
Embodied Modeling With Spiking Neural Networks For Neuromorphic
Hardware: A Simulation Study

C. M. Thibeault1,2,3,*, F. C. Harris Jr.2,3, and N. Srinivasa1

1Center for Neural and Emergent Systems, Information and Systems Sciences Laboratory, HRL Laboratories LLC., Malibu, CA.
2Department of Electrical and Biomedical Engineering, University of Nevada, Reno. Reno, NV.

3Department of Computer Science, University of Nevada, Reno. Reno, NV.

Abstract
Adding value to action-selection through reinforcement-

learning provides a mechanism for modifying future decisions.
This behavioral-level modulation is vital for performing in
complex and dynamic environments. In this paper we focus
on a class of biologically inspired feed-forward spiking neu-
ral networks capable of action-selection via reinforcement-
learning. The networks are embodied in a minimal virtual
agent and their ability to learn two simple games through re-
inforcement and punishment is explored. There is no bias or
understanding of the task inherent to the network and all of the
dynamics emerge based on environmental interactions. Value
of an action takes the form of reinforcement and punishment
signals. One novel aspect of these networks is that they obey
the constraints of neuromorphic hardware currently being de-
veloped, including the DARPA SyNAPSE neuromorphic chips
for very low power spiking model implementations. The sim-
ulation results demonstrate the performance of these models
for a variant of classic pong as well as a first-person shooter.
Embodying models like these in games creates virtual envi-
ronments with varying levels of detail that are ideal for testing
spiking neural networks. In addition, the results suggest that
these models could serve as building blocks for the control of
more complex robotic systems that are embodied in both vir-
tual and real environments.

Keywords: Embodied modeling, Neurorobotics, Spiking
Neural Networks, Action-Selection, Reinforcement-Learning,
Neuromorphic hardware

1 Introduction
The combination of action-selection and reinforcement-

learning in biological entities is essential for successfully
adapting and thriving in complex environments. This is also
important for the effective operation of intelligent agents.
However, strategies for embedding artificial intelligencehave
resulted in agents with limited demonstrable emergent proper-
ties. Because of this, it is still unreasonable to deploy a neu-
rorobotic entity and expect it to learn from and perform in its
environment the same way biological entities can. Similarly,
neural models require complex and varied input signals in or-
der to accurately replicate the activity observed experimen-
tally. One strategy for creating this complex stimuli is through

∗Corresponding Author. cmthibeault@hrl.com

immersing a model in a real or virtual environment capable
of providing the feedback necessary for the model to extract
value and interact appropriately. These are part of the motiva-
tions for the DARPA SyNAPSE program [1, 2]. Through the
creation of low-power neuromorphic architectures both suit-
able for efficient remote operation and capable of replicating
many of the biologically salient features of neural systems, the
program can reduce the technological and theoretical barriers
of embodied modeling.

Embodied modeling can be described as the coupling of
computational biology and engineering. This can obviouslybe
accomplished in a many different ways but games are one of
the most beneficial for exploring those. The varying levels of
complexity combined with quantifiable performance result in
environments appropriate for testing many different levels of
biological fidelity. Two of the most basic aspects of playing
those games are action-selection and reinforcement learning.
These are important for making decisions based on past expe-
rience to achieve the desired outcomes.

Action selection is the appropriate negotiation of com-
peting signals. In the mammalian nervous system the complex
circuitry of the Basal Ganglia (BG) is active in gating the in-
formation flow in the frontal cortex by appropriately selecting
between input signals. This selection mechanism can affect
simple action all the way up to complex behaviors and cog-
nitive processing [3]. Although overly simplified, it can be
helpful to relate the BG to a circuit multiplexer, actively con-
necting inputs to outputs based on the current system state.

Reinforcement or reward learning (RL) is the reinforce-
ment of actions or decisions that maximizes the positive out-
come of those choices. This is similar to instrumental condi-
tioning where stimulus-response trials result in reinforcement
of responses that are rewarded and attenuation of those that
are not [4]. Reinforcement-learning in a neural network is an
ideal alternative to supervised learning algorithms. Where su-
pervised learning requires an intelligent teaching signalthat
must have a detailed understanding of the task, reinforcement
learning can develop independent of the task without any prior
knowledge. Only the quality of the output signal in response
to the input signal and current contextual state of the network
is needed.

