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Abstract immersing a model in a real or virtual environment capable
ddi | . lection th h reinf of providing the feedback necessary for the model to extract

A Ing value to action-selection through reinforcement o anq interact appropriately. These are part of thevatoti
Iea_rnmg pro_wdesa mechanlsrr_l for_moc_zllfylng future degsno_ tions for the DARPA SyNAPSE program [1, 2]. Through the
This behaworal-leve! mod_ulatlon Is vital f(_)r performing i e qtin of low-power neuromorphic architectures both-sui
complex and d}’”a”?'c enywon_ments. In this paper we focé('ﬁle for efficient remote operation and capable of replicati
on a class of biologically inspired feed-forward spikingine many of the biologically salient features of neural systetimes

lral n(_atworlfrsh capa;ble I?f acuon-sbelzptlé)n via r?'nforlcemte%[ogram can reduce the technological and theoreticaldyarri
earning. e networks are embodied in a minimal virtug o died modeling.

agent and their ability to learn two simple games through re- ) i ) .
inforcement and punishment is explored. There is no bias or Embodied modeling can be described as the coupling of
understanding of the task inherent to the network and alief COmputational biology and engineering. This can obviobsly
dynamics emerge based on environmental interactions evag¢complished in a many different ways but games are one of
of an action takes the form of reinforcement and punishméh@ most beneficial for exploring those. The varying levéls o
signals. One novel aspect of these networks is that they oBgfIPlexity combined with quantifiable performance result i
the constraints of neuromorphic hardware currently being @nvironments appropriate for testing many different levafl
veloped, including the DARPA SyNAPSE neuromorphic chigdological fidelity. Two of the most basic aspects of playing
for very low power spiking model implementations. The sinfhose games are act|on-sele_ct|on a_n(_j reinforcement fegarni
ulation results demonstrate the performance of these moddlese are important for making decisions based on past expe-
for a variant of classic pong as well as a first-person shooténce to achieve the desired outcomes.

Embodying models like these in games creates virtual envi- Action selection is the appropriate negotiation of com-
ronments with varying levels of detail that are ideal fottite peting signals. In the mammalian nervous system the complex
spiking neural networks. In addition, the results suggest t circuitry of the Basal Ganglia (BG) is active in gating the in
these models could serve as building blocks for the confrolfermation flow in the frontal cortex by appropriately selagt
more complex robotic systems that are embodied in both \ietween input signals. This selection mechanism can affect
tual and real environments. simple action all the way up to complex behaviors and cog-
. ) ] __ nitive processing [3]. Although overly simplified, it can be
Keywords:  Embodied modeling, Neurorobotics, Spikinge|pfyl to relate the BG to a circuit multiplexer, activelyre

Neural Networks, Action-Selection, Reinforcement-LE®N necting inputs to outputs based on the current system state.

Neuromorphic hardware , i i ,
Reinforcement or reward learning (RL) is the reinforce-

1 Introduction ment of actions or decisions that maximizes the positive out
o ] ] ] come of those choices. This is similar to instrumental condi
The combination of action-selection and reinforcemenjgning where stimulus-response trials result in reinéonent
learning in biological entities is essential for succelfu of responses that are rewarded and attenuation of those that
adapting and thriving in complex environments. This is al$ge not [4]. Reinforcement-learning in a neural networkris a
important for the effective operation of intelligent agentjgeg| alternative to supervised learning algorithms. Viéeer-
However, strategles_for.embeddlng artificial intelligehee pervised learning requires an intelligent teaching sighat
resulted in agents with limited demonstrable emergenteIrofyst have a detailed understanding of the task, reinforoeme
ties. Because of this, it is s_tlll unreasonable to deployla_} Ngearning can develop independent of the task without aryr pri
rorobotic entity and expect it to learn from and perform & 'knowledge. Only the quality of the output signal in response

environment the same way biological entities can. Sinylarl, he input signal and current contextual state of the netwo
neural models require complex and varied input signals-n @ heeded.

der to accurately replicate the activity observed expemnime

tally. One strategy for creating this complex stimuli istagh In this work we focus on a class of small biologically

inspired feed-forward spiking networks capable of action-
*Corresponding Author. cmthibeault@hrl.com selection and reinforcement-learning while immersed ifra v




Table 1: Global model parameters.

| t
Parameter Value ;c?:ulations
Cm L. (PF) Reward
Eere 0. (mV)

Output
Einn —&0. (mV) O Populations
‘/rest 0. (mV)
AL 0.025
A_ 0.026
Ty 20. (ms)
T_ 20. (ms) Figure 1: Lateral-inhibition network.

