
A Virtual Environment Framework for Embedding Neural Models

Corey. M. Thibeault1,2,3,*, Narayan Srinivasa1, and Frederick C. Harris Jr.3

1Center for Neural and Emergent Systems, Information and Systems Sciences Laboratory, HRL

Laboratories LLC., Malibu, CA.
2Department of Electrical and Biomedical Engineering, University of Nevada, Reno. Reno, NV.

3Department of Computer Science, University of Nevada, Reno. Reno, NV.

Abstract

An important aspect of spiking neural network research

is the implementation of environments and scenarios to de-

velop and test novel theories of function and adaptation. In

addition to embodying a model in the physical world, there

are a number of strategies for virtually embedding neural

models. Two popular approaches are using existing games

or creating custom environments. Both of these however,

can require significant software development in addition to

the difficulty in creating compelling visual elements. The

visual world can not only be the most time-consuming to

develop but to render as well. Furthermore, it is often

the most unnecessary aspect of the research. In this work

we briefly explore using the entity system paradigm as the

foundation of a generic framework for developing virtual

environments independent of the visualization. This is

contrasted with using an object-oriented approach for the

same goal. The resulting framework not only simplifies the

development of novel virtual environments but provides a

higher level of code reuse.

keywords: Neurorobotics, Entity System Paradigm, Virtual

Environments, Computational Neuroscience.

1 Introduction

The concept of neurorobotics is dependent on the abil-

ity to immerse an embodied agent into a real or virtual

world. Although it has been argued that using a physical

environment is vital to creating intelligent systems [8],

this is often impractical. Furthermore, this can create

unnecessary complications during the development of novel

neural theories. Employing a Virtual Environment (VE)

however, presents its own unique issues. One that is often a

hindrance to rapid model development is performance. This

emphasis on creating detailed but slowly executing visual

environments runs counter to the high-performance neural

∗Corresponding Author. cmthibeault@hrl.com

models of software simulators and more recently of high-

performance neuromorphic processors.

With traditional game and VE software development the

focus is on graphical rendering of the environment. Devel-

oping new worlds or elements requires creating a complete

visual representation of it—introducing both development

and performance bottlenecks. The work presented here is

aimed at reducing this congestion. By removing the re-

striction of creating and rendering the visual representation,

researchers can focus on how the environmentwill influence

the entity and its sensing systems. This can not only

increase performance but reduce development time as well.

In addition, a system that can interact with both hardware

and software models, without concerns for visualization,

can help in the development of neuromorphic models. The

features of this approach are:

• Designers can focus on the important interactions

rather than the minutia of creating compelling visible

environments.

• Results can be plotted roughly during testing and later

rendered in more detail for publishing and presentation.

• Neuromorphic hardware can run at different speeds,

both faster and slower than real-time—a system that

can interact with these without concerns for visualiza-

tion are important for rapid model development.

There are a few existing virtual environment packages

that target neuroscience directly. CASTLE [12] provides

environments with capabilities similar to those presented

here. However, it lacks mechanisms for running simulations

faster than real-time or without rendering the graphics to

the screen. These restrict the performance of the neural

models and their use in distributed computing. The latter

is important not only for parameter searches but for stability

analysis of deployable systems. Entities and environments

are created in Blender with support for other 3D modeling

software planned in the future.

Similarly, Webots [10] offers a comprehensive virtual

environment along with a number of different modes, in-

cluding a headless one. However,Webots was not developed

specifically for neurorobotics, and adaptation for neural

applications requires custom software modules. In addition,

the software requires a physical license for each instance—

making distributed execution unreasonable.

None of the existing packages satisfied all of our require-

ments and the decision to design a custom framework was

made. The development of a virtual environment can be

compared to creating a level in a video game. Because of

this similarity we chose to search for an appropriate design

pattern from within video game development. There are a

remarkably large number of game engine design patterns

available and there is no apparent consensus on where

each one is appropriate. This made selecting a pattern

to apply to this project a surprisingly difficult task. In

addition, there were no existing C++ based game engines

that met our requirements — these included open source

license, options for headless execution, high performance,

and both development and execution on Linux platforms.

In addition, it was determined that the existing engines

lacked the agility required for supporting rapidly changing

experiments. Based on this, a custom framework utilizing

the entity-system design paradigm (ESP) was selected [13].

The game engine landscape includes a number of com-

mercial and open source ESP based frameworks that were

options for this project. The commercial Unity3D engine 1 is

on such example. Although the core of Unity3D does use the

ESP, it is not freely available and developing in Linux is not

supported — there is limited support for previewing games

in Linux though. Another ESP option would have been

Artemis 2. However, at the time this project was developed

the C++ port of Artemis was still unstable.