In this work we focus on a class of small biologically
inspired feed-forward spiking networks capable of action-
selection and reinforcement-learning while immersed in a vir-

Table 1: Global model parameters.

Parameter Value

Cm 1. (pF)
Eexc 0. (mV)
Einh −80. (mV)
Vrest 0. (mV)
A+ 0.025
A− 0.026
τ+ 20. (ms)
τ− 20. (ms)

tual environment. These are suitable for realization on theneu-
romorphic hardware developed under the SyNAPSE project
and provides a theoretical framework for testing future novel
reinforcement-learning algorithms. The networks are embod-
ied in a minimal virtual agent and the ability to learn a simple
ping-pong game through reinforcement and punishment is ex-
plored. There is no bias or understanding of the task inherent
to the network and all of the dynamics emerge based on in-
teractions with the environment. Value of an action takes the
form of simple reinforcement and punishment signals. This
concept is then extended by exploring how these can be com-
bined to perform more complex actions. Towards this goal, a
first-person shooter was developed. A model combining mul-
tiple RL networks was then constructed and trained to target
and shoot the most appropriate enemy.

In addition to supporting hardware validation, the result-
ing models are ideal for simple robotic embodiments and are
capable of demonstrating action-selection via reinforcement-
learning. Similarly, the two games developed for testing these
networks illustrate the utility of embodied modeling in com-
petitive environments.

There have been a number of research efforts aimed at
utilizing games to explore action-selection and reward learn-
ing. For instance, Wileset al. [5] developed a spiking neural
model to control a rat animate performing phototaxis. The
network was constructed to perform the task similar to a Brait-
enberg vehicle. Burgsteineret al. [6] created a liquid state ma-
chine using a recurrent network with fixed internal synapses
and plastic output synapses that learned a similar task.

The model of Arenaet al. [7] consisted of three layers
of Izhikevich neurons to control a virtual robot with several
sensory modalities. The networks were constructed with an
initial understanding of how to process low-level sensor input
such as proximity and contact sensors as well as visual cues.
These were used to direct the robot through the environment.
Simultaneously, the network learns to perform this navigation
using a range-finding sensors. The inherent low-level sensors
basically train the network on how to respond to the high-level
sensors.

Florianet al. [8] evolved a fully recurrent spiking neural
network to control a simple virtual agent to seek out, push and
the release balls in its environment. An evolutionary algorithm
was used to calculate the synaptic weights of the network to
accomplish the task.

Figure 1: Lateral-inhibition network.

Barr et al. [9] implemented a mode of the basal ganglia
on a neural processor array. Although not directly demon-
strated in the hardware presentation the original softwareneu-
ral model was capable of performing action selection. How-
ever, there are no inherent mechanisms for reinforcement-
learning and the micro-channels of the basal ganglia were pre-
defined by the network.

Merollaet al.[1] presented a neuromorphic processor ca-
pable of playing a game of pong against a human opponent.
This description was later extended by Arthuret al. [10]. The
network was constructed off-line and once programmed on the
hardware remained static. In that, a neural network, consist-
ing of 224 neurons, that could also play a pong style game was
created. The network was constructed off-line and was demon-
strated on a neuromorphic processing core. Training involved
teaching the network to predict different patterns of motion by
the puck. Rather than simply tracking it, like the networks
here, the model would plan where the paddle must be placed.
The resulting networks however, are specialized for that task
and cannot adapt to changing environments once embodied in
hardware.

2 Design and Methods
2.1 Neuron model

The neural model supported by the initial SyNAPSE
hardware is the Leaky-Integrate and Fire (LIF) neuron. The
LIF model is defined by

Cm
dV

dt
= −gleak(V − Erest) + I. (1)

where
Cm is the membrane capacitance.
I is the sum of external and synaptic

currents.
gleak conductance of the leak channels.
Eleak is the reversal potential for the background

leak currents.

