An Introduction to

Proactive Server Preservation in an HPC Environment

Chad Feller’? Karen Schlauch? Frederick C Harris, Jr.!

L Department of Computer Science and Engineering
2Center for Bioinformatics
University of Nevada, Reno
Reno, NV.
feller@unr.edu

Abstract

Monitoring has long been the challenge of a server
administrator. Monitoring disk health, system load,
network congestion, and environmental conditions like
temperature are all things that can be tied into moni-
toring systems. Monitoring systems vary in scope and
capabilities, and can fire off alerts for just about any-
thing they are configured for. The sysadmin then has
the responsibility of weighing the alert and deciding if
and when to act. In a High Performance Computing
(HPC) environment, some of these failures can have a
ripple effect, affecting a larger area than the physical
problem. Furthermore, some temperature and load
swings can be more drastic in an HPC environment
than they would be otherwise. Because of this a timely,
measured, response is critical. When a timely response
is not possible, conditions can escalate rapidly in an
HPC environment, leading to component failure. In
this situation, an intelligent, automatic, measured re-
sponse, is critical. Here we present a novel approach
to server monitoring, coupled with a response system
designed to deliver an intelligent response with High
Performance Computing in mind.

Keywords: System Monitoring, Environmental
Monitoring, IPMI.

1 Introduction

A common, if not typical, approach to monitoring sys-
tems is to have a central host that monitors servers
over the network. A most basic implementation would
have a central monitoring host that pings the moni-
tored server to see if it responds, and sends requests
to specified ports to ensure that services are still run-
ning on those ports. This basic approach can answer
the questions of whether is server is up or down, and
whether or not specified services are available over

the network. A more intelligent approach involves in-
stalling a daemon, or system service, on the the mon-
itored server, allowing the monitoring system to not
only observe external behavior as in the basic model,
but also to see what is going on inside of the monitored
server. The benefit here is obvious, CPU load and
memory issues can be observed among other things
such as process characteristics. The downside is that
these daemons are typically OS specific, and them-
selves can fail for various reasons. They may be slow
to respond if the monitored server is under heavy load,
or can be terminated by the OS under memory pres-
sure. Ultimately, if the OS has a kernel panic due to a
hardware or software failure, the daemon is ineffective.

This paper is laid out with the remainder of this
section presenting a few select examples of other mon-
itoring systems. Section 2 goes on to discuss our novel
design from an high level overview, along with an anal-
ysis of the components leveraged by our design. Sec-
tion 3 takes an in depth look at the implementation,
first from a high level, and then on a component by
component basis. The section finishes with a walk-
through of the algorithm. Section 4 concludes with
the current state of the project, and Section 5 discusses
future work.

1.1 System and Network Monitors

Currently there are several open source system mon-
itoring and network monitoring software solutions
freely available over the internet. There are yet more
available if commercial offerings are also considered.
However, many existing monitoring solutions are ei-
ther overly broad or narrowly focused. Here we are
going to take a look at some of the existing solutions:

Nagios

According to their website, “Nagios is a powerful mon-
itoring system that enables organizations to identify
and resolve IT infrastructure problems before they af-
fect critical business processes” [1, 2]. In practice,
Nagios is a monitoring tool capable of monitoring a
range of network and system services, as well as host
resources via plugins and daemons that would reside
on the remote host. It also supports the ability to
allow the system administrator to provide a custom
response. The system administrator would have to
write custom event handlers, which could be as simple
as “text this group of people” or as elaborate as “write
this message to the logs, and reboot the server”. Na-
gios uses a flat file for its database backend by default.

Monit

Monit is a monitoring tool, written in C, primarily
designed to monitor system (daemon) processes, and
take predefined actions should certain conditions hap-
pen. In fact, Monit’s site says this is what sets them
apart: “In difference to many monitoring systems,
Monit can act if an error situation should occur, e.g.;
if sendmail is not running, Monit can start sendmail
again automatically or if apache is using too many re-
sources (e.g. if a DoS attack is in progress) Monit can
stop or restart apache and send you an alert message”
[3]. Additionally, Monit can be used to check system
resources, much like other tools.