Barr et al. [9] implemented a mode of the basal ganglia
tual environment. These are suitable for realization omthe ©N @ Neural processor array. Although not directly demon-

romorphic hardware developed under the SyNAPSE projefigted in the hardware presentation the original software
and provides a theoretical framework for testing futureaioy @ model was Capa‘?'e of performing _actlon selec_:tlon. How-
reinforcement-learning algorithms. The networks are ednb@ver,_there are no inherent mechanisms for remforcement-
ied in a minimal virtual agent and the ability to learn a simp'ea,m'ng and the micro-channels of the basal ganglia weze pr
ping-pong game through reinforcement and punishment is 8%fined by the network.
plored. There is no bias or understanding of the task inlheren Merollaet al.[1] presented a neuromorphic processor ca-
to the network and all of the dynamics emerge based on jprable of playing a game of pong against a human opponent.
teractions with the environment. Value of an action takes tiihis description was later extended by Arttatiral. [10]. The
form of simple reinforcement and punishment signals. Thigtwork was constructed off-line and once programmed on the
concept is then extended by exploring how these can be cdrardware remained static. In that, a neural network, ctnsis
bined to perform more complex actions. Towards this goalirg of 224 neurons, that could also play a pong style game was
first-person shooter was developed. A model combining mateated. The network was constructed off-line and was demon
tiple RL networks was then constructed and trained to targétated on a neuromorphic processing core. Training irglv
and shoot the most appropriate enemy. teaching the network to predict different patterns of moty

In addition to supporting hardware validation, the resuffl® Puck. Rather than simply tracking it, like the networks
ing models are ideal for simple robotic embodiments and atg'®: the model would plan where the paddle must be placed.
capable of demonstrating action-selection via reinforeetn | N€ resulting networks however, are specialized for thek ta
learning. Similarly, the two games developed for testirgsth and cannot adapt to changing environments once embodied in

networks illustrate the utility of embodied modeling in comhardware.

petitive environments. 2 Design and Methods
There have been a number of research efforts aimed at

utilizing games to explore action-selection and rewardriea2.1  Neuron model
ing. For instance, Wilest al. [5] developed a spiking neural  The neural model supported by the initial SyNAPSE

model to control a rat animate performing phototaxis. Thrdware is the Leaky-Integrate and Fire (LIF) neuron. The
network was constructed to perform the task similar to atBraji |- model is defined by

enberg vehicle. Burgsteinet al.[6] created a liquid state ma-

chine usi_ng a recurrent network with fixed i_nt(_arnal synapses Cmd_V = —grear(V = Eyest) + 1. 1)
and plastic output synapses that learned a similar task. dt
The model of Arenaet al. [7] consisted of three layerswhere
of Izhikevich neurons to control a virtual robot with severa Cm is the membrane capacitance.
sensory modalities. The networks were constructed with an I is the sum of external and synaptic
initial understanding of how to process low-level senspuin currents.

such as proximity and contact sensors as well as visual cues. ¢,  conductance of the leak channels.
These were used to direct the robot through the environment.  E;.,;. is the reversal potential for the background
Simultaneously, the network learns to perform this navigat leak currents.

usin_g a range-finding sensors. The inherent Iow—levgl 38NSO  Aq the current input into the model neuron is increased
basically train the network on how to respond to the higlelev e memprane voltage will proportionally increase until a

Sensors. threshold is reached. At this point an action potential idfir
Florianet al.[8] evolved a fully recurrent spiking neuraland the membrane voltage is reset to the resting value. The
network to control a simple virtual agent to seek out, pugh aneuron is placed in a refractory period for 2 milliseconds
the release balls in its environment. An evolutionary athor  where no changes in the membrane voltage are allowed. If
was used to calculate the synaptic weights of the networkth@ current is removed before reaching the threshold the vol
accomplish the task. age will decay toFE,.s;. The LIF model is one of the least



computationally intensive neural models but is still cdpat Table 2: Parameters for the lateral-inhibition network.