As the current input into the model neuron is increased
the membrane voltage will proportionally increase until a
threshold is reached. At this point an action potential is fired
and the membrane voltage is reset to the resting value. The
neuron is placed in a refractory period for 2 milliseconds
where no changes in the membrane voltage are allowed. If
the current is removed before reaching the threshold the volt-
age will decay toErest. The LIF model is one of the least

computationally intensive neural models but is still capable of
replicating many aspects of neural activity [11].

The connections between neurons are modeled by
conductance-based synapses. The general form of that influ-
ence is defined as

Isyn = gmax · geff · (V − Esyn). (2)

where
gmax is the maximum conductance for the

class of synapse.
geff is the current synaptic efficacy between

[0, 1].
Esyn is the reversal potential for that particular

class of synapse.

Although the synapses are conductance based the buffering
and reuptake of neurotransmitter is treated as a pulse event
lasting one time step. In that way it is similar to current based
synapse. For numerical integration An Euler method is used
with time stepτ = 1ms.

Learning at the synaptic level is achieved through the
spike-timing dependent plasticity rules defined by Songet
al. [12]:

ġeff = PijXi(t)−DijXj(t−∆ij) (3)

Ṗij = −
Pij

τ+
+A+Xj(t−∆ij) (4)

Ḋij = −
Dij

τ−
+A−Xi(t), (5)

whereXj(t) is the spike train of neuronj defined as a sum of
Dirac functions over the action potential timestAPk

j equal to
∑

k δ(t−tAPk

j),Pij is the potentiation, modeling the influence
of incoming spikes, andDij is the depression value, tracking
the influence of outgoing spikes. The global parameter values
used in this study are presented in Table 1. These were se-
lected by hand-tuning from physiological ranges availablein
the target neuromorphic hardware.

The spiking neural networks were simulated using
the HRLSim

TM
package [13]. HRLSim

TM
is a distributed

CPU and GPGPU spiking neural simulation environment.
HRLSim

TM
was developed to support the modeling aspects

of the SyNAPSE project. It has also been effective in gen-
eral neural simulation studies [14–17]. The experiments in
HRLSim

TM
are defined in C++. This allows for higher perfor-

mance as well as compile and run time optimizations. In addi-
tion, embodying the model can be accomplished using differ-
ent mechanisms; including compiling the environment directly
in to the experiment.

2.2 Networks
The network presented here consist of an input layer, an

output layer with lateral inhibition and a reward modulating
layer, see Figure 1. The input and output layers are divided

Table 2: Parameters for the lateral-inhibition network.

A. Neuron parameters

Neural Region
Neurons

Per Channel

Input 3
Output 3
Inhibition 3
Reward 1

B. Connections

Source→ Destination
Synaptic Conductance

(gmax) · (geff)
Number of Incoming
Connections (total)

Input→ Output (10.0) · (0.25) 15
Output→ Inhibition (10.0) · (1.0) 15
Inhibition→ Output (10.0) · (1.0) 15
Reward→ Input (10.0) · (1.0) 1

into channels represented by a population of neurons. The con-
nections from the inputs into the outputs however, are random
and unstructured. This is done so there is no intentional bias
between channels. A key aspect of this network are the diffuse
connections of the inhibitory interneurons. These populations
project to every other output population; excluding the channel
of which they are a part of. This creates on-center off-surround
activity where the most active population suppresses the other
output populations. The parameters are presented in Table 2.
The parameters were selected based on the restrictions of the
target hardware.

Initially, the network has no knowledge or inherent un-
derstanding of their environment. The desired behavior is
driven by a conditioned stimulus injection. Stereotyped spik-
ing signals are sent to an input population and all of the re-
ward populations. The timing of the signal is delayed for the
target channel so the synaptic learning between the input pop-
ulation and the desired output populations is potentiated,while
all other channels are depressed. The stimulus period lastsfor
either300 or 500ms.

Although simple, this class of network is capable of dis-
tinguishing competing inputs under noisy conditions. They
can also be used as building blocks to perform more com-
plex tasks. To illustrate this concept we combine three of
the lateral-inhibition networks. Each is divided into multiple
channels with the outputs of two of the channels directly con-
necting to the corresponding input channel of the third, Fig-
ure 2. The connections are made one-to-one at a weight of
0.5, with output channel1 connected to input channel1, out-
put channel2 to input channel2, and so on. As illustrated in
Figure 2, each of the three networks receives a different input
signal. Through reinforcement the network can learn to ap-
propriately respond to different combinations of inputs. In this
case, these are used to play a first-person shooter, described
below.