Ganglia

Ganglia [4, 5] is a distributed system monitoring tool,
designed to log and graph, both historically and in real
time, CPU, memory, and network loads. It is used pri-
marily in environments such as HPC clusters. Ganglia
was written modularly, in several languages including
C, Perl, Python, and PHP. Unlike Nagios and Monit,
Ganglia isn’t designed to do anything beyond report-
ing collected data. That is, it won’t alert the system
administrator if certain events occur.

Cacti

Cacti [6] is a monitoring tool, written in PHP, designed
to monitor, log and graph, both historically and real
time network traffic. It is designed for, and commonly
used to, monitor network switches and routers. How-
ever, Cacti can be configured to monitor just about
any data source that can be stored in an RRD (Round
Robin Database). Like Ganglia, it is only designed to
report data that it collects, and doesn’t support the
ability to send alerts or custom responses.

Munin

Munin [7] is a monitoring tool, written in Perl, de-
signed to monitor system and network performance.
It aims to be as “plug and play” as possible (to just
work) out of the box. Additionally, Munin, like Cacti,
presents both historical and current data, attempting
to make it as easy as possible to see “what is dif-
ferent today” when performance issues arise. While
Munin doesn’t have the ability to send alerts like Na-
gios, Munin can integrate into Nagios, so that Nagios’
alert and response system can be leveraged.

1.2 Environmental Monitors

Environmental monitors are commonly employed in
server rooms to monitor humidity and temperature,
two important elements of server room climate con-
trol. While temperature is an obvious concern, hu-
midity can also be an issue. If there is too much hu-
midity in the air, condensation can occur. Too little
humidity can enable the buildup of static electricity
in the air. Traditional environmental monitors are
standalone units, which may simply sound an audi-
ble alarm, or more commonly nowadays, can send out
alert emails if they are network enabled. Temperature
only monitors are also available, many of which are
available as units meant to hang off of a server, as a
USB dongle for instance, or as a network aware stan-
dalone unit capable of feeding temperature points into
other system monitoring software.

2 Owur Approach

The motivation for this project comes from the fact
that HPC environments are acutely susceptible to en-
vironmental failures, particularly cooling system fail-
ures. A cooling system failure in a server room with
HPC equipment can spiral out of control much more
quickly than other server rooms hosting more conven-
tional computing equipment such as simple mail and
web servers. (Although in this era of increased den-
sity due to virtualization, the difference in temperature
output of HPC vs non-HPC equipment may begin to
diminish.)

If an environmental failure happens, particularly
after working hours, and the system administrator’s
pager or cell phone goes off because the environmental
monitor sends out an alert, is the system administrator
going to be able to get to a remote console in time?
Will there be enough time to login remotely, evaluate
the situation, determine the best course of action, and
then execute that action before the temperature crests
into the critical zone causing hardware failure?

Witnessing these types of events is what moti-
vated this project. The fact that a 1U server can be

ordered with more than 12 CPU cores makes the po-
tential for heat creation greater than it was 4 years ago,
when that same 1U server was only available with 4
CPU cores. Naturally the HVAC system is going to be
upgraded to handle the additional capacity, but when
the HVAC system fails, the temperature is going to
rise quite a bit faster in that same server room than it
did a few years ago, giving that same system adminis-
trator a lot less time to effectively respond.

Additionally, in an HPC environment, there is the
consideration of jobs. Many HPC jobs run for days,
weeks, or even months. Telling a researcher that they
lost a month of compute time isn’t easy, or pleasant. It
would be challenging for the system administrator to
ascertain which jobs to try to save - if possible - versus
which to shut down, in a server room with rapidly esca-
lating temperatures. Most likely the response is some-
thing along the lines of, “shutdown everything now”.

But what if we can do this all more intelligently?
This facilitated the thought process of creating a sys-
tem that can automatically and intelligently respond
to an environmental failure.

In thinking of how to implement this system, we
took into account the fact that we wanted to be able
to monitor not only global cooling failures, but also
localized cooling failures. Those caused by perhaps a
bad fan, or a piece of debris - from a server getting
unboxed, for instance - that got sucked into the front
of a server rack and is now obstructing airflow into one
or more servers. To best detect localized failures, tem-
perature sensors would need to be deployed on every
server.