replicating many aspects of neural activity [11]. A. Neuron parameters
The connections between neurons are modeled byeural Region Neurons
; Per Channel
conductance-based synapses. The general form of that influ-
; ; Input 3
ence is defined as Output 5
Inhibition 3
Isyn = Gmax * Gesr - (V- Esyn)- ) Reward 1
where . . B. Connections
Jmaz 1S the maximum conductance for the . .
class of synapse. Source—s Destination Synaptic Conductance Number o_f Incoming
i i ; (gmaz) - (gers) Connections (total)
gers Is the current synaptic efficacy between
: [0 1] Input— Output (10.0) - (0.25) 15
s 4 . ) Output— Inhibition (10.0) - (1.0) 15
E,,» isthe reversal potential for that particular Inhibition — Output (10.0) - (1.0) 15
class of synapse. Reward— Input (10.0) - (1.0) 1

Although the synapses are conductance based the buffering

and reuptake of neurotransmitter is treated as a pulse event

lasting one time step. In that way it is similar to currentdmisinto channels represented by a population of neurons. Tifne co

synapse. For numerical integration An Euler method is useekctions from the inputs into the outputs however, are rando

with time stepr = 1ms. and unstructured. This is done so there is no intentional bia
Learning at the synaptic level is achieved through ipgtween channels. A key aspect of this network are the eiffus

spike-timing dependent plasticity rules defined by Setg connections of the inhibitory interneurons. These pojurat
al. [12]: project to every other output population; excluding theroied

of which they are a part of. This creates on-center off-surth
activity where the most active population suppresses therot
output populations. The parameters are presented in Table 2

Gess = PijXi(t) — Dij X;(t — Aij) ) The parameters were selected based on the restrictions of th
p P e A 4 target hardware.
R ALK (= Ay) @ Initially, the network has no knowledge or inherent un-
D.. derstanding of their environment. The desired behavior is
Dij = -2 4+ A X;(t), (5) driven by a conditioned stimulus injection. Stereotypeiit-sp
T ing signals are sent to an input population and all of the re-

ward populations. The timing of the signal is delayed for the

whereX;;(t) is the spike train of neurofndefined as a sum oftarget channel so the synaptic learning between the ingut po
Dirac functions over the action potential tim@%Pk equal to ulation and the desired output populations is potentiatile
S 5(t_t;,*Pk), P; is the potentiation, modelihg the inf|uenC@.!| other channels are depressed. The stimulus periodftasts
of incoming spikes, and;; is the depression value, trackingither300 or 500 ms.
the influence of outgoing spikes. The global parameter galue  although simple, this class of network is capable of dis-
used in this study are presented in Table 1. These weretggyuishing competing inputs under noisy conditions. They
lected by hand-tuning from physiological ranges available can also be used as building blocks to perform more com-
the target neuromorphic hardware. plex tasks. To illustrate this concept we combine three of

The spiking neural networks were simulated usirtge lateral-inhibition networks. Each is divided into niyik
the HRLSIm' package [13]. HRLSImM is a distributed channels with the outputs of two of the channels directly-con
CPU and GPGPU spiking neural simulation environmeR€cting to the corresponding input channel of the third; Fig
HRLSIm™ was developed to support the modeling aspe&'ée 2. The connections are made one-to-one at a weight of

of the SyNAPSE project. It has also been effective in gety” With output channel connected to input channg) out-

eral neural simulation studies [14-17]. The experiments RHt channel to input channe, and so on. As illustrated in

HRLSIm™ are defined in C++. This allows for higher perfor'-:.'gure 2, each of th_e three networks receives a differenttinp
. . T ignal. Through reinforcement the network can learn to ap-
mance as well as compile and run time optimizations. In adgls

tion, embodying the model can be accomplished using diﬁgrropnately respond to different combinations of inputstHis

ent mechanisms; including compiling the environment diyeccase’ these are used to play a first-person shooter, dascribe
in to the experiment.

below.
2.2 Networks

2.3 Games
The network presented here consist of an input layer, &r-L  Pond
output layer with lateral inhibition and a reward modulgtin To illustrate the capabilities of these networks a pong
layer, see Figure 1. The input and output layers are dividggile virtual environment was implemented. This version of
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Figure 3: Pong game board disrectizations foi@ channel network. The
spatial width,c, is 0.035. (Left) The overlap between two consecutive chan-

- nels. (Right) The location of the puck (top) translates fauinstimulus for
Figure 2: FPS Control Network each of thel0 channels (bottom).

the game has a single player controlling the paddle at the briis is visualized in Figure 3 for a spatial widths= 0.035.

tom of the board. The puck bounces off of the left, right arthe reward or punishment to the network arrives when the
top walls with minimal physics that change the speed of thack reaches the bottom of the game board.

puck based on the angle of incidence with the wall. The player
has to move the paddle to block the puck from falling throuqltb”e
the bottom of the game board.