2.3 Games

2.3.1 Pong

To illustrate the capabilities of these networks a pong
style virtual environment was implemented. This version of

Figure 2: FPS Control Network

the game has a single player controlling the paddle at the bot-
tom of the board. The puck bounces off of the left, right and
top walls with minimal physics that change the speed of the
puck based on the angle of incidence with the wall. The player
has to move the paddle to block the puck from falling through
the bottom of the game board.

The game was developed in different stages. First, A
mock-up of the game was created in Python using PyGame
[18]. A game controller was then developed in C++. How-
ever, that controller has no visualization capabilities. It com-
piles directly into the HRLSim experiment and provides the
virtual environment for the networks. The output of the envi-
ronment is recorded by the controller and can then be played
back by the Python visualizer.

The position of the puck in the game space is sent to a
number of discretized neural channels. Each of these chan-
nels represents a vertical column of the game board. The input
signal is Poisson random spike events with a rate determined
by a Gaussian curve, described below. This provides a noisy
input signal with overlap between channels. The networks sig-
nal, through a winner-takes-all mechanism, the position ofthe
paddle.

The stimulus into the network is determined by the loca-
tion of the puck relative to each of the spatial channels. The
location of the puck on the map determines the peak amplitude
and center of a Gaussian function defined as

fXc
(b) = ae−(

(Xc−b)2/2c2) (6)

where
a Peak amplitude of the Gaussian function,
b Center of the Gaussian function,
c Spatial width orσ of the Gaussian function,
Xc The non-dimensional location of the channel.

The peak amplitude and Gaussian center are defined as

a = Y ∗ ·Rmax (7)

b = X∗ (8)

where
Y ∗ Non-dimensional location of the puck in they

dimension,
Rmax Maximum input stimulus inSpikes/s,
X∗ Non-dimensional location of the puck in thex

dimension.

1 2 3 4 5 6 7 8 9 10
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

In
p
u
t

(s
p
ik

e
s/

s)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

Y

0.0 0.2 0.4 0.6 0.8 1.0
X

0.00
0.25
0.50
0.75
1.00

sp
ik
e
s/
s

Figure 3: Pong game board disrectizations for a10 channel network. The
spatial width,c, is 0.035. (Left) The overlap between two consecutive chan-
nels. (Right) The location of the puck (top) translates to input stimulus for
each of the10 channels (bottom).

This is visualized in Figure 3 for a spatial widths,c = 0.035.
The reward or punishment to the network arrives when the
puck reaches the bottom of the game board.

The paddle is controlled by a simple proportional con-
troller. The environment receives discrete locations fromthe
neural network. The location on the screen that the paddle has
to move to is calculated based on these discrete locations. Its
velocity in theX direction is defined by

Vx = Vmax · P. (9)

The variableP is the output of the proportional controller de-
fined by

P = k · e. (10)

Wherek is the gain variable ande is the error between the
target and current locations

e = XLocation −XTarget (11)

The output of the proportional controller,P , is a piecewise lin-
ear function that is dependent on the distance from the target.

P =







−1 −e < − 1

k
1 e > 1

k
e− k |e| ≤ 1

k

This ensures that the speed of the paddle does not exceed the
maximum defined velocity. The pivot point1k is calculated by
settingk · e = 1. In addition, the proportionality constantk
is less than1 to ensure that the paddle slows down as it gets
closer to its target.

2.3.2 Neuralstein first-person shooter

The first-person shooter (FPS), Neuralstein, is similar to
one of the original FPS games, Wolfenstein [19]. This im-
plementation is a rail-shooter where the player moves along
a specified path. The player controls its forward movement
along that path, where it is aiming and when to take a shot.
Similar to the pong environment described above this was im-
plemented at different levels of abstraction. The game en-
gine and visualization was developed in Python, with the latter
using PyGame [18] and the Pyggel library [20]. The game
engine is abstracted away from the visualization to facilitate
faster simulations. Communication with the simulations is
provided through a socket server. The engine and the simu-
lation are synchronized so the performance is determined by
the slowest component.

