
Massively Parallel Localization of Pulsed Signal
Transitions Using a GPU

Vinitha Khambadkar∗ Lee Barford†∗ Frederick C. Harris, Jr.∗

∗Department of Computer Science and Engineering
University of Nevada/0171

Reno, NV 89577-0171 USA

† Measurement Research Laboratory
Agilent Technologies

561 Keystone Ave. Unit 434
Reno, NV, 89503 USA

Abstract—Computer clock speeds which had been increasing
tremendously over years is now slowing down and has reached
its limit of saturation. In order to overcome this saturation of
the clock speed, aggressively pursuing optimizations techniques
are being developed to get more work done in each clock cycle
in favor of parallel computing and concurrent programming.
The GPUs massive parallel computing is now evolving as
significantly faster processor than any other multi-core
processors.The measurement analysis algorithm also has to
be modified in order to make use of this parallelism. This
paper presents one such measurement analysis, transition
localization, which basically computes the high to low and
vice versa transitions of a stream of signals in parallel.
Measuring signals have dependencies on their previous signals
when computed serially. However, now there is a parallel
solution developed on the GPU which not only makes this
algorithm efficient but also faster than any multi-core processors.

Keywords: Parallel programming, Parallel algorithms, Signal
analysis, Pulse measurements, Timing jitter

I. INTRODUCTION

Transition localization [1], the identification of the times at
which a pulsed waveform changes levels, is an early step in
a number of measurements of such waveforms, for example,
total jitter, jitter histograms, and eye diagrams. The numbers of
samples and pulses to be processed per waveform is increasing
due to requirements for higher measurement precision and
the need to find and measure malformed pulses that are ever
rarer due to decreased bit error rates. Thus, it is of interest to
increase the throughput (samples processed per unit time) of
transition localization.

Here, we consider transition localization in a digital signal
with two logic levels. The output of the analysis is the list of
transition times, one for each edge in the digital signal, where
the transition from a low state to a high state or from a high
state to a low state occurred.

Figures 1 and 2 illustrate transitions. The voltage l is the
upper state boundary of the low state, that is, the highest
voltage where the signal is considered in the low state.
Likewise, voltage h is the lower state boundary of the high

state. When the signal is between l and h it is said to be in the
intermediate state. The voltage m is usually midway between
l and h. The voltages l, m, and h are determined before
beginning transition localization. Usually, they are determined
according to a process described in IEEE Standard 181 [1].

A crossing of m occurs whenever an adjacent pair of
samples xi and xi+1 are found that surround the signal’s
crossing of m, that is, xi < m ≤ xi+1 or xi+1 < m ≤ xi.
However, not all crossings of m constitute transitions. A
transition occurs when the signal, having been less than l,
rises above h. After rising above l but before attaining h, the
signal crosses m an odd number of times. The time of the first
of these crossings of m is the location of the transition.

This definition of transition location can be implemented
easily on a single processor as follows. The meaured samples
are processed in order. During the processing, the last logic
level attained and the first pair of samples bracketing m
after the signal enters the region are retained. When the state
changes, that is, when the signal goes over h having been
low or goes under l having been high, the transition time
obtained from the most recent bracketing pair of samples is
output. However, on multicore processors the dependency of
the correct action at each sample on the previous history of
the signal constitutes an obstacle to parallel implementation
of transition localization. Nevertheless, there is a parallel
algorithm suitable for multicore processors [2], [3].

The problem considered in this paper is transition local-
ization using a rather different kind of parallel processor: the
graphics processing unit (GPU). GPUs are massively parallel
processors that have evolved to give much more faster per-
formance on many computations when compared to multicore
processors [4]. GPUs achieve this improved performance at
the sacrifice of, among other things, an increased dependency
on linear memory access patterns compared to multicore
processors [4]. Thus, the transition localization algorithm
presented in [2] and [3] is not well-suited to GPUs. Below we
present a significant modification to the methods of [2] and [3]
designed to produce a transition localization method with high



throughput on a GPU. The correctness and performance of the
proposed method is then investigated using actual measured
digital waveforms.