The paddle is controlled by a simple proportional con-

r. The environment receives discrete locations fitbm

neural network. The location on the screen that the paddle ha
The game was developed in different stages. First,tdmove to is calculated based on these discrete locatitss. |

mock-up of the game was created in Python using PyGawegocity in theX direction is defined by

[18]. A game controller was then developed in C++. How-

ever, that controller has no visualization capabiliti¢scom- Ve = Vinax - P. 9)

piles directly into the HRLSIim experiment and provides the . . .

virtual environment for the networks. The output of the env,he variablel” is the output of the proportional controller de-

ronment is recorded by the controller and can then be pla tﬂ?d by

back by the Python visualizer. P=k-e (10)

The position of the puck in the game space is sent tdMherek is the gain variable and is the error between the
number of discretized neural channels. Each of these chi@fgetand currentlocations
nels represents a vertical column of the game board. The inpu e X oy (11)
signal is Poisson random spike events with a rate determined — “Location Target

by a Gaussian curve, described below. This provides a noj$y output of the proportional controlle?, is a piecewise lin-

input signal with overlap between channels. The netwolks sgar function that is dependent on the distance from thettarge
nal, through a winner-takes-all mechanism, the positiohef

paddle. -1 —e<-z
— 1
The stimulus into the network is determined by the loca- P=q1 e> k.
tion of the puck relative to each of the spatial channels. The e—k le[<g

location of the puck on the map determines the peak amplit

. . : uIdrﬁs ensures that the speed of the paddle does not exceed the
and center of a Gaussian function defined as

maximum defined velocity. The pivot poi%tis calculated by

Fx.(b) = qe—((Xe=07/2c2) (6) settingk - e = 1. In addition, the proportionality constaht
¢ is less tharl to ensure that the paddle slows down as it gets
where closer to its target.
a Peak amplitude of the Gaussian function, 2.3.2 Neuralstein first-person shooter

b Center of the Gaussian function,
c Spatial width oro of the Gaussian function,
X. The non-dimensional location of the channel.

The first-person shooter (FPS), Neuralstein, is similar to

one of the original FPS games, Wolfenstein [19]. This im-
plementation is a rail-shooter where the player moves along
The peak amplitude and Gaussian center are defined as  a specified path. The player controls its forward movement
along that path, where it is aiming and when to take a shot.

a=Y": Rpaz (") Similar to the pong environment described above this was im-
plemented at different levels of abstraction. The game en-

b=X (8) gine and visualization was developed in Python, with thetat
where using PyGame [18] and the Pyggel library [20]. The game
Y* Non-dimensional location of the puck in the  €ngine is abstracted away from the visualization to fat#it
dimension, faster simulations. Communication with the simulations is
Rinae:  Maximum input stimulus irfpikes/s, provided through a socket server. The engine and the simu-
X* Non-dimensional location of the puck in the lation are synchronized so the performance is determined by

dimension. the slowest component.
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Figure 4: FPS Discretization. (a) A rectangular frame is taken froenttami-
spherical point-of-view (POV) of the player. (b) The POV spés discretized [ )
into equal segments (channels). (c) The resulting frammests the players
view of the world. (d) Each of the channels is centered alangakangular [ )
steps about the space with arc-lengths defining the stinrelyisne for that
channel. (e) The channels are constructed with overlapgiingulus regions
to create a noisier environment for the networks to negatid} The stimulus

space for a single channel is defined by a Gaussian functairistriailed to ) ] ]
the segment boundary. Figure 5: Example stimulus encoding and FPS game board.