(a) (b) (c)

(d) (e) (f)

Figure 4: FPS Discretization. (a) A rectangular frame is taken from the hemi-
spherical point-of-view (POV) of the player. (b) The POV space is discretized
into equal segments (channels). (c) The resulting frame segments the players
view of the world. (d) Each of the channels is centered along equal angular
steps about the space with arc-lengths defining the stimulusregime for that
channel. (e) The channels are constructed with overlappingstimulus regions
to create a noisier environment for the networks to negotiate. (f) The stimulus
space for a single channel is defined by a Gaussian function that is railed to
the segment boundary.

The game board is discretized based on the players per-
spective. The hemispherical point-of-view (POV) for the
player is partitioned into a rectangular region, Figure 4 (a).
The POV is then segmented into discrete channels with cen-
ters at equally spaced angles along the hemisphere, Figure 4
(b). This defines the center for each of the channels that are
represented by the network, Figure 4 (c). The channels cre-
ates a pie shaped region of interest, Figure 4 (d), which have
arc lengths with a10% overlap between channels, Figure 4
(e). Each of the segments defines that channels stimulus map,
which is described by a Gaussian function, Figure 4 (f).

fΘc
(b) = ae−(

(Θc−b)2/2c2) (12)

Where
a Peak amplitude of the Gaussian function.
b Center of the Gaussian function.
c Spatial width orσ of the Gaussian function.
Θc The non-dimensional angular location of the

channel.

The peak amplitude and Gaussian center are defined as

a = r∗ · Rmax (13)

b = Θ∗ (14)

Where
r∗ Non-dimensional location of the element in

the radial dimension.
Rmax Maximum input stimulus inSpikes/s.
Θ∗ Non-dimensional angle of the element relative

to the player.

The overall arena is a square track with equal width, Fig-
ure 5. As the player moves through the environment game
elements enter into the view of the player. Elements in the
players POV are picked up and their location in that view cre-
ates the input stimulus injected into the saliency channelsof
the network.

There are two types of game elements in the current ver-
sion. The primarily black characters are considered dangerous

Figure 5: Example stimulus encoding and FPS game board.

and the characters with blue accenting are considered innocu-
ous. Each of these creates a different input into the black and
blue channels respectively. It is assumed that a separate mech-
anism identifies the element and determines which channel is
stimulated. For this implementation the game engine directs
the stimulus. Figure 5 illustrates what the stimulus for two
different game elements would be.

3 Results
3.1 Pong performance analysis

There are a number of additional factors that determine
how well the network performs in the game task. The first is
the spatial width of the Gaussian stimulus curve,c. This af-
fects the overlap between channels, the larger the value ofc
the larger the overlap. For testing we use three spatial widths,
0.025, 0.035, 0.045. The next factor is the peak of the Gaus-
sian stimulus curve; where the larger the value the more active
the input channels become. Two input peaks,Rmax, are used,
10 Hz and40 Hz. Finally, the length of reward is another im-
portant factor. This determines how long a feedback stimulus
lasts and can affect the magnitude of the change in synaptic ef-
ficacy. Two values are chosen for this,300 ms and500 ms. For
each combination of these parameters,5 simulations of500
seconds were run. The accuracy,(saves/opportunities)·100,
is computed for25 second windows. The average of the5 sim-
ulations is plotted.

Figure 6 presents the pong performance results. For
the 10 Hz stimulus the network performs well throughout
the different spatial width/reward period combinations. How-
ever, when the peak input stimulus is raised to40Hz the per-
formance with the lower300 ms reward period drops con-
siderably. For both stimulus peaks the overall performance
throughout the parameter space is surprisingly consistentwhen
the reward time is increased to500 ms. The slopes in the accu-
racy curves are slightly different but all approach an accuracy
of 100%.