II. PROPOSED APPROACH

We propose to use parallel scans (sometimes also called
prefix scans or prefix sums) and parallel segmented scans [5]
as primitive parallel operations from which to build our algo-
rithm. A parallel scan takes as its inputs a binary associative
operator ⊕ and an array X of n elements. Then scan(X,⊕) =
[X0, X0⊕X1, X0⊕X1⊕X2, . . . , X0⊕. . .⊕Xn]. For example,
suppose X = [1, 2,−5, 4]. Then scan(X,+) = [1, 3,−2, 2].
Despite each output depending on every prior input, parallel
scan can efficiently be parallelized. A good implementation of
parallel scan makes efficient use of the available parallel hard-
ware, including presenting balanced loads to the hardware [5],
[6].

Segmented scan [5] is similar to parallel scan except that
it additionally performs logically separate parallel scans on
arbitrary contiguous segments of the input array. Segmented
scans provide as much parallelism as that of parallel scans,
operating on data-dependent sections. Segmented scans auto-
matically load balance, so that time is not wasted waiting for
processing of long segments to complete. As a result, they
are extremely helpful in mapping many irregular computa-
tions to parallel hardware. Segmented sequences are typically
represented by a combination of (1) a sequence of values and
(2) a segment descriptor that determines how the sequence is
divided into segments. Often the segment descriptor is just
a 0-1 sequence of the same length of as the input, where
a 1 indicates the start of a new segment. The output of
a segmented scan is the same as if the input array were
broken into separate arrays at the segment boundaries, parallel
scan were applied to each of these arrays, and then the
outputs concatenated into a single array. For example, consider
the input array X = [1, 2,−5, 4, 7, 3, 10]. A second array
of the same length, S is used as the segment descriptor,
where S[i] is one when a segment begins at X[i] and zero
otherwise. In this example, S = [0, 0, 0, 1, 0, 1, 0]. That is,
the segments of X are [1, 2 − 5], [4, 7] and [3, 10]. Then
segmented scan(X,S,+) = [1, 3,−2, 4, 11, 3, 13].

Those interested in how scan and segmented scan are
efficiently implemented on parallel hardware are referred to [5]
and [6].

The basic strategy of our approach is as follows. First, we
use a parallel scan to determine segments of the waveform
ending in fully established transitions, that is, that end where
the waveform establishes itself as high having been low or
vice versa. Then, a segmented scan is used to locate the first
crossing of m within that segment. Finally, the transition time
associated with each fully established transition is extracted
from the result of the segmented scan, producing the output
vector of transition locations. A fuller explanation of these
steps follows.

Step 1: Determine logic level associated with each input
sample For each sample x[i], let level[i] be 1 if x[i] ≤ l (low

TABLE I
DEFINITION OF ⊕1

⊕1 0 1 2
0 0 1 2
1 1 1 2
2 2 1 2

logic level), 2 if h ≤ x[i] (high logic level), or 0 otherwise
(intermediate).

Step 2: Calculate crossing times If the waveform crosses
m between samples i and i + 1, let time[i] be the crossing
time obtained by linear interpolation. Otherwise, let time[i]
be a floating point infinity.

Step 3: For all intermediate level samples, determine
whether previous state was low or high Let the binary opera-
tor⊕1 be given as in Table 1. Perform scan(level,⊕1) and put
the result into the vector levelScan. After the scan, according
to the above definition of parallel scan, levelScan[0] =
level[0] and levelScan[i] = levelScan[i − 1] ⊕1 level[i]
for i > 0. The intuition behind the scan using ⊕1 is that
where level[i] is intermediate, levelScan[i] is low if the most
recent non-intermediate level was low and levelScan[i] is
high if the most recent non-intermediate level was high. If
an initial segment of level, say level[0], . . . , level[j], are all
intermediate, then levelScan[0], . . . , levelScan[j] will also be
intermediate. All other elements of levelScan will be low or
high. In this sense, the scan propagates a memory of the most
recent non-intermediate level.