The game board is discretized based on the players per-
spective. The hemispherical point-of-view (POV) for the
player is partitioned into a rectangular region, Figure ¥ (a
The POV is then segmented into discrete channels with cand the characters with blue accenting are consideredinnoc
ters at equally spaced angles along the hemisphere, Figumug. Each of these creates a different input into the bladk an
(b). This defines the center for each of the channels that bhge channels respectively. It is assumed that a separate-me
represented by the network, Figure 4 (c). The channels caaism identifies the element and determines which channel is
ates a pie shaped region of interest, Figure 4 (d), which hatienulated. For this implementation the game engine direct
arc lengths with al0% overlap between channels, Figure the stimulus. Figure 5 illustrates what the stimulus for two
(e). Each of the segments defines that channels stimulus naifferent game elements would be.
which is described by a Gaussian function, Figure 4 (f).

3 Results
_ o ((@c=0?%/2c2) .
fo.(b) = ae (12) 3.1 Pong performance analysis
Where There are a number of additional factors that determine
a Peak amplitude of the Gaussian function. how well the network performs in the game task. The first is
b Center of the Gaussian function. the spatial width of the Gaussian stimulus curwe,This af-
c Spatial width o of the Gaussian function. fects the overlap between channels, the larger the value of
©. The non-dimensional angular location of the  the larger the overlap. For testing we use three spatiahsjdt
channel. 0.025, 0.035, 0.045. The next factor is the peak of the Gaus-
The peak amplitude and Gaussian center are defined i@n stimulus curve; where the Iarger the value the moreecti
the input channels become. Two input peaks,..., are used,
a=1"" Rpmax (13) 10 Hz and40 Hz. Finally, the length of reward is another im-
portant factor. This determines how long a feedback stisulu
b=0O" (14) lasts and can affect the magnitude of the change in syndptic e
ficacy. Two values are chosen for ti390 ms ands00 ms. For
Where oo . .
) ) ) ) each combination of these parametersimulations of500
r Non-dimensional location of the elementin - gecondswere run. The accura@yives /opportunities)-100,
the radial dimension. is computed foR5 second windows. The average of theim-
Roaz Maan_um mput stimulus irfpikes/s. _ ulations is plotted.
O Non-dimensional angle of the element relative

Figure 6 presents the pong performance results. For
, i , the 10 Hz stimulus the network performs well throughout
The overall arena is a square track with equal width, Figse gifferent spatial width/reward period combinationswH
ure 5. As the player moves through the environment 9218y when the peak input stimulus is raised g7 - the per-
elements enter into the view of the player. Elements in the .o with the loweB00 ms reward period drops con-
players POV are picked up and their location in that view Crﬁ'derably. For both stimulus peaks the overall performance
ates the input stimulus injected into the saliency Chanmlsthroughoutthe parameter space is surprisingly consiateen
the network. the reward time is increased300 ms. The slopes in the accu-
There are two types of game elements in the current veaey curves are slightly different but all approach an aacyr
sion. The primarily black characters are considered dangerof 100%.

to the player.
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Figure 7: Left: Example lateral inhibition network reward-learnisgenario. Activity rate map of the example scenario. Astivas calculated using a

moving Gaussian weighted window. Right: Average and marirsynaptic weights between input/output pairs after lesyn{a) 0 sec. (b) 10 sec. (c) 11 sec.
(d) 21 sec. (e) 22 sec. (f) 33 sec.

3.2 Learning capabilities newly established input/output pairs, Figure 7f.

An important characteristic of this class of networks is 1o importance of this capability should not be over-

the ability to not only learn arbitrary pairs but then la®ain 164 Adapting in changing environments is essential for
new ones. The rules of the game can be changed and throygl ity 16 thrive. This adaptation is similarly vital fortiéi-

the same feedback mechanisms the networks will adjust to 1§ 5 4ents and for the successful deployment of neuroniorph
new rules. This scenario is illustrated by the spiking aistiv ., Jjeals.

presented in Figure 7. The stages, marked by the lettergin th o
center are: 3.3 Neuralstein first-person shooter

L ) i The combination of three LI networks allows for more
The network is initialized with all input/output connectomplex decision making. The individual networks can learn
tions have a synaptic USE value of 0.25; as illustrated i yeight different classes of input information based on re
Figure 7a by the heat map of the average weights betwggitq feedback and the results can be combined to perform dif-
input/output populations. , _ ferent tasks. In the network presented here each of the subne
B. APoisson randominputis injected into consecutive chafjorks hasy channels, with the Black and Blue subnetworks
nels for 10 seconds to establish the basal activity of thgth feeding into the action selection (AS) subnetwork. The

network. The resulting average synaptic weight matrix i85 subnetwork also receives saliency information from the e
shown in Figure 7b vironment.