Before discussing this idea further, an overview of
some key components of the environment is in order:

2.1 IPMI

Intelligent Platform Management Interface [8], com-
monly referred to as IPMI, or even as a BMC (Base-
board Management Controller), is a subsystem provid-
ing the system administrator with a method to com-
municate and manage another device. It is specifi-
cally well suited for LOM, or “Lights Out Manage-
ment”, tasks. An IPMI system is available for most
mid to high end servers today, from all major ven-
dors: Sun/Oracle, Dell, HP, and IBM. As well as on
some high end, specialized workstations, such as those
provided by Fujitsu. They are known by such names
as ILOM (Sun/Oracle), DRAC (Dell), iLO (HP), and
RSA (IBM).

An TPMI system runs independently of the oper-
ating system and other hardware on the system, al-
lowing the system administrator to interface with the
server or workstation, even when it is off, or has locked
up due to a kernel panic.

At a most basic level the IPMI system will al-
low a system administrator to query things like chassis
power status, view event logs, query hardware config-
uration such as sensor information or FRU data, and
turn the server or workstation on an off.

The IPMI system is accessible several different
ways. In this work, we will be accessing it over the
network. This is typically achieved one of two ways.
Either by sharing an interface with the system NIC,
via what is known as side-band management, or a ded-
icated NIC giving it true “out-of-band” management.

Whether available via side-band, or out-of-band
methods, the IPMI system is typically communicated
with over the network using tools that speak the IPMI
messaging protocol. Many IPMI systems also run an
SSH server by default, allowing communication over
that protocol.

The IPMI product in use for the environment in
this paper is Sun’s ILOM.

2.2 BMC

Some vendors will refer to their IPMI system as a
BMC. Technically the BMC, or Baseboard Manage-
ment Controller, is the core of the IPMI subsystem, it
is the microcontroller that ties the whole IPMI system
together. See Figure 1.

IPMI Block Diagram

TPMI & OEM Southbridge,
Southbridge, Signals Super 10,
Super 10 _LPC Bus ¢ $ Switches, LEDs
etc.
SMBus BMC
e —— 12C Bus IPMB, HW Monitor,
SideBand Power Supply,

DIMM, Chipset,
PCI Slots etc.
Serial Port

Switching Logic

Q_Pt

Super 10‘

Serial Port
Connector

Figure 1: IPMI Block Diagram (courtesy of [9]),
illustrating the Baseboard Management Controller as
the center of an IPMI system.

2.3 Schedulers

Job schedulers are a key component of HPC environ-
ments. They ensure fair and equal job scheduling -
that no single job starves, and that no single job con-
sumes all system resources.

Two prominent schedulers are SGE (Sun Grid En-
gine) and PBS (Portable Batch System).

A batch job scheduler can be configured several
different ways, depending on the preferences of the sys-
tem administrator, or the requirements handed to the
system administrator by researchers or management.
In a most basic configuration, each user can submit
jobs into an HPC environment, and the job scheduler
queues the jobs up, running them in order as resources
become available.

In more advanced configurations, custom job
queues can be created, with some having more priority
over others, allowing low priority jobs to be temporar-
ily suspended while high priority jobs run. Custom
job queues can also be used to partition up where jobs
run. Custom job queues can be used such that certain
researchers or research groups are only allowed to run
on certain nodes.

Servers in an HPC environment, are commonly
referred to as “compute nodes”, or just “nodes”. In this
paper, the term “node” and “server” can be thought of
interchangeably.

The job scheduler in use for the environment in
this paper is Sun Grid Engine version 6.1u4.

2.4 Putting it together

Our idea revolves around the idea of tying the IPMI
systems into a larger system, giving us their included
temperature monitoring on a localized level, but with
a global perspective. Local temperature events can be
monitored, and responded to, while at the same time
the larger system would be smart enough to realize
if this is happening on a larger scale, allowing it to
act at a global level, before waiting for each individual
system to trigger a temperature event.

The IMPI system gives us further control over
the system, allowing us to shut down the system by
turning off the power, if need be. The Scheduler gives
us the ability to suspend and restart jobs.

If we had a global temperature event, such as los-
ing one of the A/C compressors, and the temperature
in the server room began to rise, pushing the ambi-
ent temperature above where it should be, the larger
system could respond by first telling the scheduler to
suspend (pause) all jobs running on the HPC cluster,
and to shut down all compute nodes not running any
jobs. If this caused, say, half of the compute nodes to
turn off, and caused the other compute nodes to drop
their temperature output by some significant percent-
age, that would very possibly be manageable by the
remaining A/C capacity. If the temperature contin-
ued to rise, additional steps could be taken to curb
temperature output while still trying to find a balance
between both saving long running compute jobs and
hardware.

