
A Novel Multi-GPU Neural Simulator

C. M. Thibeault1,2,3,*, R. Hoang2, and F. C. Harris Jr.2,3

1Department of Electrical and Biomedical Engineering, University of Nevada, Reno. Reno, NV.
2Department of Computer Science and Engineering, University of Nevada, Reno. Reno, NV.

3Brain Computation Lab, University of Nevada, Reno. Reno, NV.

Abstract

Between the biophysical and behavioral studies
of the brain lies computational neuroscience. The goal
of which, among other things, is to help bridge the
gap in our knowledge and provide alternative or com-
plimentary theories to other neurological studies. As
more information is provided and more complex theo-
ries are developed, the size and computational cost of
neural models continues to increase. This is an obvious
impediment to the field and something that develop-
ers are constantly attempting to overcome. Presented
here is a unique simulator design aimed at leveraging
advances in hardware for the simulation of biologically
realistic neural models. This proof-of-concept design
offers an example of a high-performance environment
that utilizes multiple general purpose graphical pro-
cessing units in a novel configuration. The result is a
scalable system that offers the promise of both perfor-
mance and biophysical faithfulness.

1 Introduction
There are many different levels of neuroscience re-

search attempting to clarify the function of the brain.
From the single molecule studies of biophysics to the
behavioral research of cognitive neuroscience, the mys-
teries of the brain are enjoying elucidation from both
bottom-up and top-down approaches. Computational
Neuroscience can be described as a complimentary
field that spans the spectrum of neuroscience. There
are obvious physiological barriers to gathering detailed
information of most complex neuronal structures. Be-
yond the lack of connection information, is the lack of
non-invasive measurement equipment. Computational
neuroscience provides unique and unrivaled access to
both the deep structures of the brain as well as the
molecular information of single cells.

Presented here is a parallel modeling environment
written for large-scale neural simulations. The overar-
ching goal of this project is to prove that a generalized
simulation architecture could have both extensibility
and high-performance. This is achieved through the

∗Corresponding Author. Corey@cmthibeault.com

use of general-purpose graphical processing hardware
and a unique software design.

The remainder of this section continues with an
overview of neural simulation, the Izhikevich neuron,
the CUDA programming environment and a short re-
view of similar simulation environments. The paper
continues with the simulator design, an explanation
and results of the testing, and finally with the a dis-
cussion and future directions for this project.

1.1 Neural Simulation

Biologically realistic neural simulations generally
begin with a model of a single neuron. Of which there
are a large number available to computational neuro-
scientists, each with different levels of computational
complexity and biological realism. There is a constant
balance between execution time and biophysical plau-
sibility. A balance that more often than not leans in
favor of execution time. Even as neuron models are
simplified and approximated, the neural structures of
interest may require a computationally unreasonable
amount of them. In order to further drive the neu-
roscience research, engineers are creating more opti-
mized simulation environments that take advantage of
the latest hardware advances.

Izhikevich Neuron Model

Although simple, the Izhikevich neuron model [1–
3] is quite powerful. It is capable of replicating much
of the dynamic phenomena observed in neurons from
almost all regions of the brain. The mathematical for-
mulation of this model derives from the treatment of
a neuron as a dynamical system. The result is a very
simple membrane voltage expression, Equation 1, and
a simple recovery variable, Equation 2.

dV

dt
= 0.04V 2 + 5V + 140− u + I (1)

du

dt
= a(bV − u) (2)

if V ≥ 30, then

{
V ← c

u← u + d



The use of this model depends heavily on the hy-
pothesis of the research. In some instances more detail
is required to completely elucidate the neural struc-
ture. However, researchers often mistake detail for bi-
ological realism. Model parameters can be obtained
from physiological experiments and used directly in
many detailed models. Problems arise when the nat-
ural variability in real neuronal parameters is lost
through both tuning and measurement errors. The
result is a detailed model that doesn’t accurately repli-
cate the dynamics observed in the actual system.

1.2 GPGPU Programming
Recently, the utilization of graphics processing

units (GPUs) for scientific computing has increased
dramatically. Originally intended as a means of of-
floading graphics and visualization tasks away from
the central processing units (CPUs), the single in-
struction, multiple data architecture of GPUs lends
itself to many scientific computing problems. As one
of the leaders in graphics chip design, NVIDIA has
invested considerable resources in providing the scien-
tific community with both hardware and software so-
lutions aimed at leveraging their products for just such
applications. The Compute Unified Device Architec-
ture (CUDA) created by NVIDIA provides developers
with a relatively simple instruction set as well as com-
prehensive tools for working in a GPU environment.