In this paper the benefits of the ESP are highlighted by

the design of a simple virtual environment—a classic Pong

style game. Its implementation using object-oriented design

is presented first. As we will show this works well for

basic tasks but for larger environments the complexity of

the element interactions is undesirable. The resulting lack

of scalability and code reuse was the motivation for the ESP

that is then presented. Finally, we demonstrate how the Pong

environment would be represented using the ESP.

2 Playing games

2.1 Object-oriented design

The object-oriented design pattern (OOP) is based around

the concept of reducing a software system into reusable

components or classes. This is naturally a data centric

approach however, objects are generally coupled with logic

for working with the data they encapsulate. Classes define

the blueprint for the state and behavior of objects and how

1http://unity3d.com
2http://gamadu.com/artemis/

braingame::Pong

braingame::StimMap

braingame::playerStruct

braingame::BGEntitystd::vector<playerStruct*>

0...*

1

1

0...1

0...*

1

0...*

1

0...1

0...*

players

bat

ball

stimMap

Figure 1: Pong class layout.

they interact with the program.

An additional layer of complexity that is important for

OOP-based software is polymorphism. This allows deriva-

tive class objects to extend an existing object by inheriting

its data and function interface. Inheritance provides a way

for building and storing complex objects that are based on

a common object but it can be difficult to control in generic

environments where it is not always possible to predict what

a user may require. In addition, these elaborate object

interactions often lead to hierarchies where objects need

to encapsulate any desired functionality or inherit from an

object that provides that functionality. The resulting deep

dependencies can make extending a project difficult.

A way around deep hierarchies would be to use com-

position instead of inheritance [4]. This is closely related

to the framework proposed here however, composition still

results in a common root object. Alternatively, aspect

oriented programming can reduce redundant code and add

decomposition but it introduces another level of complexity

on top of OOP [5, 9]. This can make it difficult to extend and

requires that each developer has a complete understanding of

the software architecture before making any modifications.

When employed appropriately OOP can work for virtual

environments and game engines [1]. To illustrate how to

apply OOP to a virtual world we present an example of

interfacing neural models to a simple pong style game. In

this, a puck is given basic physicswhere it will move linearly

through the game board and bounce off of the left, right and

top walls. The player controls a paddle at the bottom of the

board and must use that to reflect the puck and keep it on

the board. If the puck gets past the paddle the player loses

a life. Keep in mind that we are only creating the game

elements, controller and interface to the neural model. The

visualization is performed after the simulations have been

completed by a separate program that simply renders the

script output from this environment.

The objects for this system are simple and the class

diagram outlining each of the properties and functions is

presented in Figure 1. The BGEntity class is used to

represent the different elements that make up the game.

In this case that is the player’s paddle and the puck. The

StimMap class is used to encode the game space into neural

stimulus based on the position of the puck. Finally, the

controller for the game is implemented in the Pong class.

2.2 BrainGames

This is a straightforward environmentwith a small number

of elements interacting. However the Pong class is responsi-

ble for much of the heavy lifting, such as collision detection,

input and output processing, and game physics. For a

small code base this is reasonable but, as the complexity

of the task increases this design pattern quickly becomes

unmanageable.

To support a reduction in VE development time, we

are proposing a unique ESP implementation. Unlike hi-

erarchical design patterns, most notably the object-orient

design pattern presented above, ESP provides better code-

reuse and extensibility—this is an important requirement in

research and development. Traditionally, ESP has been used

exclusively in video game development, however, it is an

ideal solution for a generic VE engine. The features of this

design are:

• A headless framework for creating high-performance

virtual-environments capable of interfacing with neural

simulations and neuromorphic hardware.

• Designed for C++ and can be embedding into existing

neural simulators such as NCS [6] and HRLSim [11].

• Generic reusable components for efficient environment

development.

• Data driven design pattern removes much of the com-

plexity for new developers.

2.3 Entity System Design

Component based design offers a way to decompose the

different functional domains of the VE entities into their

constituent parts. In addition, it provides a means for layered

abstractionwithout the negative impacts on performance and

extensibility that many hierarchical object-oriented designs

impose.