After the HVAC techs repair the A /C compressor,
the system administrator can resume the paused jobs

and power the compute nodes in question back on.

3 Implementation

The implementation of this project occurred in stages.
First we had to find the best way to talk to the
ILOMs. OpenIPMI has Python bindings, so early test-
ing leveraged those bindings. We quickly discovered
that OpenIPMI didn’t work quite the way we wanted,
not to mention that there were other issues with the
Python bindings for OpenIPMI, because they were cre-
ated with SWIG, so other options were explored.

We knew that we could get exactly the informa-
tion we wanted from IPMItool, a standalone program.
So why not wrap calls to IPMItool in another lan-
guage? We knew that there would eventually be a
web based frontend to this program, and Rails was a
desirable choice on a number of levels, so the decision
was made to use Ruby all the way through the devel-
opment process.

From a high level, the project consists of two com-
ponents:

e The first component is a backend daemon that
runs in the background, polling the temperature
sensors across all of the servers every minute, and
writing the values to two types of databases. An
SQL database keeps all of the Node (server and
ILOM) data, as well as Location data (which
server rack, and where in that rack). RRD
databases are exceptionally well suited for time
series data, which in this case, is the temperature
values. The backend daemon is also responsible
for taking specified actions when read tempera-
ture values exceed defined thresholds.

e The second component is a Rails based frontend.
The frontend has no knowledge of the backend
program, nor does the backend have knowledge of
the frontend. The frontend program is merely a
window into the databases.

3.1 Ilom class

The ILOM Ruby class object grabs a bunch of
information upon being initialized, as illustrated by
Figure 2.

ze(hostname =)
= hostname
= check_authcap_needed
= check_endianseq_needed
= find_temperature_device

read_cur_temp
= read_cur_temp_status
- = read_temp_thresholds
= get_temp

Figure 2: An ILOM class object.

A quick walkthrough of the class instance vari-
ables are as follows:

@hostname is the hostname of the IPMI device.

@ipmi_ authcap, and @ipmi_endianseq are
workaround flags for FreeIPMI to communicate with
certain types of IPMI devices. Setting them in the
object class eliminates the need to recheck the need
for them every time. If the instance variable is set, we
just send that workaround along with the FreeIPMI
command.

@mbt_amb, and @mbt_ amb_id are the name
of, and numeric id of, the ambient temperature sen-
sor. We store these values so that in the future,
we can ask things like “what is the temperature of
@mbt_amb_id".

@cur_temp is the current temperature, as last
read from the ambient temperature sensor.

@temp _ status is the temperature status returned
by the IPMI device. When things are good it will be
an “OK” string.

@thresh_unc, @thresh _wucr, and @thresh unr
are the “Upper Non Critical”, “Upper Critical”, and
“Upper Non Recoverable” thresholds, respectively.

An interesting part here is that some platforms
don’t define all three of these values. Some omit the
“Upper Non Recoverable” value. Other IPMI devices
don’t define any of them.

@uwatermark__high, and @Qwatermark_low are his-
toric - over the life of the class object - high and
low temperature values. During class initialization,
it won’t be any different than what the initial temper-
ature reading is.

The ILOM class also includes other functionality
such as querying the chassis power state and being able
to turn the server on an off. For this other function-
ality we didn’t feel there was a need to have a class
instance variables defined.

3.2 IlomRRD class

This class sits on top of the official RRDtool Ruby
bindings [10]. This class serves two main purposes.
First, the class creates and updates RRD
databases every minute when new temperature val-
ues are polled. These values are written to an RRD

database for that particular server. Each server has
its own RRD database.

Secondly, the class knows how to create graphs
from the RRD databases. The graphs are updated
every five minutes. The graphs include hostname,
current ambient temperature, as well as temperature
thresholds. Time values correspond with the X axis,
while temperature values correspond to the Y axis.

Values required for RRDtool create and update
the RRD databases, as well as graph the temperature
values are read from a YAML [11] configuration file.
Values such as RRD database size has to be declared
upon creation. RRD graph creation has many options
such as line type and color, and temperature view-
ing window (e.g., 1 hour of temperature data). If we
wanted to change any of these parameters, it would be
as simple as changing the YAML configuration file.