C. Alternating reward signals are sent to establish single i i ,
put/output pairs. The weight matrix is now dominated b Using the same stereotyped reward mechanisms, the FPS
the diagonal shown in Figure 7c. etwork can be trained to perform more complex action selec-

D. The repeated Poisson input signals from B are injectré%n tasks. In this case the I_3Iack and AS subnetworks learn
for 10 seconds. After this, the weight matrix shown ift One-to-one correlation, while the Blue subnetwork isaffe
Figure 7d demonstrates further potentiation of the estdfy€ly disconnected. The result s that the saliency infation
lished input/output pairs and a continued depression pne is not enough to cause the AS network to cross the selec-
the other connections tion threshold. A complementary input is required from ohe o

E. An opposite set of input/output associations are estii¢ Other subnetworks, in this instance only a black game el-
lished using alternating reward signals. For stable rretra?m_ent can co_ntrlbute, Figure 8. The result_mg netw_ork kearn
ing of the network the reward protocol needs to be abd@tignore the innocuous blue elements while focusing on the
twice as long as the original training. The new weigii2ngerous Black ones.
matrix is shown in Figure 7e. When placed in the Neuralstein environment the network

F. 10 seconds of the repeated Poisson inputs illustrate ¢the move through the environment and target enemies whenin

A.
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be trained to track the position of the puck. This learned be-
havior can then be used as an training signal to the predictiv
networks.

4.2 Neuralstein

First-person shooters have been extremely popular in Ar-
tificial Intelligence (Al) research. The complex interacts
o 100 200 300 200 500 between the environment, game elements and multiple gayer
Time (s) challenge non-player controllers in unique ways. This popu
larity has even led to competitions, such as the Botprizerah
Jhe goal is to create the most “human like” Al controller [21]
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Figure 6: LI network pong performance fa300 ms reward. Top:10 Hz
stimulus peak. Bottom40 Hz stimulus peak. The y-axis is the accuracy
the network. A value ofl00 means the network blocked all of the pucks in Due to the different strategies required to successfully

that25 second block. play a modern FPS, traditional Al domains have domi-
nated [22, 23]. It is the complexity of the task that makes-it a

view (not shown). In addition, when presented with both s/p&active to embodied modeling. The approach taken heresreli

of game elements, the network can appropriately select threabstracting some of that complexity away. As the networks

black element, even when the blue one is closer to the playsicome more capable other aspects of the FPS paradigm can

as seen in Figure 9. be added.

4 Conclusion 4.3 Future work

41 P These simple feed-forward networks are a satisfactory
: ong start to employing the SyNAPSE neuromorphic architecture

The learning of channel associations is somewhat arisi-embodied modeling. Alone, they can be utilized as con-
trary in the examples presented here. The correlation eetwegurable controllers but their real potential lies in thase as
input and output populations can in fact be engineered te hawilding blocks in more complex control systems. We have al-
more complex relationships than a simple pair. As illusiiatready demonstrated how these can be connected together in a
by the FPS network results, other combinations can be ateanple configuration but in the future these will be combined
as well as mechanisms for more intricate information precewith more sophisticated networks. For example, recurretit n
ing. works can provide, through feedback, state informatiomef t
The tracking of the puck in the pong networks is readystem. This basic form of short-term memory can process

tive, with movements made based on the current positiontity [€MPoral aspects of a system’s inputs and allow for more

the game. In the future this concept will be extended to iieluNtelligent processing.

predictive control of the paddle. A recurrent network cdpab Finally, the feedback for the networks was dependent on
of learning these kinds of associations could be includedgl conditioned input stimulus to the reward modulation popula
side the reactive networks presented here to achieve thiis. fions. The games played the role of the critic. In the future,
tially all of the weights would be random. Through the feeanore sophisticated reward and punishment signals, such as
back mechanisms demonstrated here the reactive netwarksbase in Floriaret al. [24] and Friedrichet al. [25], will be
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Figure 9: FPS Game Play. Although the blue character is more saliethieiplayer’s field of vision the network appropriately tasgand shoots the enemy
player.

implemented to find a generic reward critic and more efficie[%

controllers.
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