Figure 7: Left: Example lateral inhibition network reward-learningscenario. Activity rate map of the example scenario. Activity was calculated using a
moving Gaussian weighted window. Right: Average and maximum synaptic weights between input/output pairs after learning. (a) 0 sec. (b) 10 sec. (c) 11 sec.
(d) 21 sec. (e) 22 sec. (f) 33 sec.

3.2 Learning capabilities
An important characteristic of this class of networks is

the ability to not only learn arbitrary pairs but then later learn
new ones. The rules of the game can be changed and through
the same feedback mechanisms the networks will adjust to the
new rules. This scenario is illustrated by the spiking activity
presented in Figure 7. The stages, marked by the letters in the
center are:

A. The network is initialized with all input/output connec-
tions have a synaptic USE value of 0.25; as illustrated in
Figure 7a by the heat map of the average weights between
input/output populations.

B. A Poisson random input is injected into consecutive chan-
nels for 10 seconds to establish the basal activity of the
network. The resulting average synaptic weight matrix is
shown in Figure 7b

C. Alternating reward signals are sent to establish single in-
put/output pairs. The weight matrix is now dominated by
the diagonal shown in Figure 7c.

D. The repeated Poisson input signals from B are injected
for 10 seconds. After this, the weight matrix shown in
Figure 7d demonstrates further potentiation of the estab-
lished input/output pairs and a continued depression of
the other connections.

E. An opposite set of input/output associations are estab-
lished using alternating reward signals. For stable retrain-
ing of the network the reward protocol needs to be about
twice as long as the original training. The new weight
matrix is shown in Figure 7e.

F. 10 seconds of the repeated Poisson inputs illustrate the

newly established input/output pairs, Figure 7f.

The importance of this capability should not be over-
looked. Adapting in changing environments is essential for
an entity to thrive. This adaptation is similarly vital for artifi-
cial agents and for the successful deployment of neuromorphic
models.

3.3 Neuralstein first-person shooter
The combination of three LI networks allows for more

complex decision making. The individual networks can learn
to weight different classes of input information based on re-
ward feedback and the results can be combined to perform dif-
ferent tasks. In the network presented here each of the subnet-
works has9 channels, with the Black and Blue subnetworks
both feeding into the action selection (AS) subnetwork. The
AS subnetwork also receives saliency information from the en-
vironment.

Using the same stereotyped reward mechanisms, the FPS
network can be trained to perform more complex action selec-
tion tasks. In this case the Black and AS subnetworks learn
a one-to-one correlation, while the Blue subnetwork is effec-
tively disconnected. The result is that the saliency information
alone is not enough to cause the AS network to cross the selec-
tion threshold. A complementary input is required from one of
the other subnetworks, in this instance only a black game el-
ement can contribute, Figure 8. The resulting network learns
to ignore the innocuous blue elements while focusing on the
dangerous Black ones.

When placed in the Neuralstein environment the network
can move through the environment and target enemies when in

0

20

40

60

80

100

120

A
cc

u
ra

cy

10Hz

0.025 - 300 ms
0.035 - 300 ms
0.045 - 300 ms
0.025 - 500 ms
0.035 - 500 ms
0.045 - 500 ms

0 100 200 300 400 500
Time (s)

0

20

40

60

80

100

120

A
cc

u
ra

cy

40Hz

Figure 6: LI network pong performance for300 ms reward. Top:10 Hz
stimulus peak. Bottom:40 Hz stimulus peak. The y-axis is the accuracy of
the network. A value of100 means the network blocked all of the pucks in
that25 second block.

view (not shown). In addition, when presented with both types
of game elements, the network can appropriately select the
black element, even when the blue one is closer to the player,
as seen in Figure 9.

4 Conclusion
4.1 Pong

The learning of channel associations is somewhat arbi-
trary in the examples presented here. The correlation between
input and output populations can in fact be engineered to have
more complex relationships than a simple pair. As illustrated
by the FPS network results, other combinations can be created
as well as mechanisms for more intricate information process-
ing.