Entities represent groups of components—here every VE

element is an entity. The components themselves do not

contain any logic. Instead, a data-driven approach is taken

and the components are nothing more than collections of

data with exposed getter and setter functions. The control

logic is implemented by systems. Systems encapsulate

the update functions for each of the components. The

systems are responsible for modifying the data contained

within the components. The different systems contain

references to the components they are interested in. In

fact, the systems never have a need to reference the entity

Add Component

Entity

Environment

Get Component

Refresh

Figure 4: Basic virtual environment use cases with the Entity objects of

BrainGames.

object itself. This allows the addition and removal of

systems in a clean and unobtrusive way. In addition, the

removal of a component from an entity does not result in a

broken hierarchy. Instead the systems previously using the

components of that entity simply remove the references to

it. The addition or modification of systems works exactly

the same way—essentially creating a run-time interface.

The design for a C++ realization of this idea is presented

in Figure 3. Use cases for this concept are presented in

Figures 2, 4 and 5. This represents a minimal architectural

design based on the ideas presented in [3] and the framework

of [2]. Unlike game engines, this implementation focuses on

the specific needs of the neurorobotics community. Mainly,

many parallel sensory and motor loops that are the hallmark

of most neurally inspired designs.

2.4 Pong using ESP

Once an ESP framework is in place, creating the com-

ponents for the Pong game becomes relatively simple. Con-

sider this from the point of view of the main code. The world

object is instantiated first along with the system objects:

// Create the world.

world = new World();

// Create the systems.

world.registerSystem(new MovementSystem());

world.registerSystem(new CollisiontSystem());

world.registerSystem(new StimOutputSystem());

world.registerSystem(new InputControlSystem());

world.registerSystem(new RecordingSystem());

The Puck and the Paddle are then the only entities added

to the world:

// Create the puck.

Entity puck = world.createEntity();

puck.addComponent(new Position());

puck.addComponent(new Velocity());

puck.addComponent(new Collidable());

puck.addComponent(new Stimulus());

// Create the paddle.

Entity paddle = world.createEntity();

paddle.addComponent(new Position());

paddle.addComponent(new Velocity());

paddle.addComponent(new Controllable());

Add Component Type

Create Mapper

Add System Type

Create System

Initialize System

{Uses} {Uses}

{Uses}

Environment

Delete Entity

World

Create System

Initialize System

Create Entity

Refresh Entity

Get Entity

Loop

Figure 2: Basic virtual environment use cases with the world class of BrainGames.

The environment then loops until an end condition is

reached. The implementation for each of the system objects

defines the logic for the world. The systems loop through the

entity references that contain all of the required components.

The motion of each of the entities is handled by the move-

ment system. It uses the position and velocity components

to determine the change in position. The collision system is

then responsible for all objects in the game that move around

and can collide with other game elements. In this case that is

only the puck. The input system is responsible for gathering

the input information from the neural model, processing it

and updating the control system for the paddle. This could

be further separated into input and control but would require

a component to maintain the input information. The stim

output system is used to create the neural stimulus based

on the position of the puck. Finally, the recording system

collects the current state of the environment and saves it for

rendering off-line.

In the transition to the BrainGame architecture, the code

presented in Figure 1 is moved into the separate system

classes. In the ESP however, that code becomes cleaner

and is logically abstracted, rather than contained in a single

monolithic class. In addition, switching out systems to

perform different tasks or adding players and elements

no longer requires redesigning and testing the existing

codebase.

System

Create Mappers

Add Component Type

Process Entities

Figure 5: Basic system use cases.

3 Discussion

3.1 Benefits of ESP

A difficult problem to address in the design of these types

of systems is the communication between components. One

option for addressing this would be to give each entity a

reference to those it needs to send messages to. The problem

is this creates a tight coupling between components and

changing any of those becomes extremely difficult. Another

approach has been to create a message passing system.

For larger systems this can become complex and again the

coupling of components can be an issue. The advantage

to ESP is that the systems take care of all communication

Figure 3: BrainGames Framework.

between objects. They can easily access different classes

of components associated with an entity. The system does

not need to know everything about the entity, only that

it contains the components it requires to do its update.

Similarly, a component does not need to know anything

about the other components in the entity, or anything about

the entity itself for that matter.

With ESP the logic for the environment is contained

entirely in the system objects. If designed correctly, those

systems will essentially be autonomous units. Changing

one will not affect the others. In addition, the components

essentially do not change. Combined, these provide a level

of code reuse that is important in the rapid development of

neurorobotics.

Development and Testing also becomes more straight-

forward in ESP systems. In particular, multi-developer

projects become more tractable, as developers can work on

independent system objects. The common components are

the only aspect that need to be enforced.

Finally, unlike the existing virtual environments discussed

in Section 1, this design can be compiled directly into the

simulation environment or it can be instantiated remotely.