1.3 Similar Simulators
There are a wide variety of neural simulators

available to researchers today and the addition of a an-
other may seem excessive. Although many share sim-
ilar approaches and features, most have unique qual-
ities that separate them. This diversity of simulators
has proven to be a benefit for the field [4]. Ideally,
the diversity provides a way to explore different levels
of model abstraction, which can help determine the
level of realism needed in future research, and helps
researchers validate model results by using different
tool sets. This is difficult achieve in practice, however,
as the simulators use different and often incompatible
data formats. For a comprehensive review of the more
popular simulators see [5].

Within the community there has been a surge in
neural simulator development for execution on GPUs.
All of these simulators have shown significant improve-
ment over their CPU only counterparts. However, un-
like the design presented here, these approaches are all
limited to single GPU simulations.

Tiesel et al. [6], created a simulator for spiking
integrate-and-fire neurons. A single planar network
was constructed without axonal delays or synaptic
learning. This simulator is unique in that it exploits
the GPU hardware through the OpenGL graphics API
rather than a specific computational library such as

the CUDA interface described above. Although the
simulator out-performed the author’s CPU implemen-
tation, it is difficult to make an accurate comparison
as the CPU version was written in the interpreted lan-
guage MATLAB (R).

Nageswaran et al. [7], developed a system for
modeling networks of Izhikevich neurons on a single
GPU utilizing the CUDA programming API. With
a C++ interface for network creation and execution
this simulator provides a more generalized option than
those above. Performance testing for the simulator
demonstrated a speed-up of 26 over a comparable CPU
version.

Taha et al. [8], constructed a simulator for the
modeling of both Hodgkin-Huxley and Izhikevich neu-
ron models. Based on the CUDA API the system was
specific to a two-layer input-output network used for
image recognition. with the Izhikevich model the au-
thors measured a speed-up or 5.6 over the CPU imple-
mentation and with the Hodgkin-Huxley neuron they
found a speed-up of 84.4.

2 Simulator Design

The proof-of-concept simulation code described
here is presented as an illustration of both the design’s
scalability and performance potential once integrated
to the existing environment. As an unoptimized pro-
totype, it is in many ways a worst-case scenario. Cur-
rently only GPUs within a single compute node are
supported. However, even in this immature state, the
design lends itself to the addition of message passing
between compute nodes. This will become more ap-
parent below.

The prototype supports a simple input file format
that at present is generated by a separate program. A
converter of the NeoCortical Simulator (NCS) [5] input
file format has been proposed and development of a
NeuroML [9] interpreter has begun. Once the input
file has been read in the program executes the steps
outlined in Figure 1.

The simulation setup begins with a redistribution
of the input model. The neurons are sorted based on
the number of synaptic connections. These are then
distributed to the respective GPUs in a round-robin
fashion. This provides a first-pass load balancing of
the model. Once the neurons have been distributed
each GPU forms a local indexing and representation
of its neurons. The new indexing scheme is shared
amongst GPU threads and is used to develop the local
neuron structure array and the Cell Firing Bit Vec-
tor, as shown in Figure 2. In this implementation the
Cell Firing Bit Vector is a representation of the entire
neural model at the current simulation time tick. In
future version this will be restricted only to Neurons



Figure 1: Simulator Execution Flow

that are of interest to a particular GPU thread.
The Local Synapse array is constructed in a sim-

ilar manner with the synapses being grouped by their
presynaptic neural connection. This layout provides
a contiguous region of memory that can be accessed
with minimal overhead within the GPU architecture.

Finally, the Action Potential Delay Table is con-
structed. This is a bit vector that provides a mech-
anism for simulating the propagation delay of action
potentials. As seen in Figure 2, the X axis represents
the local synapse’s axonal connection. The Y axis is a
circular buffer that is the size of the maximum propa-
gation delay.

Figure 2: System Setup

After setup the simulation begins by updating
(numerically integrating) the neurons. The appropri-
ate region of the Action Potential Delay Table is read
and the number of “1” bits are noted. In this con-
text, a “1” bit represents an action potential that has
arrived at that particular synapse. The neuron code
then samples the electrical current contributed by that

synapse. After the entire Delay Table for the current
time tick has been read, the voltage of the cells are
computed numerically using a forward Euler method.
If the cell reaches threshold and fires an action poten-
tial, its corresponding bit in the Current Cell Firings
Bit Vector is set high.