Step 4: Determine segments In the the present algorithm,
a segment is a consecutive subset of the samples that ends
with the sample where a new logic level is attained. A new
logic level is attained at index i > 0 if levelScan[i − 1] is
not intermediate and levelScan[i− 1] 6= level[i]. In this step,
a binary vector seg is created where seg[i] is 1 at indices i
where a new logic level is attained and 0 otherwise.

Step 5: Find first crossing within each seg-
ment Perform a segmented scan segF irstCrossing =
segmented scan(time, seg,min) where min is the binary
operator that returns the minimum of its two arguments.

Step 6: Extract transition locations Wherever seg[i] is
1, the corresponding element segF irstCrossing[i] contains
the time of the first crossing of m in the segment that ends
at sample i. So, gathering the values segF irstCrossing[i]
where seg[i] = 1 produces a vector containing the transition
times. This vector is the desired result.

III. RESULTS

The proposed parallel algorithm for transition localization
was implemented on NVIDIA Tesla C2050, GTX 275 and
GTX 480 GPU cards, each used as a co-processor to an
Intel x86 processor. The computers ran Red Hat Linux with
NVIDIA driver version 260.19.21. CUDA Toolkit version 3.1,
Thrust [7] version 1.3.0 (a library that provided the parallel
scan and segmented scans), and GCC version 4.1.2.



First, to check the correctness of the proposed algorithm, a
small synthetic waveform was used to check if the transitions
obtained were correct. The synthetic data were chosen so that
a number of cases, including unusual ones, were exercised.
The synthetic signal and the resulting transition times is
shown in Figure 1. The sample indices between 10-15 and
35-40 are noteworthy because they have oscillations around
m, i.e., regions where the signal crosses m multiple times
before changing to high or low state. The proposed algorithm
generates correct results for these cases.

Second, the proposed method was tested on an actual
measured waveform, a pseudo-random binary sequence, with
7,000,000 samples. This is the same actual measured wave-
form used in [2] and [3], which also contain a description
of the measurement system used to generate and capture the
waveform. Figure 2 shows the results of applying the proposed
algorithm to the first 5000 samples of that waveform.

A serial version of transition localization was written into
the same program as the GPU implementation. The outputs of
the serial implementation running on the CPU and parallel
implementation on the GPU were compared and verified
to give identical results. That is, there was no additional
measurement error from using the proposed algorithm instead
of the serial algorithm.

The overall execution times of the serial implementation
and the parallel implementation on each GPU cards were
measured. These are shown in Table II and Table III. The
parallel implementation test was run on various GPU cards us-
ing different data sizes. The waveforms shorter than 7,000,000
samples are the initial portions of the actual measured wave-
form of Figure 2. The execution times were measured on these
different data sizes.

Figure 3 shows the throughput using the various GPUs
tested. The results show that GTX 480 performs much faster
than CPU. It is also interesting when GTX 480’s performance

is much better when compared with that of the Tesla C2050
and the GTX 275. This is likely because the GTX 480 has
a clock rate of 700 MHz and has 480 SMs, both of which
figures are much higher than those for the other GPUs.

The throughput results of obtained on the GPUs can be
compared with those of the throughput graphs from [3],
where the throughput of transition localization on an 18 core
processor are given. The measured signals used in that study
are the same as those used presently, so the results are directly
comparable. The GPU performs much faster compared to a
serial microprocessor code as well as a multicore processor
with 18 cores. The GTX 275 GPU, which performs slowest
of the three GPUs studied, gives at least 2 times the throughput
of the 18 core processor. Moreover, the algorithm implemented
in GTX 480 provided approximately 3.8 times the throughput
of the 18 core processor and was approximately 11 times
faster than the serial implementation. The best results were
obtained with GTX 480 processor with approximately 5 times
the throughput of the 18 core processor and approximately 15
times the throughput of the serial implementation.

IV. CONCLUSION

The novel contribution of this paper is to show how
transition localization on large numbers of samples can be
performed with high throughput using a GPU. Making use of
efficient scan operations provided by the Thrust [7] library led
to a short (under 200 lines) and easily-written code.