3.3 IlomSGE class

This class sits on top of the DRMAA (Distributed Re-
source Management Application API) Ruby bindings.
We wanted to leverage DRMAA as much as possible
for this class, as DRMAA provides a standardized way
to communicate with any scheduler that supports DR-
MAA, such as SGE.

An issue that prevented us from using DRMAA
exclusively is that there appears to be no way to query
all of the running jobs using DRMAA. After search-
ing through a number of DRMAA documentation and
mailing lists, this seemed to be confirmed.

To get around this, we had to wrap the output
of the command line SGE program g¢stat, to get a list
of running jobs. We ask ¢stat to return the job list in
XML format. We leverage the nokogiri Ruby gem to
parse the XML output to build an array containing all
of the jobs.

Our remaining class methods leverage the DR-
MAA interface, allowing us to suspend, resume, and
terminate jobs.

3.4 Database backend

The backend consists of an RRD databases for stor-
ing time series data (temperature values). As well
as SQL databases for recording server characteristics
server location. The Ruby ActiveRecord gem is used
to leverage the SQL database. There are two main
Ruby models that we are interacting with. A Node
model, and a Location model.

The Node model largely contains the same infor-
mation as the Ilom class, discussed in Section 3.1, but
here is stored persistently. It also contains additional
values for dealing with thermal events.

The Location model is used exclusively by the
web frontend. It contains a rack and rank value, which

are server room coordinates for which rack, and what
slot in the server rack. A foreign key ID is what allows
a Location to find its corresponding Node.

3.5 Rails frontend
The system frontend is illustrated by Figure 3.

Rack0 Rack1 Rack2 Rack3 Rack4

n{\,‘ b

Figure 3: The default frontend view, RRDtool
generated temperature graphs of all of the nodes.
The layout of the graphs on the webpage match the
physical layout of servers in the server room. Clicking
on any of the graphs will bring up a larger graph,
along with other characteristics of the server, pulled
from the SQL database. Some of these values, such
as the temperature thresholds, can be overridden and
written back to the SQL database from here.

The frontend is primarily designed to give the sys-
tem administrator a visual representation of what is
going on, as well as giving the system administrator
the ability to override some of the database values.
For instance, the ILOM may report the an upper tem-
perature threshold of 70 degrees. The system admin-
istrator could, from this web interface, override that
value dropping it to 50 degrees. If a threshold value
isn’t defined by an IPMI based device, that value can
be specified here.

3.6 Runtime

A runtime data structure is assembled, internally
called a nodelist. The each element in the nodelist
is a nested has structure as shown in Figure 4.

{hostname => { :bmc => Ilom object ,
:rrd => IlomRRD object,
:node_id => Node ID

}
Figure 4: The structure of a nodelist entry
So each entry in the nodelist can reference its Ilom

object information, its llomRRD object information,
and its NodelD for database access.

The nodelist is used by the main loop of the pro-
gram. The main loop of the program is where the
backend daemon lives after initialization, until termi-
nation.

A high level overview of the logic of the backend
daemon is as follows:

e During each loop, which runs once every minute,
every Node is addressed. Upon completion of ad-
dressing every Node, the loop sleeps until the re-
mainder of one minute has elapsed.

e At the beginning of the loop, an inner loop is run,
where each Node in nodelist, is polled via IPMI,
and temperature values are updated in SQL and
RRD databases accordingly. If it is a 5th loop,
RRD graphs are updated. If a thermal threshold
has been reached - that is if the ambient temper-
ature has exceeded one or more thresholds - ap-
propriate actions are taken. Note that any actions
taken here would be local thermal event actions.

e After each entry in modelist has been addressed,
determine if there is a global temperature event
taking place, and if so take appropriate actions to
deal with a thermal event.

4 Conclusion

This project was tested throughout development pro-
cess. Each component has been tested quite a bit in a
standalone capacity before it was integrated with the
rest of the code.

Since everything was built from the ground up,
we were able to let each iteration sit and run, to ob-
serve behaviors, see if it crashed, see if it did anything
unexpected, before we added on the next component.

The Ilom class is the oldest piece of code from this
project, and has been running on HPC and non HPC
servers for over six months. A lot has been learned
about ILOMs and other IPMI based devices through-
out this process, such as the fact that certain IMPI
devices can and will return garbage values from time
to time. We learn to handle these types of situations
gracefully, so that we don’t crash the system.