The tracking of the puck in the pong networks is reac-
tive, with movements made based on the current position in
the game. In the future this concept will be extended to include
predictive control of the paddle. A recurrent network capable
of learning these kinds of associations could be included along
side the reactive networks presented here to achieve this. Ini-
tially all of the weights would be random. Through the feed-
back mechanisms demonstrated here the reactive networks can

Inputs

Blue
Black
AS

2Hz

1s

Outputs

Figure 8: FPS single channel activity after training. The saliency input alone
is not enough to push the AS subnetwork above the selection threshold (dashed
gray line). The addition of a blue stimulus is ignored and thus does not con-
tribute to the AS subnetwork activity. When a black element stimulus is added
the activity of the AS subnetwork is driven passed the selection limit and that
channel is selected.

be trained to track the position of the puck. This learned be-
havior can then be used as an training signal to the predictive
networks.

4.2 Neuralstein
First-person shooters have been extremely popular in Ar-

tificial Intelligence (AI) research. The complex interactions
between the environment, game elements and multiple players,
challenge non-player controllers in unique ways. This popu-
larity has even led to competitions, such as the Botprize, where
the goal is to create the most “human like” AI controller [21].

Due to the different strategies required to successfully
play a modern FPS, traditional AI domains have domi-
nated [22, 23]. It is the complexity of the task that makes it at-
tractive to embodied modeling. The approach taken here relies
on abstracting some of that complexity away. As the networks
become more capable other aspects of the FPS paradigm can
be added.

4.3 Future work
These simple feed-forward networks are a satisfactory

start to employing the SyNAPSE neuromorphic architecture
in embodied modeling. Alone, they can be utilized as con-
figurable controllers but their real potential lies in theiruse as
building blocks in more complex control systems. We have al-
ready demonstrated how these can be connected together in a
simple configuration but in the future these will be combined
with more sophisticated networks. For example, recurrent net-
works can provide, through feedback, state information of the
system. This basic form of short-term memory can process
the temporal aspects of a system’s inputs and allow for more
intelligent processing.

Finally, the feedback for the networks was dependent on
conditioned input stimulus to the reward modulation popula-
tions. The games played the role of the critic. In the future,
more sophisticated reward and punishment signals, such as
those in Florianet al. [24] and Friedrichet al. [25], will be

Figure 9: FPS Game Play. Although the blue character is more salient inthe player’s field of vision the network appropriately targets and shoots the enemy
player.

implemented to find a generic reward critic and more efficient
controllers.

Acknowledgments
The authors gratefully acknowledge the support for

this work by Defense Advanced Research Projects Agency
(DARPA) SyNAPSE grant HRL0011-09-C-001. This work is
approved for public release and distribution is unlimited.The
views, opinions, and/or findings contained in this article are
those of the authors and should not be interpreted as represent-
ing the official views or policies, either expressed or implied,
of the DARPA or the Department of Defense.

References
[1] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D.S.

Modha. A digital neurosynaptic core using embedded crossbar memory
with 45pj per spike in 45nm. InCustom Integrated Circuits Conference
(CICC), 2011 IEEE, pages 1 –4, sept. 2011.

[2] N. Srinivasa and J.M. Cruz-Albrecht. Neuromorphic adaptive plastic
scalable electronics: Analog learning systems.Pulse, IEEE, 3(1):51 –
56, jan. 2012.

[3] Michael X. Cohen and Michael J. Frank. Neurocomputational models
of basal ganglia function in learning, memory and choice.Behavioural
Brain Research, 199(1):141 – 156, 2009.

[4] V. Chakravarthy, Denny Joseph, and Raju Bapi. What do thebasal gan-
glia do? a modeling perspective.Biological Cybernetics, 103:237–253,
2010.

[5] Janet Wiles, David Ball, Scott Heath, Chris Nolan, and Peter Stratton.
Spike-time robotics: A rapid response circuit for a robot that seeks tem-
porally varying stimuli. Australian Journal of Intelligent Information
Processing Systems, 11(1), 2010.

[6] Harald Burgsteiner. Imitation learning with spiking neural networks and
real-world devices.Engineering Applications of Artificial Intelligence,
19(7):741 – 752, 2006.

[7] P. Arena, L. Fortuna, M. Frasca, and L. Patane. Learning anticipation via
spiking networks: Application to navigation control.Neural Networks,
IEEE Transactions on, 20(2):202 –216, feb. 2009.