Figure 3: Update Neurons

Once the neurons have been updated and the
Cell Firings Bit Vector has been filled in, the GPU
threads will pass a copy of the vector to the other GPU
threads. This is illustrated in Figure 4. The layout of
this vector for each of the respective GPUs should be
noted. This was described in the setup above and is a
result of the redistribution of neurons.

Figure 4: Swapping of the Current Cell Firings Bit Vector

The synaptic updates begin by reading the re-
spective Current Cell Firings Bit Vector, shown in Fig-
ure 5. Negative synaptic learning can be calculated
and the Action Potential Delay Table can be updated
at this time.

Shown in Figure 6, the Action Potential Delay
Table is updated for the Neurons that have fired. The
appropriate bit, based on the delay specified by the
model, is set high.

Finally, the synapses sample their post synaptic



Figure 5: Update Pre-Synapses

Figure 6: Update Action Potential Table

neuron and use the result to calculate positive learning
if needed.

At this point A producer-consumer thread model
will grab the current cell firings vector and begin writ-
ing it to the output file. Concurrently, if needed, the
Neuron Update step starts the process all over again.

3 Testing

Some basic benchmarks were run to illustrate the
scalability and functionality of the design. The test
network was based on the polychronization models
from Izhikevich et al. [10] and Szat et al. [11]. This
was also used by Nageswaran et al. [7]. This net-
work utilizes a ratio of four excitatory neurons to 1
inhibitory neuron. The excitatory to excitatory con-
nections were made with spike timing dependent plas-
ticity enabled synapses [12]. It should be noted, that
one aspect of this design that negatively impacts the
performance was the treatment of learning in synapses.
Here, all of the synapses were polled whether they
fired or not. Similarly, learning was calculated for all
synapses regardless of connection. The model is illus-
trated in Figure 8.

Figure 7: Update Post Synapses

Figure 8: Neuron Network Model. M/N is the probability
ratio. M is the number of connections per Neuron. N is
the number of Neurons.

Trials were run for 50 seconds of simulation time
with the number of neurons and number of connec-
tions per neuron modified between trials. Rather than
allowing the synaptic weights to reach a steady-state,
the model timing was calculated from the beginning.
A random input current was injected to 1 of every
1000 neurons. For hardware, two identical Fermi based
GeForce 480 graphics cards were utilized.

4 Results

Figure 9: Speedup vs. Connections/Neuron

Presented in Figure 9 are the speedup results be-
tween one and two GPU simulations. For networks of
only 1000 neurons there is no advantage to moving the



Figure 10: Speedup vs. Number of Neurons (100 Con-
nections per Neuron)

simulation off of a single card. As the network size in-
creases there is a non-linear increase in speedup that
can be seen in Figure 10. As the Number of neurons
and connections increases the advantage of two cards
approaches the ideal speedup of two.

Also of note is the amount data transferred be-
tween GPUs. Table 1 illustrates the small amount of
information required at each time step. Based on the
small bandwidth requirements of the design and the
linear dependence on the number of neurons, the addi-
tion of hardware should provide a near linear increase
in speedup. This is of course dependent on the model
sizes as illustrated by these benchmarks.

Table 1: Total Data Transfer between GPUs at each time
step.

Neurons Data/Time step (Bytes)
1,000 125
10,000 1,250
100,000 12,500
1,000,000 125,000

Figure 11 illustrates the real-time capabilities of
the prototype simulator. Once again as the number of
connections per neuron is increased the advantage of
multiple GPUs is enhanced. From this a model with
100,000 Neurons and 50 connections per neuron can
run at about 1.2 times real time. We are confident
with some basic optimizations that these numbers will
be drastically improved.

5 Discussion and Future Directions
Although the performance of this simulator was

notable, the potential extensibility is even more impor-
tant. This was a first-pass implementation and as men-
tioned before, a worst-case scenario. There are many

areas that lend themselves to optimization. There are
also additional features that will be included with the
intention of making this a more appealing option to
researchers.

Clustered GPU Development

This initial offering runs on multiple GPUs within
a single node. The next step is to extend the simu-
lator to multiple nodes. As illustrated in this paper
the design lends itself to this kind of extension. Ad-
ditionally, support for heterogeneous clusters will be
built-in. This paradigm will provide a flexible plat-
form for many different research groups who may not
have access to homogeneous clusters of GPUs.

Standard Input Format

The ability to exchange and extend neural models
from different research groups using different simulator
packages is one of the main goals of the Neuroscience
community [4]. This requires the use of a standard de-
sign language. To further enhance the generalization
of this simulator a set of input parsers will be con-
structed. As mentioned above, a NeuroML parser is
under construction but additional formats will also be
explored as this project matures.