After months of work, much trial and error, many
code revisions, and database model changes, every-
thing has finally come together.

Since turning off the A/C in the server room
wasn’t a realistic way to test this project, nor was wait-
ing for the next environmental failure, should it come,
testing was achieved by manipulating the temperature
thresholds. We tested this project by lowering the tem-
perature thresholds at or below the ambient tempera-
ture on individual servers, attempting to create a local
event on those servers. Both non critical and critical

events were triggered in this manner. Global events
were triggered in a similar manner, by lowering the
temperature thresholds on 5% of the nodes, we were
able to achieve a global event.

Based off of these actions, we are confident that
should a real environmental failure occur, that not only
will hardware be saved, but also long running HPC
jobs.

More details and illustrations on this work can be
found in [12].

5 Future Work

We have identified numerous future directions for this
project. A lot of the future direction would just be the
next logical iteration for this work.

From server model to server model, ambient
temperature sensors are placed in different locations.
Some close to the front bezel, others are more recessed,
the downfall with the ones that are recessed, is that
when under load, the reading on the ambient tempera-
ture sensor can be influenced by the heat output from
the server. Some high end servers have multiple am-
bient temperature sensors. A future work would be to
give the system administrator, via the web frontend,
a method to select which ambient temperature sensor
to monitor, or possibly aggregate the output of multi-
ple ambient temperature sensors, in an effort to get a
more stable, accurate reading.

Another future extension would be to determine
the priority of jobs in the event that nodes with sus-
pended jobs had to be shut down to further cut heat
output. Killing the job that had been running 1 month
over the job that had been running 6 months would be
desirable in this situation. Similarly, killing the job of
a CS I student over the job of the research faculty
professor would also be preferred.

A more difficult future project would be to able to
automatically and accurately determine when the A /C
capacity has returned to 100% in the event of a partial
cooling failure, such as in the global temperature event
example listed in Section 2.4.

We have also, as part of our development and
testing, branched this project and are working on a
version to work in a virtualization environment. Vir-
tual hosts, like HPC nodes, generate a lot of heat,
and would be another obvious implementation. Lib-
virt could be leveraged to manage virtual guests sim-
ilar to how SGE is being used to manage jobs in this
paper. We have already began to extend the Ilom class
to work with other IPMI compliant devices such as the
Dell DRAC.

Acknowledgements

This work was partially supported by NIH Grant Num-
ber P20 RR-016464 from the INBRE Program of the
National Center for Research Resources.

References
[1] Nagios - Nagios Overview, Re-
trieved 15 March 2012, from

http://www.nagios.org/about/overview/

[2] Wolfgang Barth, Nagios: system and network
monitoring (2nd edition). Open Source Press
GmbH, 2008

[3] Easy, proactive monitoring of processes, pro-
grams, files, directories and filesystems on
Linux/Unix | Monit, Retrieved 15 March 2012,
from http://mmonit.com/monit/

[4] Ganglia Monitoring System, Retrieved 15 March
2012, from http://ganglia.info/

[5] Matthew L Massie, Brent N Chun, David
E Culler, The ganglia distributed monitoring
system: design, implementation, and experi-
ence, Parallel Computing, Volume 30, Issue
7, July 2004, Pages 817-840, ISSN 0167-8191,
10.1016/j.parco.2004.04.001.

[6] Cacti: The Complete RRDTool-based Graph-
ing Solution, Retrieved 15 March 2012, from
http://cacti.net/

[7] Munin - Trac, Retrieved 15 March 2012, from
http://munin-monitoring.org/

[8] A Gentle Introduction with OpenIPMI,
Retrieved 15 March 2012, from
http://openipmi.sourceforge.net /IPMI.pdf

[9] Wikipedia (16 June 2010). Re-
trieved 21 March 2012, from
http://en.wikipedia.org/wiki/File:IPMI-Block-
Diagram.png

[10] RRDtool - rrdruby, Re-
trieved 15 March 2012, from
http://oss.oetiker.ch /rrdtool /prog/rrdruby.en.html

[11] The Official YAML Web Site, Retrieved 21 March
2012, from http://yaml.org/

[12] Chad Feller, “Beyond Monitoring: Proactive
Server Preservation in an HPC Environment”,
Masters thesis, University of Nevada, Reno, May
2012.