[8] RăzvanV. Florian. Spiking neural controllers for pushing objects around.
In Stefano Nolfi, Gianluca Baldassarre, Raffaele Calabretta, JohnC.T.
Hallam, Davide Marocco, Jean-Arcady Meyer, Orazio Miglino, and
Domenico Parisi, editors,From Animals to Animats 9, volume 4095
of Lecture Notes in Computer Science, pages 570–581. Springer Berlin
Heidelberg, 2006.

[9] D.R.W. Barr, P. Dudek, J.M. Chambers, and K. Gurney. Implementation
of multi-layer leaky integrator networks on a cellular processor array.
In Neural Networks, 2007. IJCNN 2007. International Joint Conference

on, pages 1560 –1565, aug. 2007.
[10] J.V. Arthur, P.A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy, S. Chan-

dra, S.K. Esser, N. Imam, W. Risk, D.B.D. Rubin, R. Manohar, and D.S.
Modha. Building block of a programmable neuromorphic substrate: A
digital neurosynaptic core. InNeural Networks (IJCNN), The 2012 In-
ternational Joint Conference on, pages 1 –8, june 2012.

[11] N. Burkitt. A review of the integrate-and-fire neuron model: I. homoge-
neous synaptic input.Biol. Cybern., 95:1–19, June 2006.

[12] Sen Song, Kenneth D. Miller, and L. F. Abbott. Competitive heb-
bian learning through spike-timing-dependent synaptic plasticity. Na-
ture Neuroscience, 3(9):919–926, 2000.

[13] K. Minkovich, C.M. Thibeault, A. Nogin, Youngkwan Cho,M. J.
O’Brien, and N. Srinivasa. HRLSim: A high performance spiking neural
network simulator for GPGPU clusters.Neural Networks and Learning
Systems, IEEE Transactions on, to appear, 2013.

[14] N. Srinivasa and Y. Cho. Self-organizing spiking neural model for learn-
ing fault-tolerant spatio-motor transformations.Neural Networks and
Learning Systems, IEEE Transactions on, PP(99):1, 2012.

[15] M. J. O’Brien and N. Srinivasa. A spiking neural model for stable rein-
forcement of synapses based on multiple distal rewards.Neural Compu-
tation, 25:123–156, 2013.

[16] Corey Michael Thibeault and Narayan Srinivasa. Using ahybrid neuron
in physiologically inspired models of the basal ganglia.Frontiers in
Computational Neuroscience, 7(88), 2013.

[17] Narayan Srinivasa and Qin Jiang. Stable learning of functional maps in
self-organizing spiking neural networks with continuous synaptic plas-
ticity. Frontiers in Computational Neuroscience, 7(10), 2013.

[18] Pete Shinners. Pygame.http://pygame.org/, 2012. Accessed:
10/22/2012.

[19] id Software. Wolfenstein 3D.http://www.idsoftware.com/
games/wolfenstein/wolf3d, 2012. Accessed: 11/2/2012.

[20] Pyggel group. Pyggel. http://www.pygame.org/
project-PYGGEL-968-.html, 2012. Accessed: 10/22/2012.

[21] BotPrize. The 2K BotPrize. http://botprize.org/index.
html, 2012. Accessed: 10/16/2012.

[22] N. van Hoorn, J. Togelius, and J. Schmidhuber. Hierarchical controller
learning in a first-person shooter. InComputational Intelligence and
Games, 2009. CIG 2009. IEEE Symposium on, pages 294 –301, sept.
2009.

[23] J. Schrum and R. Miikkulainen. Evolving agent behaviorin multiobjec-
tive domains using fitness-based shaping. InProceedings of the 12th an-
nual conference on Genetic and evolutionary computation, pages 439–
446. ACM, 2010.

[24] Rzvan V. Florian. Reinforcement learning through modulation of spike-
timing-dependent synaptic plasticity.Neural Computation, 19(6):1468–
1502, 6 2007.

[25] Johannes Friedrich, Robert Urbanczik, and Walter Senn. Spatio-
temporal credit assignment in neuronal population learning. PLoS Com-
put Biol, 7(6), 06 2011.

