 1 1 
0 1 0 1 1 0 0 0 0 1 
0 1 0 0 0 1 0 0 0 1 
0 1 0 0 0 0 0 1 0 1 
0 0 0 1 0 0 0 0 0 1 

      total 290 
 

Thus the difference between two sequences is the 
sum of the observed to expected ratios for words which 
are absent from exactly one sequence divided by the total 
number of words absent from at least one sequence.   This 
allows the comparison of only words which exhibit some 
degree of absence.     

In contrast to comparing only two sequences, if 
comparing relative similarities between a group of 
sequences, removing |AA| from the equation allows a 
higher degree of distinction between all pairs. This is 
because words absent from all sequences offer no inter-
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sequence differentiation and do not contribute to the 
derivation of relative differences. This adjusted measure 
was used to derive difference matrices for the inter- and 
intra-epidemic sequences (Tables  3,4 ).   
 
Table 3. Inter-epidemic difference matrix (full 
 precision is not shown). 

Inter-epidemic 

 

Hong 
Kong 
1980 

Nicaragua     
2007 

New South 
Wales 1999 

 s1 s2 s3 s4 s5 s6 s7 s8 

s1 0.00 0.01 0.51 0.52 0.51 0.43 0.43 0.44 

s2 0.01 0.00 0.51 0.52 0.51 0.42 0.43 0.44 

s3 0.51 0.51 0.00 0.01 0.02 0.34 0.35 0.34 

s4 0.52 0.52 0.01 0.00 0.03 0.35 0.35 0.34 

s5 0.51 0.51 0.02 0.03 0.00 0.35 0.35 0.34 

s6 0.43 0.42 0.34 0.35 0.35 0.00 0.00 0.13 

s7 0.43 0.43 0.35 0.35 0.35 0.00 0.00 0.13 

s8 0.44 0.44 0.34 0.34 0.34 0.13 0.13 0.00 

 
Table 4. Intra-epidemic difference matrix (full  
               precision not shown). 

  Intra-epidemic 

  
New York        

2007 
Vermont         

2007 
Colorado        

2007 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 

s1 0.00 0.42 0.31 0.30 0.30 0.31 0.31 0.22 0.31 

s2 0.42 0.00 0.38 0.37 0.37 0.38 0.36 0.38 0.36 

s3 0.31 0.38 0.00 0.10 0.11 0.06 0.07 0.27 0.07 

s4 0.30 0.37 0.10 0.00 0.02 0.10 0.09 0.26 0.09 

s5 0.30 0.37 0.11 0.02 0.00 0.11 0.10 0.27 0.10 

s6 0.31 0.38 0.06 0.10 0.11 0.00 0.07 0.27 0.07 

s7 0.31 0.36 0.07 0.09 0.10 0.07 0.00 0.26 0.00 

s8 0.22 0.38 0.27 0.26 0.27 0.27 0.26 0.00 0.26 

s9 0.31 0.36 0.07 0.09 0.10 0.07 0.00 0.26 0.00 

 
Table 3 shows all sequences having minimal 

difference measures with sequences within their 
respective epidemic groups. These values are highlighted 
in yellow.  For example, s1 is least different from s2, and 
these two sequences are both members of the Hong Kong 
1980 epidemic.  This table suggests that samples from 
distantly related epidemics can be accurately delineated 
using the proposed measure.  The average difference 
between samples within epidemics is 0.037 while the 
average distance between samples from different 
epidemics is 0.42, an order of magnitude larger. It is also 
notable that while s8 from New South Wales is closest to 
a sequence from the same epidemic, it appears relatively 
distant within that epidemic. All other difference 
measures between same epidemic sequences are less than 

0.03, while s8 differs from other NSW sequences by at 
least 0.13.     

Table 4 mirrors Table 2 in that samples are not 
unanimously discriminated based on their geographic 
location.  In this case, only four out of nine samples s4, 
s5, s7 and s9 show the lowest difference values from 
same state samples. In addition, s4 and s5 from Vermont 
are closest to each other, while s7 and s9 from Colorado 
are as well. These indicate two strongly related isolates 
found in close geographic proximity.  All sequences from 
New York are closest to Colorado and Vermont 
sequences than to those collected within the same state.  
One sample from Colorado, s8 show a minimal difference 
from a New York sample.  Similarly, while two samples 
from Vermont point to each other, s6 is closest to a 
sample from Colorado.  The average difference between 
sequences from the same state is 0.21 while the average 
distance between different state sequences is almost 
identically valued at  0.22.  

 Tables 3 and 4 show the differentiability of distantly 
related epidemic samples, as well as the inter relatedness 
of same epidemic samples. It is to be expected that intra-
epidemic sequences, particularly within a well traveled 
country such the United States, be highly related.  
Similarly, it is not surprising that sequences from 
geographically and temporally distant epidemics show 
more differences.  The clear distinction between 
sequences from distant epidemics is slightly more 
surprising and encouraging.  In addition, the observation 
that some sequence pairs are highly similar, i.e. New 
South Wales s6 and s7, and Colorado s8 and s9, with 
difference measures of less than 0.001, suggest the ability 
of this method to detect very closely related isolates given 
an adequate data set.  
          
4.  CONCLUSION 
 

A comparison method for closely related sequences 
of the Influenza A virus (H3N2) subtype was proposed. 
Hexa-nucleotide word signatures using Minimal Markov 
Models were derived for inter- and intra-epidemic 
sequences. These signature sets contained representation 
values of 4096 words per sequence.   Out of these word 
sets, only values for words which exhibited some degree 
of absence were used in a proposed difference measure.  
This was in attempts to isolate and utilize significant 
lineage differences. This measure was successful in 
delineating samples from distinct epidemics while 
showing more complex relationships across samples from 
different U.S. states during the same epidemic year, 2007.  

Although difference measures have only been 
derived for a small number of samples, they are 
suggestive a highly detailed and quantifiable network 
among Influenza viral isolates. Furthermore, the described 
method does not rely on sequence alignment which is 
computationally expensive. Instead, the differences 
between closely related genomes are extracted in a 
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relatively inexpensive manner. This could prove useful 
for epidemiological studies, particularly with regards to 
understanding global transmission networks involving 
large numbers of sequences.   

The accuracy of the proposed method must be tested 
on larger datasets and compared with existing Influenza 
phylogenies.  In addition, cutoff values for difference 
measures will be examined in terms of what degree of 
phylogenetic relatedness they represent between genomes.  
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