Data Output

An obvious consequence of larger network mod-
els is the amount of data produced during a particu-
lar experiment. This is further exacerbated as these
simulators are incorporated into real-time interactive
systems. To overcome the performance requirements,
a parallel communication mechanism is under develop-
ment. This will be incorporated into the UNR Brain
Computation Lab’s current research utilizing Virtual
Neurorobotics (VNR) [13, 14]. Additionally, this is
intended for use in real-time visualization of neural
simulations.

Acknowledgements

This work was supported in part by grants from
the U.S. Defense Advanced Research Projects Agency
(HR001109C001) and the U.S. Office of Naval Re-
search (N000140110014).

References

[1] E. Izhikevich, “Simple model of spiking neurons,”
Ieee Transactions On Neural Networks, vol. 14,
no. 6, pp. 1569–1572, 2003.

[2] E. M. Izhikevich, Dynamical Systems in Neuro-
science. Cambridge, MA: The MIT Press, 2007.

[3] E. Izhikevich, “Which model to use for cortical
spiking neurons?,” Ieee Transactions On Neural
Networks, vol. 15, no. 5, pp. 1063–1070, 2004.



(a)

(b)

(c)

Figure 11: Timing comparison for number of neurons vs.
number of connections per neuron. (a) 1,000 Neurons., (b)
10,000 Neurons., (c) 100,000 Neurons.

[4] M. Djurfeldt and A. Lansner, “Workshop report:
1st incf workshop on large-scale modeling of the
nervous system.,” Available from Nature Preced-
ings, 2007.

[5] R. Brette, M. Rudolph, T. Carnevale, M. Hines,
D. Beeman, J. Bower, M. Diesmann, A. Morrison,
P. Goodman, F. Harris, M. Zirpe, T. Natschlager,
D. Pecevski, B. Ermentrout, M. Djurfeldt,
A. Lansner, O. Rochel, T. Vieville, E. Muller,
A. Davison, S. El Boustani, and A. Destexhe,
“Simulation of networks of spiking neurons: a re-
view of tools and strategies,” Journal of compu-
tational neuroscience, vol. 23, no. 3, pp. 349–398,
2007.

[6] J.-P. Tiesel and A. S. Maida, “Using paral-
lel gpu architecture for simulation of planar i/f
networks,” Neural Networks, IEEE - INNS -
ENNS International Joint Conference on, vol. 0,
pp. 3118–3123, 2009.

[7] J. M. Nageswaran, N. Dutt, J. L. Krichmar,
A. Nicolau, and A. V. Veidenbaum, “A config-
urable simulation environment for the efficient
simulation of large-scale spiking neural networks
on graphics processors,” Neural Networks, vol. 22,
no. 5-6, pp. 791 – 800, 2009. Advances in Neu-
ral Networks Research: IJCNN2009, 2009 Inter-
national Joint Conference on Neural Networks.

[8] B. Han and T. M. Taha, “Acceleration of spik-
ing neural network based pattern recognition on
nvidia graphics processors,” Appl. Opt., vol. 49,
no. 10, pp. B83–B91, 2010.

[9] P. Gleeson, S. Crook, R. C. Cannon, M. L. Hines,
G. O. Billings, M. Farinella, T. M. Morse, A. P.
Davison, S. Ray, U. S. Bhalla, S. R. Barnes, Y. D.
Dimitrova, and R. A. Silver, “NeuroML: a lan-
guage for describing data driven models of neu-
rons and networks with a high degree of biolog-
ical detail.,” PLoS computational biology, vol. 6,
pp. e1000815+, June 2010.

[10] E. Izhikevich, “Polychronization: Computation
with spikes,” Neural Computation, vol. 18, no. 2,
pp. 245–282, 2006.

[11] B. Szatmáry and E. M. Izhikevich, “Spike-timing
theory of working memory,” PLoS Comput Biol,
vol. 6, p. e1000879, 08 2010.

[12] S. Song, K. D. Miller, and L. F. Abbott, “Com-
petitive hebbian learning through spike-timing-
dependent synaptic plasticity,” Nature Neuro-
science, no. 9, pp. 919–926, 2000.

[13] P. H. Goodman, S. Buntha, Q. Zou, and S.-M.
Dascalu, “Virtual neurorobotics (vnr) to acceler-
ate development of plausible neuromorphic brain
architectures,” Frontiers in Neurorobotics, 2007.

[14] P. H. Goodman, Q. Zou, and S.-M. Dascalu,
“Framework and implications of virtual neuro-
robotics,” Frontiers in Neuroscience, p. 5, 2008.