The proposed parallel GPU method was tested on a lengthy,
actual measured waveform and found to produce identical
results as a serial implementation. This is strong evidence
that the proposed method adds no additional measurement
error compared to prior approaches. Nevertheless, this new
transition localization method running on several different
GPUs had many times the throughput than parallel transition
localization running on a multicore CPU with more cores than
are typically available today on most desktop PCs.

TABLE II
EXECUTION TIMES IN MILLISECONDS FOR THE DIFFERENT SIGNAL LENGTHS AS A RESULT OF TEST RUNS ON CPU AND TESLA C2050 CARD

Signal length CPU (serial) Tesla C2050
875,000 11.70 ms 3.88 ms

1,750,000 23.79 ms 6.82 ms
3,500,000 48.49 ms 12.99 ms
7,000,000 108.55 ms 25.27 ms

TABLE III
EXECUTION TIMES IN MILLISECONDS FOR THE DIFFERENT SIGNAL LENGTHS AS A RESULT OF TEST RUNS ON CPU AND GTX CARDS

Signal length CPU (serial) GTX 275 GTX 480
875,000 11.70 ms 6.63 ms 2.91 ms

1,750,000 23.79 ms 10.69 ms 6.30 ms
3,500,000 48.49 ms 18.98 ms 8.53 ms
7,000,000 108.55 ms 34.88 ms 15.99 ms



Fig. 1. Proposed parallel transition localization operating on a synthetic data set

Fig. 2. Proposed parallel transition localization algorithm operating on an actual measured signal. This figure shows the first 5000 samples of the 7,000,000
sample signal used in the performance study shown in Figure 3.

V. FUTURE WORK

For a more effective analysis of parallel signal transition, we
plan on automating the selection of the l, h, and m voltages.
The novelty of this work will be that it is completely done on
the GPU. This can be calculated with the use of histograms
of the input voltage data. Histograms can be implemented to
automatically calculate cut-off voltages for dynamic voltage
signals. In this proposed work, histograms can be effectively
used to calculate the voltage l, the upper state boundary of the
low state, voltage h, the lower state boundary of the high state
and the voltage m which lies midway between l and h [1].
This will allow for a fully automated system running on the

GPU which will be useful under many situations.

REFERENCES

[1] “IEEE standard 181-2003: Transitions, pulses, and related waveforms,”
IEEE, Piscataway, NJ, 2003.

[2] L. Barford, “Parallel transition localization,” in Proc. IEEE Int’l. Mea-
surement and Instrumentation Technology Conf., May 2010, pp. 176–180.

[3] ——, “Speeding localization of pulsed signal transitions using multicore
processors,” IEEE Trans. Instrumentation and Measurement, vol. 60,
no. 5, pp. 1588–1593, May 2011.

[4] D. B. Kirk, W. W. Hwu, Programming Massively Parallel Processors: A
Hands-on Approach, Elsevier, 2010.

[5] G. Blelloch, “Scans as primitive parallel operations,” IEEE Transactions
on Computers, vol. 38, pp. 1526–1538, 1987.



0.0E+0

5.0E+7

1.0E+8

1.5E+8

2.0E+8

2.5E+8

3.0E+8

3.5E+8

4.0E+8

4.5E+8

5.0E+8

0.0E+0 2.0E+6 4.0E+6 6.0E+6 8.0E+6

Th
ro
u
gh

p
u
t(
Sa
m
p
le
s/
se
c)

Number of samples

Tesla C2050

GTX 275

GTX 480

Fig. 3. Throughput of the proposed parallel transition locater for various waveform lengths and various GPUs

[6] S. Sengupta, M. Harris, M. Garland, and J. D. Owens, “Efficient parallel
scan algorithms for many-core GPUs,” in Scientific Computing with
Multicore and Accelerators, in J. Kurzak, D. A. Bader, and J. Dongarra,
eds. Taylor & Francis, Jan. 2011, ch. 19, pp. 413–442.

[7] J. Hoberock and N. Bell, “Thrust: A Productivity-Oriented Library for
CUDA”, in W. W. Hwu, ed., GPU Computing Gems: Jade Edition,
Morgan Kauffman, 2011, pp. 359–373.