Additionally, the inherent support for parallel and dis-

tributed hardware further separates it from existing generic

virtual environments.

3.2 Real vs. virtual worlds

In Krichmar et. al (2005) [7] it is argued that simu-

lated environments introduce unwanted biases to the neural

models. These are a product of the artificial nature of the

input stimulus. In addition, they contend that simulated

environments cannot compete with the noisy stimulus of

the real world and cannot support many important emergent

properties.

The chaotic nature of the real world is no doubt difficult

to simulate however, there are benefits to constraining initial

model development to virtual worlds. The first is the time

intensive nature of dealing with physical robots. Devel-

opment of novel neural models becomes extremely time

consuming as repeating experiments must be completed in

real time. Using a high-performance environment such as

the one proposed here, models can be rapidly developed and

tested. The tests can be automated and the results can be

validated over multiple simulations in a realistic amount of

time. The complexity of the worlds can also be increased

providing a process for building up and exploring the unique

properties of a given model.

Virtual worlds also provide a sense of control to the

experiments. Different networks can be immersed in a com-

mon environment, allowing for a quantifiable comparison

between them. As models are developed and refined, they

can then benefit from the type of embodying championed by

Krichmar et. al (2005) [7]. The virtual environments then

become a compliment to their real-world counterparts.

Acknowledgements

The authors gratefully acknowledge the support for this

work by Defense Advanced Research Projects Agency

(DARPA) SyNAPSE grant HRL0011-09-C-001. This

work is approved for public release and distribution is

unlimited. The views, opinions, and/or findings contained

in this dissertation are those of the author and should

not be interpreted as representing the official views or

policies, either expressed or implied, of the DARPA or the

Department of Defense.

References

[1] Apostolos Ampatzoglou and Alexander Chatzigeor-

giou. Evaluation of object-oriented design patterns

in game development. Information and Software

Technology, 49(5):445–454, 2007.

[2] Arni Arent and Tiago Costa. Artemis entity

system framework. http://www.gamadu.com/

artemis/, 2012.

[3] Scott Bilas. A data-driven game object system.

http://scottbilas.com/files/2002/

gdc%5Fsan%5Fjose/game_objects_

slides.pdf, 2007.

[4] Siobhán Clarke and Robert J Walker. Composition

patterns: An approach to designing reusable aspects.

In Proceedings of the 23rd international conference

on Software engineering, pages 5–14. IEEE Computer

Society, 2001.

[5] Eduardo Figueiredo, Nelio Cacho, Claudio Sant’Anna,

Mario Monteiro, Uira Kulesza, Alessandro Garcia,

Sérgio Soares, Fabiano Ferrari, Safoora Khan, Fran-

cisco Dantas, et al. Evolving software product lines

with aspects. In Software Engineering, 2008. ICSE’08.

ACM/IEEE 30th International Conference on, pages

261–270. IEEE, 2008.

[6] Roger V Hoang, Devyani Tanna, Laurence C

Jayet Bray, Sergiu M Dascalu, and Frederick C Harris.

A novel CPU/GPU simulation environment for large-

scale biologically-realistic neural modeling. Frontiers

in Neuroinformatics, 7:19, 2013.

[7] J. L. Krichmar and G. M. Edelman. Brain-based

devices for the study of nervous systems and the

development of intelligent machines. Artif. Life, 11(1-

2):63–78, jan 2005.

[8] Jeff Krichmar. Neurorobotics. http:

//www.scholarpedia.org/article/

Neurorobotics, 2008.

[9] Uirá Kulesza, Vander Alves, Alessandro Garcia,

Carlos JP De Lucena, and Paulo Borba. Improv-

ing extensibility of object-oriented frameworks with

aspect-oriented programming. In Reuse of Off-the-

Shelf Components, pages 231–245. Springer, 2006.

[10] O. Michel. Webots: Professional mobile robot

simulation. International Journal of Advanced Robotic

Systems, 1(1):39–42, 2004.

[11] K. Minkovich, C.M. Thibeault, M.J. O’Brien, A. No-

gin, Y. Cho, and N. Srinivasa. HRLSim: A high

performance spiking neural network simulator for

GPGPU clusters. Neural Networks and Learning

Systems, IEEE Transactions on, PP(99):1–1, 2013.

[12] SET Corporation. Castle. https://project.

setcorp.com/castle/index.html, 2012.

[13] Mick West. Evolve your hierarchy. http:

//cowboyprogramming.com/2007/01/05/

evolve-your-heirachy/, January 2007.

